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Abstract

The recently proposed Sequential Recommendation Augmentation (SRA) paradigm has shown valuable potential in sequential

recommendation, especially for handling long-tail problem via extending short behavior sequences. However, the self-

supervised SRA adopts autoregressive learning with fixed forward or backward direction, which cannot make full use of the

contextual correlation information in the training behavior sequences. Due to the direction difference, discrepancy problem

exists in the two training stages of SRA, i.e., pretraining and finetuning. In order to overcome the restriction of specific

sequential learning direction, we propose to equip SRA with permutation autoregressive learning to extract global contextual

correlation information from the behavior sequences in both directions. The adapted SRA method is implemented with

two-stream self-attention. Empirical evaluations on multiple sequential recommendation benchmark datasets demonstrate

the effectiveness of our proposed model, and the augmented data can significantly reduce the convergence rate.
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1. Introduction
Sequential recommendation aims to find the behavior pat-

tern or item transition from the user behavior sequences.

Variant architectures are developed, including Markov

Chains [1], RNN [2], attention-based sequence models

[3] and graph models [4], etc.

Data sparsity severely defects the performance of

sequential recommendation. Data augmentation is a

straightforward solution for handling short behavior se-

quences in sequential recommendation [5]. There are

mainly two kinds of data augmentation methods, namely

the heuristic augmentation [6] and generative augmenta-

tion [7]. Recently, Sequential Recommendation Augmen-

tation (SRA) is proposed as an augmentation paradigm in

sequential recommendation [7]. Consisting of two train-

ing stages, namely pretraining and finetuning, SRA is a

verified effective solution for handling short sequences

in sequential recommendation, namely long-tail problem.

However, the current learning procedure of sequential

recommendation cannot completely extract the contex-

tual correlation in the given sequential training instances.

In any learning stage, the item is predicted given the sub-

sequence located at the single side of it. Specifically, SRA
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(a) Pretraining (b) Augmenting (c) Finetuning

Figure 1: Stages in SRA. (a) Pretraining with inversed se-
quence. (b) Pseudo-prior item augmentation. (c) Finetuning.

pretrains the sequence model with reversed training se-

quence, in order to generate the pseudo-prior items, while

the finetuning stage adopts the normal autoregressive

objective. Therefore, the trained model is never aware of

the bidirectional context behaviors around the current

position, namely the learning of the framework is insuf-

ficient. Besides, the two stages update to the same set of

parameters but with different learning directions. Similar

discrepancy problems are commonly seen in this kind of

pretrain-finetune methods, and it remains a constraint

for further performance improvement.

To addressing the abovementioned problems, we pro-

pose to exploit global contextual correlation informa-

tion with Permutation Autoregressive Learning (PAL) for

SRA. Specifically, we unify the learning objectives with

permutation language model objective and implement

it on sequential recommendation with two-stream self-

attention mechanism. PAL helps the model to exploit dif-

ferent permutations of the input in order to exploit global

contextual information without restrictions of learning

direction. For the inference stage, we try to adopt the
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beam search for generating more suitable subsequence

as the augmented data. A latest revision named BiCAT

[8] comes with a similar motivation by implemented via

an additional loss regularization, but it is not designed

for extracting contextual correlation information around

the predicted position, and we will empirically compare

them.

Our contributions can be summarized as following:

(a) Global contextual correlation information is explored

in Sequential Recommendation Augmentation (SRA). (b)

Equipped with Permutation Autoregressive Learning and

beam search method, an adapted SRA framework is de-

signed and evaluated. (c) The proposed framework out-

performs the state-of-the-art methods for sequential rec-

ommendation augmentation without extra information

or heuristic rules.

2. Sequential Recommendation
Augmentation

The sequential recommendation task can be regarded as

the next-item prediction given the historical behavior

sequence. We denote the user set as 𝒰 and the item set

as 𝒳 . The interaction behavior of the given user 𝑢 ∈ 𝒰
is denoted as 𝑆𝑢 = {𝑥𝑢

1 , 𝑥
𝑢
2 , ..., 𝑥

𝑢
𝑛}. The sequential

recommendation task can be formulated as:

𝑥𝑢
𝑛+1 = argmax

𝑥
𝑝(𝑥|𝑆𝑢) (1)

which means finding the next item 𝑥𝑢
𝑛+1 with the largest

probability given the user behavior sequence 𝑆𝑢
.

Recently, a Sequential Recommendation Augmenta-

tion (SRA) paradigm is proposed [7], and the basic SRA

method is also known as ASPeP. As illustrated in Fig 1,

ASPeP utilizes reverse pretraining for data augmentation.

We take Transformer as an example backbone for de-

scribing this learning paradigm. The key component in

Transformer, i.e., multi-head self-attention is constructed

with linear transformation and the scaled dot-product

attention [9]. There are two stages in the training proce-

dure updating the same set of model parameter 𝜃, namely

reverse pretraining and left-to-right finetuning. The re-

verse pretraining intents to learn the inverse sequence

generation via the autoregressive learning objective:

max
𝜃

𝑝𝜃(𝑥
𝑢
𝑖 |𝑥𝑢

𝑖+1, 𝑥
𝑢
𝑖+2, ..., 𝑥

𝑢
𝑛) (2)

With the pretrained model, pseudo-prior items can be

recursively generated for short sequences, in order to

eliminate the data sparsity in recommendation and fur-

ther improve the quality of the whole training set. The

pretrained model can be further finetuned for next-item

prediction, and the learning objective is the forward au-

toregressive learning objective:

max
𝜃

𝑝𝜃(𝑥
𝑢
𝑖 |𝑥𝑢

1 , 𝑥
𝑢
2 , ..., 𝑥

𝑢
𝑖−1) (3)

(a) Content-stream Attention (b) Target-stream Attention

Figure 2: Different Forms of Attention.

For details of SRA paradigm, please refer to [7].

3. Methodology

3.1. Permutation Autoregressive Learning
Now our intention is to help the SRA framework making

use of the global contextual correlation in the behav-

ior sequences. The idea of “mask and reconstruct” is a

commonly used method for helping the sequence model

to learn from contextual information in arbitrary posi-

tion, but the incorporation of [MASK] token in behavior

sequence will bring more severe discrepancy problem

as in BERT [10], especially considering that the trained

model will be used for recursively generating behavior

sequences. Our solution to exploit context information is

adopting the permutation modeling objective [11], which

gather the information in bidirectional context while re-

maining the autoregressive learning paradigm.

3.1.1. Permutations with Original Position
Encoding

In order to exploit bidirectional item correlation in bidi-

rectional context, we propose to train the sequence model

with different permutations of each training sequence in

an autoregressive way.

Assume that the length of the behavior sequence is 𝑇 ,

we denote the set of all possible permutation of index as

𝑍𝑇
. For example, if 𝑇 = 4, then the original permuta-

tion is [1, 2, 3, 4], and the number of permutation in 𝑍𝑇

is 𝑇 ! = 24. For each permutation z in 𝑍𝑇
, 𝑧<𝑡 stands

for indices of all the element before 𝑡-th element 𝑧𝑡, and

𝑧𝑡 is for the current elements. Similar to autoregressive

learning, we try to predict 𝑧𝑡 given 𝑧<𝑡. In this way, the

learning objective is rewritten according to the permuta-

tion z instead of the original order of original sequence

x as follows.

max
𝜃

Ez∼𝑍𝑇 log 𝑝𝜃(𝑥𝑧𝑡 |𝑥𝑧<𝑡) (4)

where 𝑥𝑧<𝑡 stand for the items in x whose index is in

𝑧<𝑡. This new objective calculates the probability of an

item conditioned on all possible permutations of items

in an autoregressive way, as opposed to just those to the

left side or right side of the target item in the existing



Algorithm 1 Permutation Autoregressive Learning for

SRA

1: Input: A set of behavior sequence {𝑆𝑢}
2: Output: A sequential recommendation model

3: procedure PAL({𝑆𝑢})

4: for each epoch do
5: for each instance in batch do
6: Sample 𝑛 permutations with length 𝐿.

7: Pretrain with Eqn 4.

8: Save the result pretrained model ℳ0 for generation.

9: Select behavior sequences shorter than 𝑚.

10: Generate the pseudo-prior items with beam width 𝑘.

11: for each epoch do
12: for each batch do
13: Finetune ℳ0 with Eqn 3.

14: Save the result finetuned model for sequential recom-

mendation.

methods for sequential recommendation augmentation.

It should be emphasised that only the indices, namely

which elements are used for prediction, are changed,

while the position of each item in the original sequence

is retrained.

The above learning objective can help each position

to learn information from bidirectional context, but it

brings a new issue about the position information. In pre-

diction given several known items, the predicted position

or index is not fixed as in original autoregressive learn-

ing. So we need to learn the target-aware representation

which can tell the position that the current predicted item

located in. Therefore, the 𝑝𝜃(𝑥𝑧𝑡 |𝑥𝑧<𝑡) is formulated as:

𝑝𝜃(𝑥𝑧𝑡 |𝑥𝑧<𝑡) =
exp[e(𝑥𝑧𝑡)

̃︀h𝜃(𝑥𝑧<𝑡,𝑧𝑡)]∑︀
𝑥* exp[e(𝑥*) ̃︀h𝜃(𝑥𝑧<𝑡,𝑧𝑡)]

(5)

where
̃︀h𝜃(𝑥𝑧<𝑡,𝑧𝑡) is the learned target-aware represen-

tation for the item with the 𝑧𝑡-th index.

3.1.2. Two-stream Attention for Contextual
Representation

As aforementioned, the self-attention module in the se-

quence model need to be modified for obtaining target-

aware representations. The two-stream attention struc-

ture was used in language modeling to provide target

position information without leaking the content infor-

mation of the target.

Specifically, two separated streams of attention vectors

are maintained to store content information and position

information. For each position 𝑧𝑡 in the factorization z,

we keep updating the intermediate vectors ℎ𝑧𝑡 and
̃︀ℎ𝑧𝑡 ,

representing content stream and target stream respec-

tively. Each stream is learned by a designated attention

mechanism. The detailed formulations of the two-stream

attention structure is described as follows.

dataset Beauty Phones Sports Tools Baby Office
#user 22363 27879 35598 16638 19445 4905
#item 12101 10429 18357 10217 7050 2420

#instance 198502 138681 296337 134476 160792 53258
avg. length 6.88 4.97 6.32 6.08 6.27 8.86

Table 1
Statistics of the Datasets.

The first one is the content-stream representation

which is exactly the same as the hidden state in the

standard self-attention. This corresponding attention

is named Content-stream attention:

ℎ(𝑚)
𝑧𝑡 ← Attention(𝑄 = ℎ(𝑚−1)

𝑧𝑡 ,𝐾𝑉 = ℎ(𝑚−1)
𝑧≤𝑡

; 𝜃)

(6)

where ℎ
(𝑚)
𝑧𝑡 is the output of the 𝑚-th block Transformer.

The second representation is target representation, which

contains only the position information of the target in

order to avoid content information leaking. The Target-
stream attention is:

̃︀ℎ(𝑚)
𝑧𝑡 ← Attention(𝑄 = ̃︀ℎ(𝑚−1)

𝑧𝑡 ,𝐾𝑉 = ℎ(𝑚−1)
𝑧<𝑡

; 𝜃)
(7)

The content representation ℎ
(0)
𝑧𝑡 is initialized by the

item embedding e(𝑥𝑧𝑡) which is added with the posi-

tional encoding as in normal Transformer, and all the

target representation
̃︀ℎ(0)
𝑧𝑡 is initialized by an identical

trainable vector w. The output
̃︀ℎ𝑧𝑡 of the last layer Trans-

former is used as
̃︀h𝜃(𝑥𝑧<𝑡,𝑧𝑡) in Eqn 5 for prediction. In

this way, equipped with this two-stream attention, we

can force each position in the sequence to learn bidirec-

tional information while maintaining the normal behav-

ior order.

3.1.3. Optimization of Sequence Augmentation

We propose beam-search for obtain the optimal sequence

as the pseudo-prior items. Instead of recursively predict

the next item in a greedy way, Beam Search method

maintains a buffer of candidate subsequences and selects

the best one with the largest joint probability. Beam

width value is denoted as 𝑘. More details can be found

in [12].

3.2. PAL Algorithm for SRA
Considering the computing complexity of the permuta-

tion autoregressive learning, we need to sample from the

set of permutation and predict partial of the sequence.

For each sampled permutation, we train the model via

maximizing the probability of last item. The detailed

learning procedure is described in Algorithm 1.



4. Experiments

4.1. Datasets and Baseline Models
Following the setting in [7] and [8], 6 datasets are adopted

which are collected from 𝐴𝑚𝑎𝑧𝑜𝑛.𝑐𝑜𝑚1

. For the behav-

ior sequence construction, we regard the presence of

review as an interaction between a user and an item, and

construct the behavior sequence according to the times-

tamp. Following the preprocession in [7], we use the last

item in a sequence for test. The statistics of datasets is

shown in Table 1.

We compare our proposed method with the following

methods including the state-of-the-art BiCAT [8] method

in sequential recommendation augmentation. SASRec
[13] utilize the transformer to extract the correlation

from the training sequences and predict the next item.

BERT4Rec [14] exploit the training method in BERT

to learn transformer for SR. ASReP [7] reversely pre-

train the transformer to generate pseudo-prior items for

short sequence and then finetune the transformer for

SR. BiCAT [8] is the latest model for sequential recom-

mendation augmentation. It incorporates an additional

objective in pretraining. PAL is our proposed learning

method. PAL++ equips PAL with beam search.

4.2. Implementation Details
We select the Transformer as the backbone to verify our

SRA solution. The block number is fixed to 2. The hidden

length is selected in {32, 64, 128}. The head number in

attention is selected in {2, 4}. The learning rate is fixed

at 0.001 since the results are similar with other settings.

The dropout rate is fixed to 0.5. The short sequence

length threshold 𝑚 is set to 18, and each short sequence

is augmented with 15 pseudo-prior items. For the number

of sampled permutations (𝑛 in Algorithm 1), we select

it in {2, 4, 6} with model selection. The epoch number

is fixed to 200 which is sufficient for all the models to

converge. We conduct model selection via grid search.

For each behavior sequence, we randomly sample 100

negative items for ranking with the last item, which is the

ground-truth. Recall@n, NDCG@n, and Mean Reciprocal

Rank (MRR) are employed for as the evaluation metrics,

and 𝑛 is selected in {5, 10}.

4.3. Performance of PAL
We performance sequential recommendation on all the

6 datasets with the above mentioned baseline models

to demonstrate the effectiveness of PAL. Previous SRA

work has shown the advantage of self-attention sequence

model for recommendation, so we use the SASRec and

BERT4Rec as two baselines without augmentation. The

1
http://jmcauley.ucsd.edu/data/amazon/

Model R@5 R@10 NDCG@5 NDCG@10 MRR

B
ea

ut
y

SASRec 0.3849 0.4863 0.2884 0.3212 0.2870
BERT4Rec 0.4243 0.5371 0.3075 0.3598 0.3021

ASReP 0.4583 0.5743 0.3465 0.4042 0.3540
BiCAT 0.4901 0.5892 0.3704 +6.8% 0.4289 +6.1% 0.3712 +4.8%

PAL 0.4934 0.6048 0.3873 +11.7% 0.4400 +8.8% 0.3803 +7.4%

PAL++ 0.4936 0.6036 0.3879 +11.9% 0.4415 +9.2% 0.3821 +7.9%

Ph
on

es

SASRec 0.3517 0.4706 0.2475 0.2859 0.2470
BERT4Rec 0.3732 0.4942 0.2687 0.3006 0.2684

ASReP 0.5489 0.6758 0.4107 0.4518 0.3946
BiCAT 0.5663 0.7032 0.4274 +4.0% 0.4729 +4.6% 0.3990 +1.1%

PAL 0.5736 0.7178 0.4432 +7.9% 0.4798 +6.2% 0.4100 +3.9%

PAL++ 0.5745 0.7239 0.4436 +8.0% 0.4809 +6.4% 0.4113 +4.2%

Sp
or

ts

SASRec 0.3847 0.5051 0.2732 0.3122 0.2699
BERT4Rec 0.4136 0.5325 0.3014 0.3561 0.2988

ASReP 0.4734 0.6011 0.3470 0.3884 0.3370
BiCAT 0.4842 0.6246 0.3649 +5.1% 0.4003 +3.1% 0.3562 +5.7%

PAL 0.4936 0.6385 0.3784 +9.0% 0.4112 +5.9% 0.3712 +10.1%

PAL++ 0.4940 0.6398 0.3796 +9.4% 0.4174 +7.5% 0.3730 +10.7%

To
ol

s

SASRec 0.2853 0.3903 0.1987 0.2325 0.2037
BERT4Rec 0.3613 0.5600 0.3190 0.3574 0.3011

ASReP 0.4133 0.5347 0.3014 0.3406 0.2976
BiCAT 0.4287 0.5509 0.3279 +8.8% 0.3571 +4.8% 0.3100 +4.2%

PAL 0.4327 0.5624 0.3404 +12.9% 0.3767 +10.6% 0.3231 +8.6%

PAL++ 0.4374 0.5681 0.3421 +13.5% 0.3805 +11.7% 0.3273 +10.0%

B
ab

y

SASRec 0.3076 0.4358 0.2094 0.2509 0.2144
BERT4Rec 0.3295 0.4701 0.2212 0.2758 0.2338

ASReP 0.3581 0.4885 0.2499 0.2920 0.2508
BiCAT 0.3682 0.4972 0.2603 +4.2% 0.3007 +3.0% 0.2587 +3.1%

PAL 0.3759 0.5123 0.2741 +9.7% 0.3178 +8.8% 0.2704 +7.8%

PAL++ 0.3785 0.5123 0.2804 +12.2% 0.3200 +9.6% 0.2724 +8.6%

O
ff

ic
e

SASRec 0.4053 0.5098 0.2994 0.3335 0.2947
BERT4Rec 0.4400 0.5682 0.3149 0.3589 0.3024

ASReP 0.4689 0.6101 0.3303 0.3764 0.3186
BiCAT 0.4801 0.6221 0.3462 +4.8% 0.3894 +3.5% 0.3326 +4.4%

PAL 0.4982 0.6353 0.3572 +8.1% 0.3997 +6.2% 0.3486 +9.4%

PAL++ 0.4994 0.6363 0.3602 +9.1% 0.4011 +6.6% 0.3497 +9.8%

Table 2
Performance of Different Methods on Sequential Recommen-
dation. Relative changes are based on ASReP.

performance results are presented in Table 2. All the

SRA methods achieve better performance than the oth-

ers, which verified the effectiveness of augmentation.

Compared with the strongest sequential recommenda-

tion augmentation baseline BiCAT, the proposed PAL

can provide around 2% to 5% improvement on NDCG10,

which is significant in these sparse datasets. The beam

search method (PAL++) consistently shows effectiveness

on all the datasets, and the further performance improve-

ment on the “Tools and Home Improvement” and “Baby”

are more significant than other datasets. The explana-

tion for this improvement difference is that the behavior

diversity varies in different datasets.



Figure 3: Performance on Short Sequence Instances.

4.3.1. Effectiveness of PAL for Short Sequences

Performance improvement on short behavior sequence is

critical for an augmentation paradigm. To further analyze

the advantages of PAL for short sequence, we reconstruct

the test set with all the behavior sequence shorter than 3

and evaluate all the baseline methods and our PAL and

PAL++. The results is presented in Figure 3. Improve-

ment on short sequence is a critical for an augmentation

paradigm. We can find that the PAL and PAL++ method

can significantly outperform the other sequential rec-

ommendation augmentation methods on all the datasets.

This result illustrate that the proposed learning method

can incorporate more contextual correlation information

into the short sequence augmentation.

4.4. Analysis on Backbone Model
The default backbone model of the SRA methods, i.e.,

ASReP, BiCAT, PAL, PAL++ in Section 4.3 is the basic

Transformer which is the same as in SASRec. All the SRA

methods can also be applied to all the Transformer-based

SR methods, such as SASRec, BERT4Rec and TiSASRec.

For TiSASRec, we ignore the temporal information in the

pretraining and sequence generating stages, and assign

the smallest timestamp in the original sequence for the

generated items. Here we report part of performance

(NDCG@5) comparison on “Beauty” dataset in Table 3.

According to the results, equipped with SRA methods,

the performance of all the backbone models are improved,

and the proposed PAL / PAL++ achieve the best results.

Please note the TiSASRec is outperformed by SASRec as

our current augmentation methods has not incorporated

the temporal information, which is a future work for

SRA.

Backbone SASRec BERT4Rec TiSASRec
Base 0.2884 0.3075 0.3076

ASReP 0.3465 0.3562 0.3427
BiCAT 0.3704 0.3746 0.3625

PAL 0.3873 0.3886 0.3771
PAL++ 0.3879 0.3886 0.3791

Table 3
NDCG@5 with Different Backbone Model

4.5. Analysis on Convergence Rate
One interesting finding is that the pseudo sequence gen-

erated by PAL can significantly improve the converge

rate of the finetuning stage in sequential recommenda-

tion augmentation. We depict the loss value during the

finetuning stage in Fig 4, where we can observe that

the PAL method can converge earlier than ASReP to

achieve a stable loss value. Similar results can be found

in other datasets. Due to the permutation learning objec-

tive, the PAL is of advantage in the generated data and

pretrained model, which lead to the improvement of the

convergence rate in the final finetuning stage.

(a) Beauty (b) Cell Phones (c) Sports

Figure 4: Illustration of Convergence Rate in Finetuning. The
x-axis is the epoch, and the y-axis is the loss value. The grey
line is for ASReP method, and the blue one is for PAL.
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