
BoAT v2 - A Web-Based Dependency Annotation Tool
with Focus on Agglutinative Languages
Salih Furkan Akkurt1, Büşra Marşan2 and Susan Uskudarli1

1 Department of Computer Engineering, Boğaziçi University, İstanbul, Turkey
2 Department of Linguistics, Boğaziçi University, İstanbul, Turkey

Abstract
The value of quality treebanks is steadily increasing due to the crucial role they play in the development
of natural language processing tools. The creation of such treebanks is enormously labor-intensive and
time-consuming. Especially when the size of treebanks is considered, tools that support the annotation
process are essential. Various annotation tools have been proposed, however, they are often not suitable
for agglutinative languages such as Turkish. boat-v1 was developed for annotating dependency relations
and was subsequently used to create the manually annotated boun Treebank (UD_Turkish-BOUN).
In this work, we report on the design and implementation of a dependency annotation tool (boat-v2)
based on the experiences gained from the use of boat-v1, which revealed several opportunities for
improvement. boat-v2 is a multi-user and web-based dependency annotation tool that is designed with
a focus on the annotator user experience to yield valid annotations. The main objectives of the tool are
to: (1) support creating valid and consistent annotations with increased speed, (2) significantly improve
the user experience of the annotator, (3) support collaboration among annotators, and (4) provide an
open-source and easily deployable web-based annotation tool with a flexible application programming
interface (API) to benefit the scientific community. This paper discusses the requirements elicitation,
design, and implementation of boat-v2 along with examples.

Keywords
natural language processing, linguistic annotation, annotation tool, web application, dependency parsing,
Universal Dependencies

1. Introduction

Treebanks are important resources in the development of natural language processing (NLP)
tools. Quality NLP tools need treebanks that are manually annotated by linguistic experts. This
is especially true for agglutinative languages due to their complex morphologies. The creation
of such treebanks is highly labor-intensive and time-consuming due to the meticulous attention
required. Thus, annotation tools that support this process are essential.

In recent years, there have been significant efforts to bridge the gap in data resources available
for agglutinative low-resource languages. Dependency annotation involves annotating each
token of a sentence with linguistically relevant values. Universal Dependencies (UD) [1] is the
most widely accepted standard for dependency annotations. The dependency annotation format

The International Conference and Workshop on Agglutinative Language Technologies as a challenge of Natural
Language Processing (ALTNLP), June 7-8, 2022, Koper, Slovenia
$ furkan.akkurt@boun.edu.tr (S. F. Akkurt); busra.marsan@boun.edu.tr (B. Marşan); suzan.uskudarli@boun.edu.tr
(S. Uskudarli)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:furkan.akkurt@boun.edu.tr
mailto:busra.marsan@boun.edu.tr
mailto:suzan.uskudarli@boun.edu.tr
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

of ud called conll-u (Computational Natural Language Learning) defines a set of linguistic
tags for annotation purposes. For example, Universal part-of-speech (upos) tag is used for
annotating the part-of-speech of a token. The tag for morphological features (feats) is used for
annotating additional lexical and grammatical properties of tokens which are not covered by
other tags. Specifically for agglutinative languages, the feats tag is very frequently annotated
with multiple values due to the complex morphology of such languages. Thus, the effort required
to annotate agglutinative languages is significantly higher. Annotation tools with drag-drop
and mouse-based interfaces, although appealing, are not well suited for agglutinative languages
as they require alternating among input modalities, disrupting the flow.
boat-v1 [2] is an annotation tool that was developed to support dependency annotation of

morphologically rich languages (MRLs) to produce treebanks compliant with the ud frame-
work [1]. The experience during the use of it revealed several points of improvement for such
annotation tools. The main takeaway was a much better understanding of the time, effort,
cognitive load, and extra information requirements of the annotation process. Improvements
regarding these aspects should, consequently, produce higher quality data resources.

This work presents a web-based collaborative dependency annotation tool (boat-v2) that
has been designed based on the experience with boat-v1. In light of the feedback from the
experience, we wanted the tool to be a web application that supports multiple users to enable
a collaborative environment for annotations. Several user experience improvements were
implemented to enhance the flow of an annotation session. The design and implementation of
the tool aimed to: (1) support creating valid and consistent annotations with increased speed,
(2) significantly improve the user experience of the annotator, (3) allow collaboration among
annotators during the annotation process, and (4) provide an open-source and easily deployable
web-based annotation tool with an API to benefit the scientific community. The development
started with requirements elicitation, for which earlier experiences and in-depth interviews
with an experienced annotator were taken into account.

The current prototype is being evaluated with positive feedback. This feedback indicates
that the ability to collaborate within the tool is needed to increase the efficiency of multi-
annotator treebank creation. The final version will be made available on Boğaziçi University’s
NLP platform [3] and provided as an open-source resource.

The main contributions of this work are:

• Design of a dependency annotation tool based on requirements elicited from experienced
annotators who are linguists,

• The development of a tool that takes into account the annotator experience to improve
resulting annotations,

• Multi-user support to provide individual spaces for annotations, computation of inter-
annotator agreements, and other potential collaboration,

• The development of a web-based annotation tool based on a supporting API for program-
matic access and extensibility, and

• Packaging of the tool to support easy access by virtualizing it using Docker [4] and
providing the code as an open-source resource.

The remainder of this paper is organized as follows: Section 2 presents boat-v1, Section 3
presents related work, Section 4 describes the requirements and design, Section 5 presents the
implementation and new features, Section 6 presents a use case of annotation, and Section 7
provides a discussion along with our conclusions.

2. BoAT-v1

boat-v1 [5] is a standalone tool for annotating treebanks that is compatible with the ud frame-
work [1] that is implemented using Python [6] and Qt [7]. It was specifically developed for
annotating Turkish treebanks and is particularly suitable for agglutinative languages, however
it can be used for other languages. It supports the annotation of a single treebank at a time. The
annotations are stored in a file in conll-u format. The file is updated during the annotation
process. It uses a validation script developed by ud to display errors. boat-v1 was used to create
the boun Treebank [2, 8] – a manually annotated Turkish dependency treebank comprising
close to 10 thousand sentences.

For each sentence to be annotated, the annotator is shown a table which has a token per
row with its corresponding tags (id, form, lemma, upos, xpos, feats, head, deprel, deps, and
misc as detailed in [5]). The annotator manually enters values for each tag of each token. It
supports the splitting and joining of lemmas which is particularly significant for agglutinative
languages. Tokens that are split result in additional rows for each part. Figure 2 in Appendix A
shows a sentence that is being annotated. The token “yoktu” (ID: 4-5) is split into “yok” (ID:
4) and “tu” (ID: 5). Furthermore, it parses the feats tag’s value into individual morphological
features. The number of morphological features are much higher in agglutinative languages,
therefore the value of the feats tag often consists of numerous values. As such, they are difficult
to read. boat-v1 supports viewing these features individually under their associated features
(Case=Nom|Number=Sing|Person=3 can be shown in columns “Case”, “Number”, and “Person”
with the values “Nom”, “Sing”, and “3”). It also allows the annotators to be able to take notes for
specific annotations.

3. Related Work

Annotation tools may be characterized in terms of their accessibility and the support they
provide for languages, various annotation categories, user interface modalities, standards, and
multiple annotators. Adherence to standards is recommended to get the most benefit from
the annotated data sources. Universal Dependencies [1] is an actively growing standard that
intends to cover all languages and its support for agglutinative languages is evolving.

Several dependency annotation tools have been proposed such as brat [9], UD Annotatrix [10]
and DgAnnotator [11, 12]. These tools are not developed for a specific language, but can be
used with a variety of languages. They mostly rely on mouse-based user interaction, which is
inefficient for annotating agglutinative languages due to the need for extensive annotation for
most tokens.

The ITU Treebank Annotation Tool [13] was developed for Turkish. It was written in Java
as an open-source standalone tool and has several versions. It has three stages of annotation:

morphological analysis, morphological disambiguation and syntax analysis. It offers semi-
automated support for annotators through analyzers for creating new datasets as well as
correcting already existing Turkish treebanks. It mostly relies on mouse-based interactions
and doesn’t support the ud framework. This tool has been used to annotate the ITU Web
Treebank [14].

WebAnno [15] is a web-based open-source annotation tool, that is not restricted to dependency
annotations but has support for morphological, syntactical, and semantic annotations also, with
multi-user support. To annotate features of a token, it requires several mouse clicks which is
impractical for MRLs. The sentences to be annotated are displayed consecutively, unlike many
tools that focus on a single sentence at a time.

boat-v2 is the second iteration of boat-v1. It improves on it by including a search functionality,
a database to represent sentences in a more essential way rather than a plaintext file and an
accessible web interface with an API for flexibility. boat-v2 has been developed to reduce clutter
that boat-v1 was found to have in some spaces by the feedback of boat-v1.

4. Requirements and Design

Requirements elicitation and validation meetings were held with annotators who worked on
the boun Treebank involving thousands of sentences to identify the software requirements.
The main requirements that emerged are:
Collaborative annotation: The sheer size of treebanks necessitates that they are annotated via

multiple annotators. The tool must support multiple annotators working on the same
treebank. The ability to share annotation experiences is vital for reference and consistency.
Hence, the tool must provide means for registering multiple annotators and keeping track
of their respective annotations.

Search: While annotating a sentence, annotators may need to refer to previous annotations for
guidance. An annotator should be able to search a treebank according to surface forms,
and importantly, according to linguistic features. They should be able to perform complex
searches that involve several criteria such as ud tags, individual features of the feats
tag, and surface forms. This requirement reduces the cognitive load as well as supports
consistency among annotations.

Keyboard-oriented input: Annotations of agglutinative languages require annotation of several
features for individual tokens in comparison to analytical languages like English. While
drag-and-drop interfaces can work well for analytical languages, they don’t for MRLs as
they require more toggles between mouse and keyboard interactions which is frustrating.
Keyboard-based interaction must be offered for all possible tasks.

Support for Sentence annotation: To support the speed and accurate annotations, autocompletion
should be supported whenever possible. Due to typologies of and syncretism being
generally higher in MRLs, automatic parsing of such treebanks is difficult and they more
often than not fail to create valid parsings of tokens. Thus, refining automatic parsing is
important for agglutinative languages, which requires splitting of lemmas. Words in MRLs
tend to have morphemes stacked on roots. Annotators must be able to refine/correct
automatically parsed entries, which for agglutinative languages includes splitting of

lemmas.
Use of screen real estate and customization: Annotators annotate numerous sentences every ses-

sion. For agglutinative languages, sentences tend to be long and complicated. The view
of such sentences can cover a considerable part of the screen. The annotator must focus
on the sentence being annotated, the lemmas, and all the features, which requires much
concentration. The annotation process must not involve scrolling, if possible. For very
long sentences, this may not be possible; however, the sentence being annotated should
never go out of vision. Furthermore, each annotator has their unique preferences for how
they annotate a sentence. They must have some control regarding showing or hiding
certain information according to their preferences. Overall efficient use of the screen real
estate is important to convey the context needed to annotate long sentences.

Given these requirements, we decided that a web-based application that supports multiple
authenticated users would support a collaborative platform for annotators. The treebank and
user annotations will persist in a database which makes managing the data and searches much
more reliable and efficient. Also, an API is developed to support flexibility and extensibility.
Finally, in addition to making the tool open-source, we containerized the application using
Docker[4] to support its accessibility.

5. Implementation

The annotation tool is implemented using Python [6], the web application development frame-
work Django [16] and the API framework Django REST Framework (DRF) [17]. The webpages
use Bootstrap [18]. PostgreSQL [19] is used as a database management system. The models
reflect the ud format of sentences. Most of the sentence annotation functionalities are similar
to boat-v1. User input is validated according to ud and errors are reported on the annotation
page. Three alternative forms of dependency graph visualizations are supported, two of which
are newly added and compact horizontal to reduce the required screen real estate [20, 21].

The following features have been implemented to support the creation of valid annotations
with increased speed in a collaborative manner:
Treebank handling: The tool should support the annotation of multiple treebanks. boat-v2 uses

a database to persist the annotations of multiple annotators of multiple treebanks.

Sentence annotation: An annotator selects the sentence they want to annotate. The sentence
annotation page is very similar to boat-v1. It consists of three main parts: (1) A table
with rows for every token in the sentence and columns, which represent the ud tags of a
sentence, corresponding to their annotations; (2) the dependency graph of the sentence;
and (3) errors from validation according to the ud framework. The dependency graph and
errors are synchronized with the annotations. Several dependency graph presentations
are supported to suit the annotator’s preference. Vertical graphs can consume a significant
amount of screen real estate, which can lead to loss of focus in long sentences common
in agglutinative languages.

An annotator may need to stop the annotation of a sentence for some reason (i.e. complex-
ity or external interruption). To capture the state of an annotation, a status is introduced
in boat-v2 whose values may be: “New", “Draft" and “Complete". The status of a sentence

that has not been annotated is “New”. An annotator can set the status to “Draft” or
“Complete”.

The annotator is able to perform almost all operations, more than what boat-v1 allowed,
via keyboard action, based on the demand of the annotators (see Section 4 for details).
Upon the experience of annotating a Turkish treebank with boat-v1, the annotators have
reported being very pleased with the convenience and speed resulting from keyboard-
based interaction.

Improved searching for reference and consistency: A search functionality is introduced in boat-
v2. Users are able to search for previously annotated sentences in combinations of surface
text, ud tags, and features. Without a good search feature, an annotator would have to
manually search the conll-u file for relevant cases (e.g. how to annotate some surface
form’s upos tag). The surface form might have been inconsistently annotated, alas it is
unlikely that a manual search would reveal this case. In such a case, the annotator would
likely use the first encountered as a reference. The situation gets more complicated for
syncretic morphemes such as -ki in Turkish. For example, in the sentence “Evdeki halılar
yıkandı.” (The rugs at home were washed.), the -ki acts as an adjectivizer. However, in
“Benim halılarım yün, Ayşeninkiler sentetik.” (My rugs are woolen. Ayşe’s are synthetic.), it
is pronominal. Searching for sentences where the -ki morpheme occurs via text search
would be hopeless as there would be too many hits since they occur very frequently.

To facilitate effective searching, we have implemented search functionality based on
combinations of text and ud tags. Regular expression-based search is also supported.
This feature supports annotators to share experiences, which consequently is expected to
result in more accurate and consistent treebanks.

Inter-annotator agreement: The consistency of annotations among annotators is an indicator of
the quality of the resulting resource. Inter-annotator agreement computes the consistency
among annotators. Since this tool keeps track of annotator actions, unlike its predecessor,
such computations are straightforward. Some visualizations shall accompany these
statistics.

6. Using BoAT-v2

A typical annotation can proceed as follows: An annotator selects a sentence from a treebank.
An annotation table appears with the sentence parsed according to the ud format. Each row
corresponds to a token and its annotations. Figure 1 shows the annotation view while an
annotator is annotating a Turkish sentence “Sel sularında neler yoktu ki...” (translation: What
wasn’t in the flood waters...).

An annotator can make use of dependency graphs, errors, and search during annotation.
Dependency graphs are visual cues for how lemmas are dependent upon one another. Errors
are helpful reminders compliant with ud.

Annotators can customize the columns and dependency graph in accordance with their
preferences. When an annotation is finished, its status can be set to “Complete”. The annotator
can search for previously made annotations in combinations of text and feature values to refer

Figure 1: The annotation screen captured while the sentence “Sel sularında neler yoktu ki...” is being

annotated. The deprel tag for the surface form “sularında” is being annotated by selecting among the

valid alternatives that appear in the pop-up. Selections can be made with the use of arrow keys.

to previously made annotations.

7. Discussion and Conclusions

boat-v2 aims to extend the functionality of boat-v1 as a collaborative web-based application to
support the annotation process based on previous experiences. We developed a web application
that supports agglutinative languages as described in Section 5.

The implementation choices served our goals well. We believe that having experts in lin-
guistics and experienced annotators in agglutinative treebank creation was instrumental in
understanding the requirements and the design process. We held numerous elicitation inter-
views and further meetings for clarifications and feedback requests.

We used modern software development tools and management practices during the develop-
ment lifecycle of this tool. The development of an API enables various extensions of this tool
and access to the treebanks. The containerization with Docker [4] has facilitated easy delivery
and deployment. It will be made available on Boğaziçi University’s NLP platform [3] as a demo
as well as an open-source resource. The availability of the tool as a user as well as a developer
is valuable for future use and developments.

This tool is in the testing phase and has had encouraging early feedback. We compared the
annotation of several sentences with the same number of tokens using boat-v1 and boat-v2.
While we kept the number of words in a sentence constant, we did not use the same sentences
since having previously annotated a sentence would impact the annotation on another version.
Keeping the number of words the same provides a somewhat comparable experience. There

was a noticeable speedup (approximately 30%) using boat-v2. Among the new features that are
most appreciated are autocompletion, condensed dependency tree representation, significant
reduction on scrolling, keyword search, and search by morphological features. The non-search
related features are instrumental to retaining focus.

We are encouraged by the early responses to this tool and anticipate its extensions. In fact,
our implementation of boat-v2 resulted in a revision request for boat-v1 to include the focus
enhancing features. This also resulted in significant speedup and improved user experience,
which was reported as a qualitative observation by an annotator. Presently, our testing is
focused on more extensive cases (annotation of sentences with varying degrees of complexity)
and, importantly, the multi-user functionalities. For this purpose, we are in the process of
recruiting several annotators with a background in linguistics.

Acknowledgments

This work was supported by Boğaziçi University Research Fund Grant Number 16909.

References

[1] Universal Dependencies, UD, 2022. URL: https://universaldependencies.org, [Online; last
accessed 2 May 2022].

[2] U. Türk, F. Atmaca, Ş. B. Özateş, G. Berk, S. T. Bedir, A. Köksal, B. Ö. Başaran, T. Güngör,
A. Özgür, Resources for turkish dependency parsing: Introducing the boun treebank and
the boat annotation tool, Language Resources and Evaluation (2021) 1–49.

[3] Boğaziçi University, TABILAB Repository Home, 2022. URL: https://nlp.cmpe.boun.edu.tr,
[Online; last accessed 24 April 2022].

[4] Docker Inc., Home - Docker, 2022. URL: https://www.docker.com, [Online; last accessed 2
May 2022].

[5] U. Türk, F. Atmaca, Ş. B. Özateş, A. Köksal, B. Ozturk Basaran, T. Gungor, A. Özgür, Turkish
treebanking: Unifying and constructing efforts, in: Proceedings of the 13th Linguistic Anno-
tation Workshop, Association for Computational Linguistics, Florence, Italy, 2019, pp. 166–
177. URL: https://www.aclweb.org/anthology/W19-4019. doi:10.18653/v1/W19-4019.

[6] Python Software Foundation, Welcome to python.org, 2022. URL: https://www.python.org,
[Online; last accessed 24 April 2022].

[7] The Qt Company, Qt | Cross-platform software development for embedded & desktop,
2022. URL: https://www.qt.io/, [Online; last accessed 25 May 2022].

[8] U. Türk, F. Atmaca, Şaziye Betül Özateş and Gözde Berk and Seyyit Talha Bedir and
Abdullatif Köksal and Balkız Öztürk Başaran and Tunga Güngör and Arzucan Özgür, UD
Turkish BOUN, 2020. URL: https://universaldependencies.org/tr, [Online; last accessed 27
March 2022].

[9] P. Stenetorp, S. Pyysalo, G. Topić, T. Ohta, S. Ananiadou, J. Tsujii, brat: a web-based tool
for NLP-assisted text annotation, in: Proceedings of the Demonstrations Session at EACL
2012, Association for Computational Linguistics, Avignon, France, 2012.

https://universaldependencies.org
https://nlp.cmpe.boun.edu.tr
https://www.docker.com
https://www.aclweb.org/anthology/W19-4019
http://dx.doi.org/10.18653/v1/W19-4019
https://www.python.org
https://www.qt.io/
https://universaldependencies.org/tr

[10] F. M. Tyers, M. Sheyanova, J. N. Washington, UD Annotatrix: An annotation tool for
Universal Dependencies, in: Proceedings of the 16th International Workshop on Treebanks
and Linguistic Theories (TLT16), 2018, pp. 10–17.

[11] G. Attardi, DgAnnotator, 2022. URL: http://medialab.di.unipi.it/Project/QA/Parser/
DgAnnotator/, [Online; last accessed 27 March 2022].

[12] Universal Dependencies, UD tools, 2022. URL: https://universaldependencies.org/tools,
[Online; last accessed 22 April 2022].

[13] T. Pamay, U. Sulubacak, D. Torunoğlu-Selamet, G. Eryiğit, The annotation process of
the ITU web treebank, in: Proceedings of The 9th Linguistic Annotation Workshop,
Association for Computational Linguistics, Denver, Colorado, USA, 2015, pp. 95–101. URL:
https://aclanthology.org/W15-1610. doi:10.3115/v1/W15-1610.

[14] D. Torunoğlu-Selamet, T. Pamay, U. Sulubacak, G. Eryiğit, The annotation process of the
itu web treebank, 2015. doi:10.3115/v1/W15-1610.

[15] WebAnno, WebAnno - Documentation, 2022. URL: https://webanno.github.io/webanno/
documentation, [Online; last accessed 5 May 2022].

[16] Django Software Foundation, Django documentation, 2022. URL: https://docs.
djangoproject.com/en/4.0, [Online; last accessed 25 March 2022].

[17] Encode OSS Ltd., Django REST framework, 2022. URL: https://www.
django-rest-framework.org, [Online; last accessed 27 March 2022].

[18] Bootstrap, Bootstrap v5.1 Documentation, 2022. URL: https://getbootstrap.com/docs/5.1,
[Online; last accessed 5 May 2022].

[19] The PostgreSQL Global Development Group, PostgreSQL, 2022. URL: https://www.
postgresql.org/docs, [Online; last accessed 27 March 2022].

[20] Explosion, spaCy, 2022. URL: https://spacy.io, [Online; last accessed 27 March 2022].
[21] S. Pyysalo, conllu.js, 2022. URL: http://spyysalo.github.io/conllu.js, [Online; last accessed

25 March 2022].

http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator/
http://medialab.di.unipi.it/Project/QA/Parser/DgAnnotator/
https://universaldependencies.org/tools
https://aclanthology.org/W15-1610
http://dx.doi.org/10.3115/v1/W15-1610
http://dx.doi.org/10.3115/v1/W15-1610
https://webanno.github.io/webanno/documentation
https://webanno.github.io/webanno/documentation
https://docs.djangoproject.com/en/4.0
https://docs.djangoproject.com/en/4.0
https://www.django-rest-framework.org
https://www.django-rest-framework.org
https://getbootstrap.com/docs/5.1
https://www.postgresql.org/docs
https://www.postgresql.org/docs
https://spacy.io
http://spyysalo.github.io/conllu.js

A. BoAT-v1

Figure 2: The annotation screen on boat-v1, captured while the sentence “Sel sularında neler yoktu ki...”

is being annotated.

	1 Introduction
	2 BoAT-v1
	3 Related Work
	4 Requirements and Design
	5 Implementation
	6 Using BoAT-v2
	7 Discussion and Conclusions
	A BoAT-v1

