
Reasoning about Reachability and Concurrency in
DEL Games
Silvia Stranieri

1

1University of Naples Federico II, Italy

Abstract

Dynamic Epistemic Logic allows modelling high order knowledge and the evolution of what an agent

knows over time. This work shows decidability results about reachability goals and concurrent execution

of Dynamic Epistemic Logic games.

Keywords
Dynamic Epistemic Logic, Multi-agent systems, DEL games

1. Introduction

Dynamic Epistemic Logic (DEL) [1] is used to describe how actions affect the world, how agents

perceive them, and how their knowledge changes during the execution of the game. In this

work, DEL is investigated on reachability and concurrency aspects. We do this in two different

directions. First, a setting in which agents are not active, but they simply observe a controller

and an environment playing in turn and modifying their knowledge. In this case the controller

synthesis problem is addressed. In the second setting, agents become players of an imperfect

information game playing in coalitions against each other, addressing the distributed synthesis

problem. Precisely, reachability goals are expressed through LTLK formulas, involving both

temporal and knowledge operators, and decidability results over public actions and public

announcements are provided [2]. We recall that an action is public when it is visible to all

agents [3, 4, 5, 6], while a public announcement is a special case of public action with no effect

besides epistemic ones.

DEL game concurrent executions are also considered in this work, by providing an opportune

concurrent update product to define how actions played concurrently affect the epistemic model,

relying on a scheduler to solve possible conflicts. The distributed synthesis is proved to be

decidable when actions are public. This is obtained by reducing the problem to the model

checking of ATL*
K

[7].

2. DEL Models

In this section, the key aspects of epistemic logic are provided [8].

OVERLAY 2022: 4th Workshop on Artificial Intelligence and Formal Verification, Logic, Automata, and Synthesis,
November 28, 2022, Udine, Italy
$ silvia.stranieri@unina.it (S. Stranieri)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:silvia.stranieri@unina.it
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Epistemic Model

Definition 2.1. Let AP and Agt be the set of atomic propositions and the set of agents respectively,
an epistemic model ℳ = (W , (≼𝑎)𝑎∈Agt , 𝜆) is a tuple where

• W is a set of worlds (or situations),
• ≼𝑎⊆ W ×W is an accessibility relation for agent 𝑎, and
• 𝜆 : W → 2AP is a valuation function.

One can write w ≼𝑎 u instead of (w , u) ∈≼𝑎; the intended meaning of w ≼𝑎 u is that when

the actual world is w , agent 𝑎 considers that u may be the actual world. The valuation function

𝜆 provides the subset of atomic propositions that hold in a world. A pair (ℳ,w) where w is a

world in ℳ is called a pointed epistemic model, or epistemic state, while a pair (ℳ,W ′), where

W ′ ⊆ W is a subset of worlds, is called a multipointed epistemic model.
An epistemic model is finite if its set of worlds W is finite and for each world w ∈ W , 𝜆(w) is

finite. In that case, we let |ℳ| be the size ofℳ, defined as |W |+
∑︀

𝑎∈Agt | ≼𝑎 |+
∑︀

w∈W |𝜆(w)|.
From now on, all epistemic models are assumed to be finite.

Event models Dynamic Epistemic Logic also relies on event models. These models specify

actions, the preconditions for their execution, their effects on the world, and how agents perceive

their occurrence.

Definition 2.2. An event model 𝒜 = (A, (≼𝒜
𝑎)𝑎∈Agt , pre, post) is a tuple where:

• A is a set of possible actions,
• ≼𝒜

𝑎 ⊆ A×A is the accessibility relation for agent 𝑎,
• pre : A → EL is a precondition function (where EL stands for epistemic logic), and
• post : A×AP → Prop is a postcondition function (where Prop stands for set of propositions).

An action 𝛼 is executable in a world w of an epistemic model ℳ if its precondition pre(𝛼)
holds in w , i.e., ℳ,w |= pre(𝛼). A set of actions A′ ⊆ A is non-blocking if

⋁︀
𝛼∈A′ pre(𝛼) ≡ ⊤,

i.e., there is always at least one action in A′
that is executable. After executing an executable

action 𝛼 in a world w , proposition 𝑝 holds if its postcondition was satisfied before executing the

action; thus, let us define 𝜆(w , 𝛼) := {𝑝 ∈ AP | ℳ,w |= post(𝛼, 𝑝)} as the set of propositions

holding after executing 𝛼 in w . Since postconditions are propositional, one can define similarly

𝜆(𝜈, 𝛼) where 𝜈 ⊆ 2AP
is a valuation. A pointed action model is a pair (𝒜, 𝛼) where 𝛼 represents

the actual action.

Only finite action models will be considered, i.e., such that the set of actions A is finite,

and for every action 𝛼 ∈ A there are only finitely many atomic propositions 𝑝 ∈ AP whose

postcondition is not trivially false, i.e., such that post(𝛼, 𝑝) ̸=⊥. We let |𝒜| be the size of 𝒜,

defined as follows:

|𝒜| := |A|+
∑︁
𝑎∈Agt

| ≼𝒜
𝑎 |+

∑︁
𝛼∈A

|pre(𝛼)|+
∑︁

𝛼∈A,𝑝∈AP

|post(𝛼, 𝑝)|

When working with variables 𝑥 over finite domains, one may write 𝑥 := 𝑑 for the effect of

setting 𝑥 to value 𝑑. This can again be encoded with atomic propositions 𝑥𝑑 and postconditions

as defined above.

Update product After occurrence of an action 𝛼 in a world w , agent 𝑎 considers it possible

that action 𝛼′
occurred in world w ′

, if in w he considers w ′
possible and 𝛼′

is executable in w ′
.

Hence, he considers action 𝛼′
possible when action 𝛼 is executed. This leads to the following

definition of the product that models how to update an epistemic model when an action is

executed [9].

Definition 2.3 (Product [9]). Let ℳ = (W , (≼)𝑎∈Agt , 𝜆) be an epistemic model, and 𝒜 =
(A, (≼𝒜

𝑎)𝑎∈Agt , pre, post) be an action model. The product of ℳ and 𝒜 is defined as ℳ⊗𝒜 =
(W ′, (≼𝒜

𝑎)
′, 𝜆′) where:

• W ′ = {(w , 𝛼) ∈ W ×A | ℳ,w |= pre(𝛼)},
• (w , 𝛼) ≼′

𝑎 (w ′, 𝛼′) if w ≼𝑎 w ′ and 𝛼 ≼𝒜
𝑎 𝛼′, and

• 𝜆′(w , 𝛼) = 𝜆(w , 𝛼).

3. Reachability Results

As previously said, reachability goals in DEL games have been considered in two different

settings. In the first case, two players (the Controller and the Environment) playing in turn are

taken into account, and hence the set of actions is partitioned according to them. In this case,

the problem is to decide whether the Controller has a strategy to ensure that some epistemic

property holds. The controller synthesis problem is undecidable, in general. There are some

special cases in which it becomes decidable. Precisely, when actions are:

• Public announcements, the problem is Pspace-complete;

• Public actions, the problem is Exptime-complete.

The problem can be further investigated by letting the agents be active entities and chose

their own actions. Then, one can consider the distributed strategy synthesis as the problem of

deciding whether a coalition of agents has a common strategy to let some property hold. This

problem is undecidable in general [10], but, as for the controller synthesis problem, there are

cases in which some decidability results can be obtained, in particular when actions are:

• Public announcements, the problem is Pspace-complete;

• Public actions, the problem is Exptime-complete.

Further details on the algorithms to prove the results above can be found in [2].

4. Concurrency results

In this section, concurrent executions of DEL games are considered and some decidability results

are shown.

Concurrent Actions To define concurrent actions, atomic propositions are partitioned into

shared propositions (AP𝑠
) that all agents can modify, and private ones (AP𝑝

𝑎, for the specific

agent 𝑎). The set A𝑎 denotes the actions that an agent can play without modifying private

propositions of others. A joint action is a tuple �⃗� = ⟨𝛼1, . . . , 𝛼𝑁 ⟩ ∈
∏︀

𝑎∈Agt A𝑎, and we let �⃗�𝑏

denote action 𝛼𝑏, and it is available in w when every individual action �⃗�𝑏 can be executed in w .

The formula noconflict(�⃗�)(𝑝) expresses that all individual actions of a joint action �⃗� agree

on their effect (if any) on proposition 𝑝, and in general:

noconflict(�⃗�) :=
⋀︁

𝑝∈AP

noconflict(�⃗�)(𝑝). (1)

Hence, one can say that a joint action �⃗� is non-conflicting in w if ℳ,w |= noconflict(�⃗�).
Otherwise �⃗� is conflicting in w . In case of conflicting available joint action, a scheduler is

supposed to select a maximal subset of consistent individual actions, by inhibiting the remaining

ones, through a ghost mapping.

Concurrent Update Product

Definition 4.1 (Concurrent update product). The concurrent update product of an epistemic
model ℳ and an action model 𝒜 is the Kripke model ℳ⊞𝒜 = (W ⊞, (≈⊞

𝑎)𝑎∈Agt , 𝜆
⊞), where:

• W ⊞ = {(w , �⃗�) ∈ W ×A𝑁 | �⃗� ∈ Max(�⃗�, u), �⃗� available in w};
• (w , �⃗�) ≈⊞

𝑎 (u, �⃗�) if w ≈𝑎 u and �⃗�𝑏 ≈𝒜
𝑎 �⃗�𝑏 for all 𝑏;

• 𝑝 ∈ 𝜆⊞(u, �⃗�) if (ℳ, u) |=
⋀︀

𝑎∈Agt(�⃗�,𝑝) post(𝛽𝑎, 𝑝).

where:
Max(�⃗�,w) :=

{�⃗� | �⃗� ⪯ �⃗� and �⃗� is non-conflicting in w and �⃗� is ⪯ -maximal}

The set of epistemic states that may result when a joint action �⃗� is executed in (ℳ,w) are:

(ℳ,w)⊞ �⃗� := {(ℳ⊞𝒜, (w , �⃗�)) | �⃗� ∈ Max(�⃗�,w)}.

This set is a singleton when �⃗� is non-conflicting in w .

Decidability Results By exploiting the result of [6] saying that the model checking ofATL*
K

on

finite deterministic concurrent game structures is 2-Exptime-complete when actions are public,

one can conclude that the same decidability results holds for model checking on concurrent

DEL games, when actions are public, the ghost mapping is injective, and the scheduler is public.

5. Conclusions

This work shows Pspace-completeness both for the controller synthesis and the distributed

synthesis problem when actions are public announcements, and Exptime-completeness when

actions are public. This last decidability result also holds for model checking on concurrent

DEL games. We plan to further investigate the connection of DEL with more powerful logics

for strategic reasoning, such as Strategy Logic [11] under imperfect information [12, 13].

Acknowledgments

This papers is based on my Phd Thesis [14] and the works [2, 7].

I would like to thank Aniello Murano, Bastien Maubert, Sophie Pinchinat, and Francois

Schwarzentruber for their mentoring and support.

This work is partially supported by the PRIN project RIPER (No. 20203FFYLK).

References

[1] H. Van Ditmarsch, W. van Der Hoek, B. Kooi, Dynamic epistemic logic, volume 337,

Springer Science & Business Media, 2007.

[2] B. Maubert, A. Murano, S. Pinchinat, F. Schwarzentruber, S. Stranieri, Dynamic epistemic

logic games with epistemic temporal goals, in: Proceedings of 24th European Conference

on Artificial Intelligence ECAI 2020, IOS Press, 2020, pp. 155–162.

[3] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of broadcasting multi-agent

systems against an epistemic strategy logic, in: C. Sierra (Ed.), Proc. of the Twenty-Sixth

International Joint Conference on Artificial Intelligence, IJCAI 2017, 2017, pp. 91–97.

[4] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of multi-agent systems

with imperfect information and public actions, in: Proceedings of the 16th Conference on

Autonomous Agents and MultiAgent Systems, AAMAS 2017, ACM, 2017, pp. 1268–1276.

[5] F. Belardinelli, S. Knight, A. Lomuscio, B. Maubert, A. Murano, S. Rubin, Reasoning about

agents that may know other agents’ strategies, in: Proc. of the Thirtieth International

Joint Conference on Artificial Intelligence, IJCAI 2021, ijcai.org, 2021, pp. 1787–1793.

[6] F. Belardinelli, A. Lomuscio, A. Murano, S. Rubin, Verification of multi-agent systems with

public actions against strategy logic, Artif. Intell. 285 (2020) 103302.

[7] B. Maubert, S. Pinchinat, F. Schwarzentruber, S. Stranieri, Concurrent games in dynamic

epistemic logic, in: Twenty-Ninth International Joint Conference on Artificial Intelligence,

IJCAI 2020, 2020, pp. 1877–1883.

[8] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, 1995.

[9] A. Baltag, L. S. Moss, S. Solecki, The logic of public announcements, common knowledge,

and private suspicions, in: TARK’98, 1998, pp. 43–56.

[10] M. J. Coulombe, J. Lynch, Cooperating in video games? impossible! undecidability of team

multiplayer games, in: FUN’18, 2018, pp. 14:1–14:16.

[11] F. Mogavero, A. Murano, G. Perelli, M. Y. Vardi, Reasoning about strategies: On the

model-checking problem, ACM Trans. Comput. Log. 15 (2014) 34:1–34:47.

[12] W. Jamroga, V. Malvone, A. Murano, Natural strategic ability, Artif. Intell. 277 (2019).

[13] R. Berthon, B. Maubert, A. Murano, S. Rubin, M. Y. Vardi, Strategy logic with imperfect

information, ACM Trans. Comput. Log. 22 (2021) 5:1–5:51.

[14] S. Stranieri, Vehicular ad Hoc Networks: an algorithmic and a game-theoretic approach,

Ph.D. thesis, Universitá di Napoli, Federico II, 2022.

	1 Introduction
	2 DEL Models
	3 Reachability Results
	4 Concurrency results
	5 Conclusions

