
Session-based Recommendation with Dual Graph Networks
Tajuddeen Rabiu Gwadabe1,*, Mohammed Ali Mohammed Al-hababi 1 and Ying Liu1

1School of Computer Science and Technology, University of Chinese Academy of Sciences (UCAS), China

Abstract
Session-based recommendation task aims at predicting the next item an anonymous user might click. Recently, graph neural
networks have gained a lot of attention in this task. Existing models either construct a directed graph or a hypergraph and
learn item embedding using some form of graph neural networks. We argue that constructing both directed and undirected
graphs for each session may outperform either method since for some sessions the sequence of interaction may be relevant
while for others it may not be relevant. In this paper, we propose a novel Session-based Recommendation model with
Dual Graph Networks (SR-DGN). SR-DGN constructs a directed and an undirected graph from each session and learns
both sequential and non-sequential item representation using sequential and non-sequential graph neural networks models
respectively. Using shared learnable parameters, SR-DGN learns global and local user preferences for each network and
uses the network with the best scores for recommendation. Experiments conducted on three real-world datasets showed its
superiority over state-of-the-art models.

Keywords
session-based recommendation, graph neural networks, directed and undirected graphs,

1. Introduction
Recommender systems have become an essential com-
ponent of the internet user experience as they assist
consumers sift through the ever-increasing volume of
information. Some online sites allow non-login users,
however, the recommender systems have to rely on the
current anonymous session exclusively for making rec-
ommendations. Session-based recommender systems aim
at providing relevant recommendations to such anony-
mous users.

Recent developments in deep learning architectures
have resulted in researchers focusing on using these ar-
chitectures in session-based recommendation task. Re-
current neural networks [1] were first proposed to learn
the sequential interaction between items in a session.
More recently, Graph Neural Networks (GNN) have been
proposed for session-based recommendation [2]. These
models construct directed graphs for each session and
learn item representation using the sequential Gated
Graph Neural Networks (GGNN). On the other hand
memory network models like STAMP [3] have shown
that the order of the sequence may not be important in
session-based recommendation and proposed session-
based recommendation model that does not depend on
the sequence of interactions. Similarly, hypergraph mod-

DL4SR’22: Workshop on Deep Learning for Search and Recommen-
dation, co-located with the 31st ACM International Conference on
Information and Knowledge Management (CIKM), October 17-21, 2022,
Atlanta, USA
*Corresponding author.
$ tgwadabe@mails.ucas.ac.cn (T. R. Gwadabe);
mohammed_al-hababi@mails.ucas.ac.cn (M. A. M. A. );
yingliu@ucas.ac.cn (Y. Liu)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

els like DHCN [4] proposed constructing a hypergraph
for a session and learning item representation on a hy-
pergraph convolutional network that also neglects the
sequence of interactions between items.

This has led to two thought classes. Either consider
the sequence of interactions between items since users in-
teracted with items sequentially or neglect the sequence
since item order may not be relevant since users inter-
act with the items in an online setting. However, both
thoughts have merit. For example, on an e-commerce
site, buying a particular brand of phone might influence
buying a screen guard - hence the sequence might be
relevant. However, buying household supplies such as
tissue might not influence buying any other particular
item - hence the sequence might be irrelevant. We argue
that the two thought classes might be complementary to
each other. That is, for some sessions, considering the
sequence is relevant while for some sessions it might be
irrelevant.

To this end, we propose a Session-based Recommen-
dation model with Dual Graph Networks, SR-DGN. SR-
DGN first constructs two graph networks - a directed
and an indirect graph for each session and learns item
representation using sequential and non-sequential GNN
models respectively. From the individual item represen-
tations, SR-DGN learns local and global user preferences.
Each network will present a score for each item and the
network with the best score is used for making the rec-
ommendation. Our main contributions are summarized
as follows:

• SR-DGN proposed using two graph networks -
directed and undirected graph for each session
and learns item representations using sequen-
tial and non-sequential GNN models. For learn-

mailto:tgwadabe@mails.ucas.ac.cn
mailto:mohammed_al-hababi@mails.ucas.ac.cn
mailto:yingliu@ucas.ac.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


ing sequential item representation, SR-DGN uses
GGNN [5], while for learning non-sequential item
representation, SR-DGN uses an SGC [6] with a
gating highway connection.

• SR-DGN learns local and global user preferences
from each graph network using shared learnable
parameters between the networks. Then, each
network in SR-DGN provides scores for each item
and the network with the best score is used for
making the recommendation.

• Experimental results on three benchmark
datasets demonstrate the effectiveness of
SR-DGN. Further analysis showed that while
the sequential network performs better on
some datasets, the non-sequential network
perform better on others. These further prove
the effectiveness of using both networks for the
session-based recommendation task.

2. Related Works
Session-based recommendation models use the implicit
temporal feedbacks of users such as clicks obtained by
tracking user activities. Traditional machine learning
models such as Markov Chain (MC) models have been
used for sequential recommendation. Zimdars et al. [7]
proposed extracting sequential patterns from sessions
and predicting the next click using decision tree models.
FMPC [8] generalizes MC method and matrix factoriza-
tion to model short term user preference and long-term
user preference respectively. However, MC models suffer
from the assumption of an independence relationship
between the states in a sequence and an unmanageable
state space when considering all the possible sequences.

Recently, deep learning models have achieved the state-
of-the-art performance in session-based recommenda-
tion. Hidasi et al. [1] first proposed GRU4Rec, a recurrent
neural network for session-based recommendation. The
model uses session-parallel mini-batches and pairwise
ranking loss. Liu et al. [9] proposed NARM, which uses
recurrent neural network with attention mechanism to
learn both the local and the global user preference. Li
et al. [3] proposed using memory networks and showed
that modelling the sequential nature may not be neces-
sary. Wu et al. [2] constructed directed graphs for each
session and learned the local and global user preferences
using GGNN. Wang et al. [10] constructs a hypergraph
for each session and proposed a hypergraph attention
network for recommendation.

3. SR-DGN

3.1. Problem Statement and Graph
Construction

Session-based recommendation aims to predict the next
click of an anonymous user session. For a dataset with
distinct items set 𝑉 = 𝑣1, 𝑣2, . . . , 𝑣𝑛, let an anony-
mous session 𝑠 be represented by the ordered list, 𝑠 =
[𝑣𝑠,1, 𝑣𝑠,2, . . . , 𝑣𝑠,𝑡−1] where 𝑣𝑠,𝑖 ∈ 𝑉 is a clicked item
within the session 𝑠, session-based recommendation aims
to recommend the next item to be clicked, 𝑣𝑠,𝑡. The out-
put of SR-DGN is a ranked probability score for all the
candidate items where the top-K items based on the prob-
abilities ŷ will be recommended as the potential next
clicks.

For each session 𝑠, our model constructs a directed and
an undirected graph 𝒢𝑠 = (𝒱𝑠, ℰ𝑠) and 𝒢𝑛 = (𝒱𝑛, ℰ𝑛)
respectively. For both graphs, 𝑣𝑖 ∈ 𝑉𝑠 and 𝑣𝑖 ∈ 𝑉𝑛

if 𝑣𝑖 is clicked within the current session. A directed
edge (𝑣𝑖−1, 𝑣𝑖) ∈ ℰ𝑠 exists from 𝑣𝑖−1 to 𝑣𝑖 if item 𝑣𝑖
was clicked immediately after 𝑣𝑖−1. An undirected edge
(𝑣𝑖−1, 𝑣𝑖) ∈ ℰ𝑛 exists between 𝑣𝑖−1 to 𝑣𝑖 if item 𝑣𝑖 was
clicked before or after item 𝑣𝑖−1. For the directed graph,
we normalized the outgoing and incoming adjacency ma-
trices by the degree of the outgoing node. The overview
of the SR-DGN model is given in Figure 1.

3.2. Learning Sequential and
Non-Sequential Item Embedding

We first transform all items 𝑣𝑖 ∈ 𝑉 into a unified em-
bedding space 𝑣𝑖 ∈ R𝑑, where 𝑑 is the dimension size.
Using this initial embedding, we learn sequential and
non-sequential item embedding, 𝑣𝑖𝑠 and 𝑣𝑖𝑛 respectively.

3.2.1. Learning Sequential Item Embedding

We use GGNN [5] similar to SR-GNN [2] for learning the
sequential item representation. Given the incoming and
outgoing adjacency matrices and the initial item embed-
ding, GGNN updates the item embedding as follows:

a𝑡𝑖𝑠 = A𝑖𝑠:[v𝑡−1
1 , . . . , v𝑡−1

𝑛 ]𝑇H1 + b1, (1)

𝑧𝑡𝑖 = 𝜎(W𝑧a𝑡𝑖𝑠U𝑧v𝑡−1
𝑖 ), (2)

𝑟𝑡𝑖 = 𝜎(W𝑟a𝑡𝑖𝑠U𝑟v𝑡−1
𝑖 ), (3)

v̂𝑡𝑖 = 𝑡𝑎𝑛ℎ(W𝑜a𝑡𝑖𝑠 + U𝑟(𝑟
𝑡
𝑖 ⊙ v𝑡−1

𝑖 )) (4)

v𝑖𝑠 = (1− 𝑧𝑡𝑖)⊙ v𝑡−1
𝑖 + 𝑧𝑡𝑖 ⊙ v̂𝑡𝑖 (5)

where A𝑖𝑠: ∈ R1𝑥2𝑛 is the 𝑖-th row of the incoming
and outgoing matrices. H1 ∈ R𝑑𝑥2𝑑 and b1 ∈ R𝑑 are
weight and bias parameters respectively. 𝑧𝑡𝑖 ∈ R𝑑𝑥𝑑 and
𝑟𝑡𝑖 ∈ R𝑑𝑥𝑑 are the reset and update gates respectively.



Figure 1: Overview of SR-DGN model. For each session 𝑠, directed and undirected graphs are constructed and sequential and
non-sequential item representations are learned using sequential and non-sequential GNN models respectively. Using shared
learnable parameters, the final sequential and non-sequential session representation is learned. Finally, the best prediction is
selected for making recommendations.

3.2.2. Learning Non-Sequential Item Embedding

To learn the non-sequential item representation, 𝑣𝑖𝑛 we
used SGC [6] with a proposed highway connections. For-
mally, the update can is given by:

a𝑡𝑖𝑛 = A𝑡
𝑖𝑛:[v𝑡−1

1 , . . . , v𝑡−1
𝑛 ]𝑇H2 + b2, (6)

v𝑖𝑛 = g1 ⊙ a𝑡𝑖𝑛 + (1− g1)⊙ v𝑖, (7)

g1 = Wg1([v𝑖𝑛; v𝑖]). (8)

where A𝑖𝑛: ∈ R1𝑥𝑛 is the 𝑖-th row of the undirected
graph adjacency matrix. H2 ∈ R𝑑𝑥𝑑 and b2 ∈ R𝑑 are
weight and bias parameters respectively. g1 is the gating
mechanism used to improve the performance of the non-
sequential item representation.

3.3. Learning Session Embedding
From the sequential and non-sequential item embedding,
we learn the local and the global user preferences for each
network using shared learnable parameters. Considering
the sequential item embedding, to obtain the final session
embedding, we use a gating mechanism that aggregates
the global and the local user preferences. The sequential
local user preference s𝑙𝑠 is obtained from the sequential
embedding of the last clicked item while the sequential
global preference s𝑔𝑠 is obtained from the sequential
embedding of all clicked items in a session using additive
an attention mechanism. Formally, the sequential global
preference s𝑔𝑠 is given by;

s𝑔𝑠 =

𝑡∑︁
𝑖

𝛼𝑖h𝑠,𝑖, (9)

where h𝑠,𝑖 is the i-th sequential item embedding and 𝛼𝑖

is the attention weight of the i-th timestamp given by:

𝛼𝑖 = q𝑇𝜎(W1h𝑠,𝑡 +W1h𝑠,𝑖 + 𝑏), (10)

where the parameters q,W1 and W2 are learnable to
control the additive attention. The final sequential ses-
sion representation s𝑓𝑠 is obtained by aggregating the
sequential local and global preferences using a gating
mechanism. Formally, the final session representation
s𝑓𝑠 is obtained as follows;

s𝑓𝑠 = g2 ⊙ s𝑔𝑠 + (1− g2)⊙ s𝑙𝑠, (11)

g2 is the gating function obtained by;

g2 = Wg2([s𝑔𝑠; s𝑙𝑠]) (12)

Wg2 ∈ R2𝑑×𝑑 is a trainable transformation matrix and
[;] is a concatenation operation. From the non-sequential
item embedding, using the same learnable parameters,
the final non-sequential representation, s𝑓𝑠 can be ob-
tained.

3.4. Making Recommendation
From the sequential and non-sequential final session rep-
resentations, the sequential and non-sequential unnor-
malized scores of each candidate item 𝑣𝑖 ∈ 𝑉 can be
obtained by multiplying the item embedding v𝑖 with the
each the corresponding final session representation. The
sequential unnormalized score ẑ𝑖𝑠, is defined as:

ẑ𝑖𝑠 = s𝑇𝑓𝑠v𝑖. (13)

The non-sequential unnormalized score ẑ𝑖𝑛 is obtained in
similar way. For the recommendation, we use the sum of



the two unnormalized scores. A softmax is then applied
to calculate the normalized probability output vector of
the model ŷ𝑖 as follows:

ŷ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ẑ) (14)

where ẑ ∈ R𝑛 is the sum unnormalized score of the
sequential and non-sequential scores and ŷ = R𝑛 is the
probability of each item to be the next click in session 𝑠.

For any given session, the loss function is defined as
the cross-entropy between the predicted click and the
ground truth. The cross-entropy loss function is defined
as follows:

ℒ(ŷ) = −
𝑛∑︁

𝑖=1

y𝑖𝑙𝑜𝑔(ŷ𝑖) + (1− y𝑖)𝑙𝑜𝑔(1− ŷ𝑖) (15)

where y is the one-hot encoding of the ground truth
items. Adam optimizer is then used to optimize the cross-
entropy loss.

4. Performance Evaluation
In this section we aim to answer the following questions:

RQ1. How does the proposed SR-DGN model compare
against the existing state-of-the-art baseline models?

RQ2. How does the proposed SR-DGN sequential and
non-sequential networks compare against each other?

4.1. Experimental Configurations
4.1.1. Datasets

Three popular publicly available datasets, Yoochoose 1,
RetailRocket2 and Diginetica3 were used to evaluate the
performance of the proposed model. The Yoochoose
dataset was obtained from the RecSys challenge 2015.
RetailRocket dataset contains 6 months personalized
transactions from an e-commerce site available on
Kaggle while the Diginetica dataset is from the CIKM
2016 Cup. All datasets consist of transactional data
from e-commerce sites. We used similar pre-processing
with [2, 10] by removing the items occurring less than
5 times and the session of length less than 2. We used
the last week transactions for testing in all datasets.
Similar to existing models, we augment the training
sessions by splitting the input sequence. For exam-
ple, from the sequence 𝑠 = [𝑣𝑠,1, 𝑣𝑠,2, . . . , 𝑣𝑠,𝑛]
we generate the following input sequence:
([𝑣𝑠,1], 𝑣𝑠,2), . . . , ([𝑣𝑠,1, 𝑣𝑠,2, . . . , 𝑣𝑠,𝑛−1], 𝑣𝑠,𝑛) and
used the most recent 1/64 portion of the Yoochoose
dataset.

1http://2015.recsyschallenge.com/challege.html
2https://www.kaggle.com/retailrocket/ecommerce-dataset
3http://cikm2016.cs.iupui.edu/cikm-cup

4.1.2. Baseline

We compare the performance of our proposed SR-DGN
model with traditional and deep learning representative
baseline models. The traditional baseline model used is
Factorized Personalized Markov Chain model (FPMC) [8].
The deep learning baselines include RNN-based models
GRU4Rec [1], RNN with attention model (NARM) [9],
memory-based with attention model (STAMP) [3], di-
rected graph model SR-GNN [2] and hypergraph models
DHCH [4] and SHARE [10]

4.1.3. Evaluation Metrics.

We used two common accuracy metrics, 𝑃@𝐾 = 20, 10
and 𝑀𝑅𝑅@𝐾 = 20, 10, for evaluation. P@K evalu-
ates the proportion of correctly recommended unranked
items, while MRR@K evaluates the position of the cor-
rectly recommended ranked items.

4.1.4. Hyperparameter Setup.

We used the same hyperparameters similar to previous
models [2, 4, 10]. we set the hidden dimension in all ex-
periments to 𝑑 = 100, learning rate for Adam optimizer
set to 0.001 with a decay of 0.1 after every 3 training
epochs. 𝑙2 norm and batch size were set to 10−5 and 100
respectively on all datasets.

4.2. Comparison with Baseline
We compare the performance of SR-DGN with the ex-
isting baseline models in terms of 𝑃@𝐾 = 20, 10 and
𝑀𝑅𝑅@𝐾 = 20, 10 on Yoochoose 1/64, RetailRocket
and Diginetica datasets. Table 1 shows the performance
with the best performance highlighted in boldface. It
can be seen that SR-DGN outperforms the best baseline
models on all datasets. It is evident that, using both di-
rected and undirected graphs can potentially improve
the overall performance of graph neural network models
for session-based recommendation.

From Table 1, it can also be seen that all deep learning
models outperformed FPMC the traditional model except
GRU4Rec. It can also be seen that on the RetailRocket
dataset, STAMP (non-sequential model) outperformed
NARM (sequential model). However, on the Diginetica
dataset, the reverse case can be observed. These perfor-
mances support our argument that both the sequential
and non-sequential architecture for learning item rep-
resentation can be complementary. Despite the simple
architecture of our sequential and non-sequential models,
SR-DGN was able to outperform more complex models
like DHCN that uses self-supervised learning with both
intra- and inter- session information.



Table 1
Performance of SR-DGN compared with other baseline models. The boldface is the best result over all methods and * denotes
the significant difference for t-test. (all values are in percentages)

Dataset Metrics
Models

FMPC GRU4Rec NARM STAMP SR-GNN 𝑆2-DHCN SHARE GGNN SGC SR-DGN

Yoochoose 1/64 P@20 45.62 60.64 68.32 68.74 70.57 70.39 71.17 71.06 71.32 71.70
MRR@20 15.01 22.89 28.63 29.67 30.94 29.92 31.06 31.32 31.27 31.51

P@10 32.01 52.45 57.50 58.07 60.09 59.18 60.59 60.60 60.71 61.29*
MRR@10 14.35 21.53 27.97 28.92 30.69 28.54 30.78 30.69 30.52 30.79

Diginetica P@20 26.53 29.45 49.70 45.64 50.73 53.18 52.73 51.83 52.68 53.42*
MRR@20 6.95 8.33 16.17 14.32 17.59 18.44 18.05 17.99 18.63 18.66

P@10 15.43 17.93 35.44 33.98 36.86 39.87 39.52 38.62 39.65 40.20*
MRR@10 6.20 7.33 15.13 14.26 15.52 17.53 17.12 17.07 17.73 17.75

RetailRocket P@20 32.37 44.01 50.22 50.96 50.32 53.66 54.00 54.55 54.72 55.85*
MRR@20 13.82 23.67 24.59 25.17 26.57 27.30 27.12 29.39 29.23 29.77

P@10 25.99 38.35 42.07 42.95 43.21 46.15 46.21 47.36 47.44 48.20*
MRR@10 13.38 23.27 24.88 24.61 26.07 26.85 26.61 28.98 28.73 29.24*

4.3. Comparison with GGNN and SGC
We compare the performance of GGNN [5] (sequential)
and SGC [6] (non-sequential) models with SR-DGN on
all the three datasets in terms of 𝑃@𝐾 = 20, 10 and
𝑀𝑅𝑅@𝐾 = 20, 10. Table 1 shows that on all the
datasets, the combined SR-DGN model outperformed
both GGNN and SGC. Generally SGC outperforms GGNN
on Precision metrics while GGNN outperforms SGC on
MRR metrics. To ensure good performance of differ-
ent datasets, considering both the sequential and non-
sequential models as in the case of our proposed SR-DGN
may be the solution.

4.4. Ablation Study
SR-DGN uses summation to aggregate the sequential and
non-sequential unnormalized scores. We compare the
performance of summation to max aggregation method.
Table 2 shows the performance of summation aggrega-
tion method against max aggregation. It can be seen that
on all datasets and on metrics, the summation method
outperforms the max methods. It results are intuitive
since with summation, items with overall highest proba-
bilites are recommended. It also further demonstrate
the advantage of using both the sequential and non-
sequential networks in SR-DGN.

5. Conclusion
In this paper, we proposed SR-DGN, a graph neural net-
work model for session-based recommendation. SR-DGN
constructs a directed and an undirected graph for each
session and learns sequential and non-sequential item
embedding using sequential and non-sequential GNN re-

Table 2
Performance comparison of aggregation methods in SR-DGN
(all values are in percentages)

Datasets Metrics Max Sum

Yoochoose 1/64 P@20 71.65 71.70
MRR@20 31.19 31.51

P@10 61.16 61.29
MRR@10 30.45 30.79

Diginetica P@20 52.73 53.42
MRR@20 18.45 18.66

P@10 39.69 40.20
MRR@10 17.54 17.75

RetailRocket P@20 55.11 55.85
MRR@20 29.55 29.77

P@10 49.01 48.20
MRR@10 29.06 29.24

spectively. Using shared learnable parameters, SR-DGN
learns the global and local user preferences from each
of the item embedding learnt. For making recommen-
dation, SR-DGN selects the max of the sequential and
non-sequential scores. Experimental results showed that,
SR-DGN outperformed state-of-the-art models on three
benchmark datasets. Further analysis revealed that, for
some datasets, non-sequential model outperforms se-
quential and the reverse is true for some other datasets.
SR-SGN takes advantage of both scenarios to achieve
better performance.

Acknowledgments
This project was partially supported by Grants from Nat-
ural Science Foundation of China 62176247. It was also



supported by the Fundamental Research Funds for the
Central Universities and CAS/TWAS Presidential Fellow-
ship for International Doctoral Students.

References
[1] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk,

Session-based recommendations with recurrent
neural networks, 2016. arXiv:1511.06939.

[2] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, T. Tan,
Session-based recommendation with graph neu-
ral networks, Proceedings of the AAAI Confer-
ence on Artificial Intelligence 33 (2019) 346–353.
URL: http://dx.doi.org/10.1609/aaai.v33i01.3301346.
doi:10.1609/aaai.v33i01.3301346.

[3] Q. Liu, Y. Zeng, R. Mokhosi, H. Zhang, Stamp:
Short-term attention/memory priority model for
session-based recommendation, in: Proceedings of
the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’18,
Association for Computing Machinery, New York,
NY, USA, 2018, p. 1831–1839. URL: https://doi.org/
10.1145/3219819.3219950. doi:10.1145/3219819.
3219950.

[4] X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, X. Zhang, Self-
supervised hypergraph convolutional networks for
session-based recommendation, in: Proceedings
of the AAAI Conference on Artificial Intelligence,
AAAI ’21, 2021, pp. 4503–4511. URL: https://ojs.aaai.
org/index.php/AAAI/article/view/16578.

[5] Y. Li, R. Zemel, M. Brockschmidt, D. Tarlow, Gated
graph sequence neural networks, in: Proceedings
of ICLR’16, 2016.

[6] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, K. Wein-
berger, Simplifying graph convolutional networks,
in: K. Chaudhuri, R. Salakhutdinov (Eds.), Proceed-
ings of the 36th International Conference on Ma-
chine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, PMLR, 2019, pp. 6861–6871.
URL: http://proceedings.mlr.press/v97/wu19e.html.

[7] A. Zimdars, D. M. Chickering, C. Meek, Using
temporal data for making recommendations, in:
Proceedings of the Seventeenth Conference on Un-
certainty in Artificial Intelligence, UAI’01, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2001, p. 580–588.

[8] S. Rendle, C. Freudenthaler, L. Schmidt-Thieme,
Factorizing personalized markov chains for next-
basket recommendation, in: Proceedings of the
19th International Conference on World Wide Web,
WWW ’10, Association for Computing Machinery,
New York, NY, USA, 2010, p. 811–820. URL: https:
//doi.org/10.1145/1772690.1772773. doi:10.1145/
1772690.1772773.

[9] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, J. Ma, Neu-
ral attentive session-based recommendation, in:
Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management, CIKM
’17, Association for Computing Machinery, New
York, NY, USA, 2017, p. 1419–1428. URL: https:
//doi.org/10.1145/3132847.3132926. doi:10.1145/
3132847.3132926.

[10] J. Wang, K. Ding, Z. Zhu, J. Caverlee, Session-based
recommendation with hypergraph attention net-
works, Proceedings of the 2021 SIAM International
Conference on Data Mining (SDM) (2021) 82–90.
URL: http://dx.doi.org/10.1137/1.9781611976700.10.
doi:10.1137/1.9781611976700.10.

http://arxiv.org/abs/1511.06939
http://dx.doi.org/10.1609/aaai.v33i01.3301346
http://dx.doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/3219819.3219950
http://dx.doi.org/10.1145/3219819.3219950
http://dx.doi.org/10.1145/3219819.3219950
https://ojs.aaai.org/index.php/AAAI/article/view/16578
https://ojs.aaai.org/index.php/AAAI/article/view/16578
http://proceedings.mlr.press/v97/wu19e.html
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1145/1772690.1772773
http://dx.doi.org/10.1145/1772690.1772773
http://dx.doi.org/10.1145/1772690.1772773
https://doi.org/10.1145/3132847.3132926
https://doi.org/10.1145/3132847.3132926
http://dx.doi.org/10.1145/3132847.3132926
http://dx.doi.org/10.1145/3132847.3132926
http://dx.doi.org/10.1137/1.9781611976700.10
http://dx.doi.org/10.1137/1.9781611976700.10

	1 Introduction
	2 Related Works
	3 SR-DGN
	3.1 Problem Statement and Graph Construction
	3.2 Learning Sequential and Non-Sequential Item Embedding
	3.2.1 Learning Sequential Item Embedding
	3.2.2 Learning Non-Sequential Item Embedding

	3.3 Learning Session Embedding
	3.4 Making Recommendation

	4 Performance Evaluation
	4.1 Experimental Configurations
	4.1.1 Datasets
	4.1.2 Baseline
	4.1.3 Evaluation Metrics.
	4.1.4 Hyperparameter Setup.

	4.2 Comparison with Baseline
	4.3 Comparison with GGNN and SGC
	4.4 Ablation Study

	5 Conclusion

