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Abstract  
The task of identifying stochastic noise signals as an information resource for research objects 
is an urgent task, confirmed by a significant number of publications. A formalized hierarchy 
of mathematical models of such signals from a vector space-time random field to a random 
variable is proposed, probabilistic and physical measures are indicated for measuring values 
and statistical evaluation of signal characteristics. The identification characteristics of noise 
signals are obtained based on the following constructive models of random functions - linear, 
conditionally linear, linear periodic, random linear fields.  
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1. Introduction 

Different studies of noise signals are carried out in different fields [1-3]. Noise signals have a 
stochastic nature of formation, the dynamics of changes in intensity and characteristics in space and 
time. 

Traditionally, the analysis of such signals is carried out in two directions [4-6]: 
• tasks of detecting signals in the presence of noise, using a significant number of methods to 

reduce the effect of noise in order to detect signals; 
• tasks in which noise signals are the subject of research, mathematical models of signals are 

substantiated, their spatio-temporal and spectral characteristics are determined and statistically 
evaluated. 

This paper is devoted to the second direction of analysis. 
In most cases, the identification of various systems, including the "black box" system, linear, 

nonlinear, inertial, non-inertial, open-loop structures, feedback systems, and others, is performed as 
follows: based on the results of the analysis of the input and output signals of the research objects, a 
formalized model of the research object is justified and determined. The results of solving such 
identification problem are given in many publications in which the use of different methods is proposed 
[7-9]. Among these methods, we single out methods that use the following main idea – the input signal 
is a stochastic process of white noise [10, 11]. These methods are forming linear filters, white noise, 
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generating process, innovation process, and stochastic integral representations. The results of applying 
the method of stochastic integral representations are used in this paper to solve identification problems. 

The identification of various phenomena, processes and objects is based on the research of an 
information resource – stochastic noise signals generated by the objects of research during their 
operation. Mathematical models and characteristics of the studied noise signals are information signs 
of their identification [10]. The input signal of the object of study is a stochastic process of white noise 
propagating in the space of the object and forming in each case its own space-time field of color noise. 
The measurement and registration of the values of such a field is carried out by various technical means 
in a limited amount of space and time [10, 12].  

The theoretical foundations for the study of stochastic signals were laid at the end of the 17th century. 
In the works of the Swiss scientist Jacob Bernoulli, the statement of the problem of the convergence of 
the laws of the probability distribution of the sum of independent random variables with an unlimited 
growth of terms (the limit theorem) was formulated. In the 30s of the XX century, the central limit 
theorem was proved, according to which the laws of the probability distribution of the sum of 
independent random variables with the number of terms n →∞  are infinitely divisible, their special 
cases are the Gaussian (normal) and Poisson distribution laws. The characteristic functions of infinitely 
divisible probability distribution laws in the canonical forms of Levy, Levy-Khinchin and Kolmogorov 
are obtained [13-15]. 

The rapid development of electrical engineering, electronics, and radio engineering, starting from 
the 20s of the XX century, determined the relevance of the use of theoretical and applied studies of 
noise signals. This is due to the solution of a wide range of scientific and technical problems of 
transmission, detection, and identification of information signals under the influence of noise 
interference in various technical systems: radio communications and television, automatic control, 
radar, hydroacoustic, physiological signals and others [16-18]. 

Thus, at present time, the identification of information signals from white noise generated by moving 
elements is actively used for monitoring, diagnostics, and control of power equipment. The authors of 
[19] share this method implemented based on 2 approaches: 1) monosensory approach; 2) multisensory 
approach.  

The monosensory approach is based on the study of the selected signal of the research object by 
choosing the appropriate statistical method and data processing method. In paper [20] it was proposed 
to carry out a preliminary normalization of diagnostic parameters using the Johnson distribution, which 
with three basic distribution groups, covers a wide class of empirical distributions. To assess the 
accuracy of the obtained normalized data, they were compared with the data obtained by replacing the 
resulting law with a Gaussian one. In paper [21] it was shown and studied some informative features 
for diagnostics of composite materials by impedance method using Hilbert transform. Among them 
there are instantaneous frequency of a signal, the integral of a phase characteristic on the selected 
interval and the integral of a difference signal phase characteristics. The features of using the average 
amplitude and harmonic wave of the vibration signal as the health indicator to represent the bearing 
condition status are shown in [22]. Authors of the paper [23] extract the mean squared error and the 
peak value of the vibration signal to construct the health indicator of bearing status using continuous 
wavelet transform. Another example of using wavelet transform for determining diagnostic signs is 
shown in [24]. 

In order to improve the reliability of fault identification, it is proposed to use a multi-sensor approach 
based on the search for a complex information signal (diagnostic sign) based on the measurement of 
several parameters [25-27]. As an example of multisensory approach, in paper [28] it was shown the 
using of vibrations, forces, temperature and acoustic signals for faulty diagnostics. In paper [29] it was 
shown that the multisignal-based faulty identification approach can make the identification result more 
reliable compared to the single signal-based approach. Authors of the paper [30] proposed a 
multisensor-based approach for the degradation identification of the mechanical component by 
evaluating the composite index which is combined with multiple sensor signals collected under multiple 
operational conditions. Features of a motor faulty identification model based on sensor data fusion are 
shown in [31]. 

Thus, these works reflect the relevance and importance of using identification of noise stochastic 
signals for monitoring, diagnosing, and controlling tasks. 



An urgent task is to study the stochastic signals of various objects of the natural and man-made 
environment (research objects) in order to create models and determine the information characteristics 
of their identification and study. 

Formulation of the problem. It is necessary to study stochastic noise signals and further develop the 
theoretical foundations for creating models and determining the identification characteristics of 
stochastic noise signals of various objects of study as an information resource for their functioning.  

2. General approach 

An analysis of the results of a significant number of publications makes it possible to determine the 
features and specifics of noise signals. 

Noise signals are characterized by: 
• disturbance of the intensity and characteristics of signals stochastically appeared in space and 

time; 
• actions of different energy sources form a significant range of signals in a wide frequency 

range; 
• space-time and spectral characteristics of signals allow to identify the objects of research; 
• a set of sources of various noise signals creates combinations of options for the functioning of 

research objects in a limited space. 
Thus, the following statements can be formed. 
Statement 1. The noise signal generated by the object of research is the result of the action of a large 

number of elementary stochastic impulse disturbances of various physical nature, including thermal, 
mechanical, electromagnetic, atmospheric, hydrodynamic and others, and is an information resource 
of the object. 

Statement 2. Identification and, if possible, determination of the state of the research object is based 
on the use of a mathematical model of the set of space-time and spectral characteristics of the generated 
noise signal. 

Statement 3. In the case of the functioning of two or more objects of study in a limited area of space, 
the noise signals generated by them create various combinations of additive and multiplicative 
mixtures, which are the subject of theoretical and applied research, including the problem of detecting 
a signal under interference conditions, i.e., signal under the action of other noise interference. 

Methods for the formation and study of noise signals. 
First method. The object of study is a source of noise signal (Fig. 1). 
 

 
Figure 1: Schematic illustration of the implementation of the first method for the formation and study 
of noise signals 
 
Second method. This method, in which the object of study is the space-time operator Z[∙] of the test 
noise transformation, in most cases, white noise is used to identify both linear and non-linear systems, 
including physiological systems (Fig. 2). 



 

 
Figure 2: Schematic illustration of the implementation of the second method for the formation and 
study of noise signals 
 

Mathematical models. The solution of various problems of studying noise signals is based on the 
use of mathematical models. Even though they do not reflect all the properties and characteristics of 
real objects, models play a fundamental role in theoretical, modeling and experimental studies. 

Based on the obtained results of the study of noise signals, we can present the following. 
Definition 1. A mathematical model of a noise field is a multidimensional random function with 

corresponding ranges of its arguments  
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with different distribution laws. 
Realizations of such a model form an ensemble of multidimensional deterministic functions 

{ } 3( , ), 1, , ( ) , ( ) .iu t i n D u R T E u R= = × =r  
Based on the processing of the ensemble of realizations, statistical estimates of the space-time 

characteristics of the field are determined. 
Fig. 3 shows a formalized hierarchical structure of mathematical models, which is a sequence of 

one-dimensional and multidimensional random functions, where analytical expressions of 
mathematical models are presented in the framework, and their names are presented on top. 

In the tasks of studying noise signals and fields, both continuous and discrete models are used. 
During conducting modeling and experimental studies, discrete models are mainly used, which are a 
special case of continuous models. 

Depending on the research conditions, various combinations of continuous and discrete domains are 
used to define multidimensional models. In the complex of such models, there are: 

• continuous models with continuous domains; 
• discrete models with discrete domains, that is, given on the corresponding discrete lattices of 

variables; 
• discrete-continuous or continuous-discrete models, if the general domains of the model is a 

combination of continuous and discrete domains of variables; thus, for a random space-time 
field ( , , )tξ ω r , the number of combinations of continuous and discrete domains of variables is 
equal to 52 2 30− = . 



Fig. 4 shows a schematic illustration of the use of probabilistic and physical measures for one-
dimensional and multidimensional random functions and their realizations for the problems of 
measuring values and statistical estimation of the characteristics of noise signals. 

 
Figure 3: Schematic illustration of a formalized hierarchical structure of mathematical models of 
stochastic noise fields and signals 

 
 
 



 
Figure 4: Schematic illustration of the use of a probability measure and measures of physical 
quantities of space and time for one-dimensional and multidimensional random functions and the 
corresponding ensembles of their realizations 
 

The presented sets of continuous and discrete mathematical models of stochastic noise signals are 
written in a general form. Therefore, it is important to use the following constructive mathematical 
models that reflect the specifics and basic properties of stochastic noise signals for identifying research 
objects. 

3. Models and characteristics of identification 

The conducted studies of stochastic noise signals using publications [32-34] made it possible to 
obtain the following results on the creation of models and characteristics of identifications. 

3.1. Linear random process (LRP) 

Definition 2. A linear random process ( , ), ( , ),t tξ ω ∈ −∞ ∞  defined on some probability space 
{ }, ,PΩ F  is denoted as follows: 
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where ( , ), ( , )η ω τ τ∈ −∞ ∞ , ( ( ,0) 0) 1η ω = =P  is a Hilbert stochastically continuous random process 
with independent increments (generating process); ( , ), , ( , )t tϕ τ τ ∈ −∞ ∞  is non-random function 
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ϕ τ κ τ < ∞ ∀ =∫ , where ( )pκ τ  is cumulant function of the p-th 

order of the generating process with independent increments ( , )η ω τ . 
Identification characteristics of a continuous time LRP: 
• one-dimensional characteristic function 
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• two-dimensional characteristic function 
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• expected value 
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• correlation function 
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Identification characteristics of a discrete time LRP: 
• one-dimensional characteristic function 
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3.2. n-dimensional linear random process 

Identification characteristics of n-dimensional linear random process: 
• expected value 
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3.3. Linear space-time random field (LSTRF) 

Definition 3. A LSTRF defined on some probability space { }, ,PΩ F  is a field ( , , ),tξ ω r  ,ω∈Ω  
3 ,∈r R  ( , )t∈ −∞ ∞  that allows an integral representation of the form: 
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where 3( , , ), ,η ω τ ∈ τ∈ρ ρ R R  is a Hilbert space-time stochastically continuous random field with 
independent increments (generating field);  ( , ; , )tϕ τρ r  is non-random function (kernel), such that 
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Identification characteristics of a LSTRF: 
• characteristic function 
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3.4. Conditional linear random process (CLRP) 

 Definition 4. A CLRP ( , ), , ( , )t tξ ω ω∈Ω ∈ −∞ ∞  defined on some probability space { }, ,PΩ F  is a 
stochastic integral of the form: 
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where ( , , ), , ( , )t tϕ ω τ τ ∈ −∞ ∞  is a real random function (kernel); ( , ), ( , ),η ω τ τ∈ −∞ ∞  
( ( ,0) 0) 1η ω = =P  is a real Hilbert stochastically continuous random process with independent 

increments (generating process); ( , ) ( )aη ω τ = τ < ∞M  and ( , ) ( )bη ω τ = τ < ∞D  ∀τ , random functions 
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t∀  with probability 1. 
Let ( , )tφ τ  be expected value and 1 2 1 2( , ; , )R t tϕ τ τ  is correlation function of CLRP kernel [32]. 
Identification characteristics of a CLRP: 
• one-dimensional characteristic function 
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3.5. Linear periodic random process (LPRP) 
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where 1( )κ τ  and 2 ( )κ τ  are cumulant functions of the first and second order of the generating process 
with independent increments ( , ),tη ω and ( , )L x τ  is its Poisson jump spectrum in Levy form. 

Then LPRP is a linear random process whose characteristic function satisfies the cyclostationarity 
condition 
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Identification characteristics of a continuous time LPRP: 
• period: real number 0 0T > , 
• one-dimensional characteristic function 
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Identification characteristics of the discrete time linear random process: 
• period: real number 0 1,T >  
• one-dimensional characteristic function 
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3.6. Conditional linear cyclostationary random process (CLCRP) 

Conditional linear cyclostationary random process is defined as CLRP [32] but it’s kernel and 
generating process have cyclostationary properties.  

Identification characteristics of the continuous time CLCRP: 
• period: real number 0 0T > , 
• one-dimensional characteristic function 
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The resulting set of identification characteristics of random linear models of stochastic noise signals 
is used in theoretical studies of various research objects. For practical use, such a combination is 
potentially possible and is implemented to a limited extent. The rapid development of modern 
information technologies and their implementation in the creation of complex hardware and software 
technical systems in various industries, including energy, determine the development of appropriate 
information support for such systems. The results obtained in this paper can be used to create such 
information support. 

4. Discussion of research results 

Today, the intensity of publications highlights the relevance of ensuring the reliable functioning of 
complex technical objects based on the use of modern hardware and software monitoring, identification, 
and diagnostic systems. These systems form and transmit actual information at the signal level, the 
state, and dynamics of its change, both components (means, mechanisms) and technical objects as a 
whole. Stochastic noise signals are the most integrated information resource for the functioning of such 
objects. The results of this paper, namely, the models and characteristics of the identification of noise 
stochastic signals of research objects, determine the potential for their use. To date, these opportunities 
are not fully realized, but the rapid development of information technology confirms the trend of 
increasing their use. More specifically, such models and characteristics of identification can be applied 
in the creation of information support for intelligent multi-level systems for monitoring, identification 
and diagnosis, the development and creation of which is carried out by the developed countries of the 
world. The results of the use of models and the determination of the characteristics of the identification 
of noise stochastic signals of the functioning of various technical objects are obtained in the paper. 

The characteristics of the following models are given: 
• linear random processes with continuous and discrete time; 
• linear stationary random process; 
• conditional linear random process; 
• conditional stationary random process; 
• n-dimensional linear random process; 
• linear space-time random field; 
• linear periodic random process with continuous and discrete time; 
• conditional linear cyclostationary random process with continuous time. 

The results of this paper are a contribution to the theoretical foundations of creating models and 
determining the characteristics of the identification of noise stochastic signals in the study of the 
functioning of a wide range of technical objects. 

5. Conclusions 

Based on the results of the conducted research, the following conclusions can be made. 
1. The development and creation of modern hardware and software systems for monitoring, 
identification, and diagnosis of complex technical objects in different areas determines the relevance 
of identifying stochastic noise signals as an information resource for the functioning of such objects. 



2. The general approach of formalization of mathematical models of stochastic noise signals is 
used. A formalized hierarchy of multidimensional and one-dimensional random functions from a 
vector space-time random to a random quantity is presented, covering the range of options for noise 
signals studying. Probabilistic and physical measures are indicated during measuring values and 
statistical processing of signal characteristics. Formalization of noise signal models allows to 
determine the direction of research and requires the use of constructive models of noise signals. 
3. The conducted studies made it possible to obtain a set of characteristics for identifying 
constructive models of stochastic noise signals: a linear random process, a vector n-dimensional 
linear random process, a linear space-time random field, a linear periodic random process, a 
conditional linear cyclostationary random process in the form of characteristic functions and 
moment functions. 
4. A new result for solving problems in the theory of linear stochastic dynamical systems is the 
substantiation of the model and identification characteristics of a conditional linear random process 
as the basis for applying the method of stochastic shaping linear filters driven by the white noise. 
5. The use of linear models of random processes and fields, their identification characteristics 
make it possible to study complex hardware and software technical systems. 
6. The results obtained in the complex are a further development of the theoretical foundations 
for creating models and determining the identification characteristics of noise stochastic signals. 
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