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Abstract
In the fields of bio-monitoring, prosthetic devices, human-computer interaction the use of artificial
intelligence methods is usually an integral part. Grasp-and-lift(GAL) has become a popular dataset for
the testing of deep learning (DL) models for motor imaginary EEG classification task. In this article
various combinations of deep neural network (DNN), such as one and two dimensional convolution
layers, separable convolution, time distributed wrapper, recurrent neural networks (RNNs), bidirectional
recurrent neural networks (BiRNN), attention based mechanism, additional hidden states, were inves-
tigated. Macro-AUC and number of parameters was chosen as a metric of feasibility of models. The
hierarchies of the different RNN models development were built. The results showed that using RNN
layer with hidden states as input for last fully-connected layer decreased performance, but addition of
attention mechanism after output with hidden states allows to solve this problem. Also applying BiRNN
with CNN as first layers improves overall macro AUC and reduce number of parameters.
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1. Introduction

According to the study, there are nearly 1 in 50 people living with paralysis – approximately 5.4
million people only in United States[1]. Providing to this people ability to interact with computer
reduces their suffering and extends their capabilities. There are two types of brain computer
interface (BCI) based on the electrodes used for measuring the brain activity: non-invasive BCI
where the electrodes are placed on the scalp (e.g., electroencephalography (EEG) based BCI),
and invasive Brain computer interface where the electrodes are directly attached on human
brain [e.g., BCI based on electrocorticography (ECoG), or intracranial electroencephalography
(iEEG)][2]. The EEG employs non-invasive electrodes placed on participants’ scalps to measure
signals produced by local field potentials with active cortex neurons, having high temporal but
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low spatial precision. Basic task in EEG-based BCI is decoding hand movements in order to
classify certain movement in moment or classify intention for certain movement.

In order to examine how different combinations of deep neural network (DNN) components
are suited for movement classification task, we are interested in identifying and classifying
various modifications of DNNs with investigation of their impact on the performance metrics.

The structure of this paper is as follows. Section 2 contains description of the state of the
art, section 3 describes dataset, models, and the whole workflow, section 4 contains results and
discussions of the results and section 5 resumes the results obtained.

2. Background and Related Works

The different types of DNNs have been used in EEG-research in medical, educational, operational,
and other applications [3, 4, 5]. For example, EEGNet DNN, a compact convolutional neural
network (CNN), has been developed for EEG-based BCIs [6]. There is similar research which
has comparison of different recurrent neural network (RNN) architectures on Grasp-and-lift
(GAL) dataset[7]. They observed that dropout regularization improved performance of RNN
by average of 4 percentage point. In addition, their findings confirms that smoothing the
predictions with moving average helped making consistent predictions, eliminating abrupt
and incongruous prediction errors [8]. Another work proposed Discrete Wavelet Transform as
part of prepossessing which enhanced Area Under a receiver operating characteristic Curve
(AUC) for 7.7 percentage points for CNN-based, and 9.7 and for Long Short Term Memory
(LSTM) based networks and discovers that give same or better results but in a much faster, more
computationally effective fashion [9].

As it was shown recently, reliable classification of GAL movements can be handled using
simple CNNs even (with AUC>0.92 after 1 training epoch) [10]. In our previous work we
use Noise Data Augmentation and Detrended Fluctuation Analysis to demonstrate that some
physical actions in GAL dataset can be divided in separate groups of actions that can be charac-
terized by complexity and the feasibility of their classification: the easiest (HandStart), medium
(LiftOff, Replace, and BothReleased), and hardest (BothStartLoadPhase and FirstDigitTouch)
classification [11, 12].

DNNs and their components were intensively researched for analysis of EEG signals in a
various applications [3, 4, 5] like air traffic [13, 14, 15], health care [16, 17, 18], education [19, 20,
21], gaming and entertaining [22, 20, 23, 24], and other applications [5]. Different components
of convolutional neural network (CNN) [6, 25, 18, 26, 11], recurrent neural networks (RNN)
[27, 28, 29, 12], fully-connected networks (FCN) [11, 12], and other DNNs were imvestigated
in them. These models combine some methods of EEG feature extraction with use of various
filters and show significant improvement of performance in comparison to other models.



3. Methodology

3.1. Dataset

The widely used “grasp-and-lift” (GAL) dataset was used here that contains information about
brain activity of 12 persons [7, 30]: more than 3900 trials (monitored and measured by the
sampling rate of 500 Hz) in 32 channels of the recorded EEG signals. It contains data from the
observed persons who performed 6 types physical activities (Table 1).

Table 1
Grasp-and-lift events

0 HandStart
1 FirstDigitTouch
2 BothStartLoadPhase
3 LiftOff
4 Replace
5 BothRelease

The data preprocessing was used only to cut regions of interests (ROIs) that correspond to
the actual HCI physical actions of users. Some action signals overlap and their classification
become more complex because they were not presented separate. So classes which intersect
with other classes were excluded, namely FirstDigitTouch and Replace.

3.2. Models

Mainly, we compare three Recurrent Neural Network variants: RNN, long short term memory
(LSTM) [31] and GRU [32], combining them with (Table 2):

• Hidden states at RNN layer (BiRNN HIDN STATES) (at all rows except row 1 in Table 2),
• Attention after RNN layers with hidden states ( BiRNN HIDN ATNT) (rows 3, 5, 9, 12, 14

in Table 2)
• One dimensional Convolution layers (N Conv1D, where N - number of layers) (row 10 in

Table 2)
• Two dimensional Convolution layers (N Conv2D, where N - number of layers) (rows 8, 9,

13 in Table 2)
• TimeDistributed wrapper for 1D and 2D Convolution layers( TD(N Conv1D)) (rows 10,

11, 12, 14, 15 in Table 2)
• 2D Separable Convolution layer ( N SepConv2D) (rows 4, 5, 7 in Table 2)

All RNN layers was wrapped by bidirectional to have a sequence information in both directions.
For each RNN variant, we had 15 following combinations (Table 2).



Table 2
Developed combinations for RNN-family

1 BiRNN
2 BiRNN HIDN STATES
3 BiRNN HIDN ATNT

4 BiRNN HIDN STATES 2SepConv2D
5 BiRNN HIDN ATNT 2SepConv2D

6 BiRNN HIDN STATES BiRNN
7 BiRNN HIDN STATES 2SepConv2D BiRNN

8 3Conv2D BiRNN HIDN STATES
9 3Conv2D BiRNN HIDN ATNT

10 TD(2Conv1D) BiRNN HIDN STATES
11 TD(1Conv2D) BiRNN HIDN STATES
12 TD(1Conv2D) BiRNN HIDN ATNT

13 3Conv2D BiRNN HIDN STATES 1Conv2D
14 TD(1Conv2D) BiRNN HIDN ATNT TD(1Conv2D)
15 TD(1Conv2D) BiRNN HIDN STATES TD(1Conv2D)

3.3. Metrics

Several standard metrics were used like accuracy and loss that were calculated during each
run as the minimal value and maximal value of loss and accuracy, respectively. The area under
curve (AUC) was measured for receiver operating characteristic (ROC) with their micro and
macro versions, and their mean and standard deviation values. To determine the basic statistical
properties of the metrics obtained (accuracy, loss, AUC) stratified k-fold cross-validation was
applied (k=5) where the folds were created by preserving the percentage of samples for each
class.

3.4. Workflow

The number of signal samples (N ) in the input EEG time sequence (TS) was equal to 350
timepoints: 150 measurements before the first label, 150 measurements with labels and 50
measurements after the labeled data. At each epoch, the generators take data from each
category from a randomly generated sequence. To diversify the data, it was decided to choose a
starting point for the sequence to be used for training, validation and testing in a certain range
randomly in the range of 10 measurements. The only present label was set as a ground truth
(GT). The training, validation, and testing stages were performed for the GAL-dataset that was
divided in proportion of 82.4% (3244 examples) / 8.8% (346 examples) / 8.8% (346 examples) for
training / validation / testing sets, respectively. Finally, it allowed us to obtain trained models,
calculate metrics (including AUC, and its micro and macro versions), and plot metrics versus
the model types (see below). All important hyperparameters for used in models provided in
Table 3. Hyperparameters was chosen based on previous experience and other related works in
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Figure 1: RNN-based models training time and macro AUC. Size of point is relative to number of
parameters. Numerical in legend is correspondent to macro AUC values

field.

3.5. Experiment

The 5-fold cross-validation was applied, AUC macro values were determined for each fold, and
the mean values were calculated for all AUC macro values determined for all 5 folds.

Then the scatter plots for training time (in seconds per a training part of the dataset) versus
macro AUC values with the relative size of the models (given as a symbol size) were prepared
(Fig. 1-3).

The performance of several separate families of hybrid combinations was measured and
plotted in the correspondent scatter plots:

• RNN-based models (Fig. 1),
• LSTM-based models (Fig. 2),
• GRU-based models (Fig. 3).

These results allowed us to make comparative analysis of the models used with regard to



Table 3
Models hyperparameters

Category Parameter Value
Data Preprocesing Batch size 128

Epochs 15
Time Steps 350
Training/validation/testing sets 82.4% / 8.8% / 8.8%

Conv Layers Number of conv filters 32|16|8
Size of conv filters 8|4|2
Strides 2|1
Padding valid
Conv activation function tanh
Pooling size Maxpooling, 4|2

RNN Layers Number of RNN units 175
Last 2 Fully Connected Layers Number of neurons 350, 4

Activation functions tanh, sigmoid
Learning Learning rate 0.0001

Loss Categorical Cross Entropy
Optimizer Adam
Validation k-fold Stratified, k=5

their performance (AUC) and resources needed for model preparation (a training time) and
storage (a relative size expressed by a symbol size).

To understand the complex relations between separate components and the whole hierarchy
of the models used, the tree-like representation was prepared and given for RNN-based models
(Fig. 4), LSTM-based models (Fig. 5), and GRU-based models (Fig. 6).

The nodes in the tree-like plots (Fig. 4-6) denote the models created with the labels containing
information about specific details about the components applied (see Table 2).

The edges between nodes denote the hierarchical relationships between them. The sizes of
solid symbols (circles) denote the relative sizes of the models.

4. Discussion

The results shown on the scatter plots (Fig. 1-3) allowed us to make the following observations
as to training times (in seconds per a training part of the dataset), macro AUC values, and
relative sizes of the models (given as a symbol size).

In the RNN-family (Fig. 1), some changes of components can have the very drastic conse-
quences. For example, the significant increase of performance by 11.5% can be obtained by
transition from BiRNN HIDN STATES model (AUC=0.743) to BiRNN ATNT model (AUC=0.858).
Analogously, the higher increase of performance by 34.2% can be obtained by transition from TD
1Conv2D BiRNN HIDN STATES TD 1Conv2D model (AUC=0.5) to TD 1Conv2D BiRNN HIDN
ATNT TD 1Conv2D model (AUC=0.842). And not so high increase by 1.8% can be observed by
transition from 3Conv2D BiRNN HIDN STATES model (AUC=0.815) to 3Conv2D BiRNN HIDN
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Figure 2: LSTM-based models training time and macro AUC.Size of point is relative to number of
parameters. Numerical in legend is correspondent to macro AUC values

STATES ATNT model (AUC=0.837).
In the LSTM-family (Fig. 2), the similar changes of components lead to the following effects.

Transition from BiLSTM HIDN STATES (AUC=0.712) to BiLSTM HIDN ATNT (AUC = 0.858)
improves performance by 14.6% and reduces training time approximately by 8 minutes. However
adding Attention not always yields in performance improvement, like in case with BiLSTM
HIDN STATES 2SepConv2D (AUC=0.851) and BiLSTM HIDN ATNT 2SepConv2D (AUC=0.817),
but still attention results shorts training time, for this models by 16 minutes. Decrease of AUC
after adding attention also happens with models 3Conv2D BiLSTM HIDN STATES (AUC=0.835)
and 3Conv2D BiLSTM HIDN ATNT (AUC=0.826) with relative slight training time reduction. If
in previous 3Conv2D BiLSTM HIDN STATES (AUC=0.835) model we add another Conv2D layer
instead of attention 3Conv2D BiLSTM HIDN 1Conv2D (AUC=0.817), it will worsen not only
AUC values but also training time approximately by 10 minutes. Adding attention to models
which use TimeDistributed 2D Convolution layers before BiLSTM improves performance by
little 0.5% for TD 1Conv2D BiLSTM (AUC=0.843) and TD 1Conv2D BiLSTM HIDN ATNT
(AUC=0.843).

In the GRU-family (Fig. 3), the same changes of components cause the following changes
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Figure 3: GRU-based models training time and macro AUC. Size of point is relative to number of
parameters. Numerical in legend is correspondent to macro AUC values

of performance. Addition to BiGRU HIDN STATES (AUC=0.737) attention mechanism BiGRU
HIDN ATNT (AUC=0.863) will increase performance by 12.6%. Dissimilar to LSTM-family adding
atention to BiGRU HIDN STATES 2SepConv2D (AUC=0.828) slightly improves perfomance by
1.8%. Transition from TD 1Conv2D BiGRU HIDN STATES (AUC=0.836) to TD 1Conv2D BiGRU
HIDN ATNT (AUC=0.864) increases perfomance by 2.8%.

The results demonstrated on the tree-like plots (Fig. 4-6) allowed us to build hierarchy of
models and find some relationships between models that can lead to increase or decrease of the
performance (macro AUC values).

In the RNN-tree of models (Fig. 4), some branches (several nodes connected by edges and
following from the central root node to edge nodes) can lead to:

• increase of performance: BiRNN HIDN STATES (AUC=0.743) → TD 1Conv2D BiRNN
HIDN STATES (AUC=0.809) → TD 1Conv2D BiRNN HIDN ATNT (AUC=0.85),

• or decrease of performance: BiRNN HIDN STATES (AUC=0.743) → TD 1Conv2D
BiRNN HIDN STATES (AUC=0.809) → TD 1Conv2D BiRNN HIDN STATES TD 1Conv2D
(AUC=0.5).
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Figure 4: RNN-based models tree

In the LSTM-tree of models (Fig. 5),

• increase of performance: BiLSTM HIDN STATES (AUC=0.712) → BiLSTM HIDN ATNT
(AUC=0.858) → BiLSTM HIDN ATNT 2SepConv2D (AUC=0.817),

• increase of performance: BiLSTM HIDN STATES (AUC=0.712) → TD 1Conv2D BiLSTM
(AUC=0.843) → TD 1Conv2D BiLSTM TD 1Conv2D (AUC=0.845),

In the GRU-tree of models (Fig. 6),

• increase of performance: BiGRU HIDN STATES (AUC=0.737) → TD 1Conv2D BiGRU
HIDN STATES (AUC=0.836) → TD 1Conv2D BiGRU HIDN ATNT (AUC=0.864),

• or decrease of performance: BiGRU HIDN STATES (AUC=0.737) → TD 1Conv2D BiGRU
HIDN STATES (AUC=0.836) → TD 1Conv2D BiGRU HIDN TD 1Conv2D (AUC=0.727)

As one can see the attention mechanism (ATNT) after RNN layer with hidden states (HIDN)
in all RNN variants increases macro AUC from 34% to 2% and slightly decrease training time.
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Figure 5: LSTM-based models tree

But using RNN layer with hidden states as input for last fully-connected layer always give
worse results.

Using convolution layers as first layers can significantly decrease training time with preserv-
ing macro AUC. But using convolution layers after RNN layers with hidden states or hidden
states and attention, just decrease number of parameters, without boosting macro AUC and
training time.

5. Conclusions

In this article several hybrid combinations of DNN were applied to GAL dataset for hand
movement classification. Macro AUC was chosen as a performance metric and compared to ,
training time and model size (the number of parameters). The results shown that using RNN
layer with hidden states as input for last fully-connected layer decreased performance, but
adding attention mechanism after output with hidden states solves this problem. Also applying
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Figure 6: GRU-based models tree

BiRNN with CNN as first layers improves overall macro AUC, reduces number of parameters,
and makes training model more computationally effective.
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