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Abstract
The field of natural language processing has reached breakthroughs with the advent of transformers. They have remained
state-of-the-art since then, and there also has been much research in analyzing, interpreting, and evaluating the attention
layers and the underlying embedding space. In addition to the self-attention layers, the feed-forward layers in the transformer
are a prominent architectural component. From extensive research, we observe that its role is under-explored. We focus on
the latent space, known as the Activation Space, that consists of the neuron activations from these feed-forward layers. In this
survey paper, we review interpretability methods that examine the learnings that occurred in this activation space. Since
there exists only limited research in this direction, we conduct a detailed examination of each work and point out potential
future directions of research. We hope our work provides a step towards strengthening activation space analysis.
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1. Introduction
Through thick and thin, there is evidence that trans-
formers have established itself as the state-of-the-art in
various Natural Language Processing (NLP) tasks since
their conception and realization in 2017. BERT, the most
well-known transformer language model [1], consists
of two major architectural components: self-attention
layers and feed-forward layers. Much work has been
done in analyzing the functions of self-attention layers
[2, 3, 4]. In our survey, we focus on interpretability of
the feed-forward layers. Each layer in the encoder and
decoder contains a fully connected position-wise feed-
forward network. The feed-forward network contains
two linear transformations with a rectified linear acti-
vation function. Even though existing works highlight
the importance of such feed-forward layers in transform-
ers [5, 6, 7], still, to date, the role of feed-forward layers
remains under-explored [8]. Our review focuses on the
research that uses interpretability methods to understand
the learnings in these feed-forward layers. We define the
latent space, that comprises of the activations extracted
from these layers, as the Activation Space. Many meth-
ods already exist for aggregating these representations
including the default Huggingface1 pipeline used in the
original BERT paper [9].

Several methods for explaining and interpreting deep
neural networks have been devised and we observe that
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much of the focus is in the domain of image process-
ing [10]. A challenge that exists is the gap between the
low-level features that the neural networks compute and
the high-level concepts that are human-understandable.
Furthermore, we observe that there have been relatively
fewer research methods applied in understanding the in-
ternal learnings of networks in comparison to analyzing
the functions of self-attention layers.

The core focus of our review is directed towards those
methods that unfold the learnings in the internal repre-
sentations of the neural network, i.e, we look at those
methods that answer the question: “What does the model
learn?” We further refine our focus on understanding
specifically the feed-forward layers in transformer mod-
els. The motivation for this study is two-fold:

• The inputs undergo a non-linear transformation
when passing through the activation functions in
the feed-forward layers of deep neural networks
[11].

• The parameters in the position-wise feed-forward
layers of the transformer account for two-thirds
of the total model’s parameters (8𝑑2 per layer, d is
the model’s hidden dimension). This also implies
that there is a considerable amount of computa-
tional budget involved in training these parame-
ters to achieve the state-of-the-art performance
they deliver today [12].

From recent research, the methods that focus on un-
derstanding the feed-forward layers show substantial
evidence that the feed-forward layer activation space
embeds useful information (see Section 5). We find that
the learnings in the feed-forward layer remain under-
explored. With our methodological survey, our objective
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Table 1
Major attributes of the methods explored in the activation space analysis methods

Method Properties NLP Tasks Quantitative Evalua-
tion

Qualitative Evalua-
tion

Linguistic Phe-
nomena [13, 14,
15, 16]

Word Morphology,
Lexical Semantics,
Sentence Length,
Parts-of-Speech

Parts-of-Speech,
Semantic and Syntax
Tagging and Pre-
diction, Syntactic
Chunking

Sensitivity, Prediction
Accuracy, Selectivity
Score

Human-expert visual
inspection of selected
neurons

Neural Mem-
ory Cells [12, 8]

Vocabulary Distri-
bution, Human-
Interpretable Patterns,
Factual Knowledge

Next Sequence Predic-
tion, Fill-in-the-blank
Cloze Task

Agreement Rate, Pre-
diction Probability, At-
tribution Score, Per-
plexity, Change and
Success Rate

Pattern search by hu-
man experts

Knowledge Illu-
sion [17]

Lexical, Geometric
Properties (Local
Semantic Coherence)

Next Sequence Predic-
tion

Projection Score, Acti-
vation Quantile, Word
Frequency Correlation

Human annotations
for patterns using
visualization

is to understand the internal mechanisms of transform-
ers by exploring the activation space of the feed-forward
network. Further, we consider this paper as a focused
starting point for facilitating future research in activation
space analysis. Finally, we also conduct a comparative
study of these methods, their evaluation techniques and
report our observations, understandings, and potential
future directions (see Section 7). Table 1 summarizes the
methods and its attributes that we have explored.

2. Related Surveys
As the interest in the Explainable Artificial intelligence
(XAI) field grows, various survey articles were published,
trying to consolidate and categorize the approaches. We
segregate the reviews into two categories: Surveys that
give a general overview of existing explainability meth-
ods [18, 19, 20, 21, 22] and surveys that focus on explain-
ability methods in the NLP domain. We narrow our sur-
veys to the NLP domain as this is the core focus of this
review paper.

A survey that acts as a prior to ours is from Belinkov
and Glass [23], where the authors review the various
analysis methods used to conduct novel and fine-grained
neural network interpretation and evaluation. The pri-
mary question that has been relevant while formulating
these interpretation methods is: What linguistic infor-
mation is captured in neural networks? The authors
emphasize three aspects of the language-specific analy-
sis, namely, methods used for conducting the analysis,
linguistic information sought, and neural network parts
investigated. They also identify several gaps and limita-
tions in the surveys.

Danilevsky et al. [24] presents a broader overview of
the state of XAI over a span of 7 years (until 2020), with a

focus on the NLP domain. This work focuses on outcome
explanation problems which help end users understand
the model’s operation and thereby build trust in these
NLP-based AI systems. Along with the high-level classi-
fication of explanations, the work introduces two addi-
tional aspects: techniques that derive the explanation and
techniques to present to the end user. The explainability
techniques are categorized into feature importance, sur-
rogate models, example-driven, provenance-based and
declarative induction. A set of operations such as first-
derivative salience, layer-wise relevance propagation, in-
put perturbations, attention mechanism, and Long-Short-
Term-Memory (LSTM) gating signal and explainability-
aware architectures enable explainability. An interesting
observation is the consideration of adding attention lay-
ers to neural network architectures as a strategy to enable
explanations.

The closest survey related to our work is from Sajjad
et al. [25], where the survey is on fine-grained neuron
analysis. While there have been two previous surveys
that cover Concept Analysis [26] and Attribution Analy-
sis [24], their focus is on analyzing individual neurons to
better understand the inner workings of neural networks.
They refer to this as Neuron Analysis and categorized
these reviewed methods into visualization, corpus-based,
neuron probing, and unsupervised methods. The work
further discusses findings and applications of neuron
interpretation and summarizes open issues.

We observe that, from the various existing surveys,
there are different dimensions to be considered. We nar-
row down our survey into the following dimensions:

• Analysis methods that focus on the internal inter-
pretation of the activation space.

• Linguistic Information such as parts-of-speech,
syntactic, semantic and Non-linguistics Informa-



tion such as sentence length, factual knowledge,
geometric properties.

• Neural network object neurons and its activations
as the Activation Space in the transformer lan-
guage model.

We believe that interpretability alone is not sufficient
in understanding the inner workings of the transform-
ers, we also need explainability to summarize the reason
for the model’s behaviour in a human-comprehensible
manner. One has to keep in mind that, explainability
and interpretability have distinguishable meanings [27]
and our review focuses only on interpretability methods
because the research works reviewed focus on the same.

3. Survey Methodology
Our survey aim to cover the advances in NLP XAI re-
search focusing on neuron interpretation. As defined ear-
lier, we define this latent dimension as Activation Space
and consider the reviewed techniques as Activation Space
Analysismethods. We filtered to thosemethods that work
at the feed-forward neuron-level, individual vs global,
within the transformer model. We identified relevant
papers published in NLP and AI conferences (AAAI, ACL,
IJCNLP, EMNLP) between 2018 and 2022. With the lim-
ited scope of neuron-level analysis, we arrived at seven
contemporary papers. With a limited number of work
in this direction, we decided to take a deeper look into
each of these methods, analyze its benefits, limitations,
and gaps and present this study as our review paper.
We are aware that this is an ongoing and relatively new
research field and our focus is extremely limited; we ac-
knowledge that we might have omitted certain papers.
We also assume that if the authors have focused on ex-
plainability, they are more likely to cover the relevant
related taxonomies, categories, and methods. Another
common observation is that explanations are generated
in an NLP task-oriented setting and remain relevant to
the task context. Even though we summarize the tasks
on which these researches are based, the task definitions
are not relevant in our review process of understanding
the activation space.

4. Taxonomies and Categorization
There still exists a reasonably vague understanding and
lack of concrete mathematical definition between the two
commonly used terms: explainability and interpretability.
Interpretability has been defined as ”the degree to which
a human can understand the cause of a decision” [28] or
the degree to which a human can consistently predict
the model’s result [29]. A broader definition exists for
the term interpretable machine learning as the extraction

of relevant knowledge from a machine-learning model
concerning relationships either contained in the data
or learned by the model. This definition rather focuses
on understanding what the model learns either from an
input-output mapping perspective or what the model
itself learns. On the other hand, explainability directs the
focus back to human understanding by examining the re-
lationship between input features and model predictions
in a human-understandable format [21].

After reviewing numerous relevant existing literature,
we observed that explainability techniques broadly fall
into three major classes. The first differentiates between
understanding a model’s individual prediction process
versus prediction process as a whole [24]. A second
differentiation is made in self-explaining or post-hoc
methods, where the former generates explanations along
with the model’s prediction process whereas the latter
requires post-processing of elements extracted during
the model prediction process. The third major distinc-
tion corresponds to methods that are model specific or
agnostic in nature. We also observed the existence of
various other categorizations like outcome-based expla-
nations, visual explanation methods, operations, and
conceptual vs attribution. Visualization methods play a
salient role in further understanding any interpretation
method [30, 31, 32, 33]. These methods are inherent to
interpretability and is been widely reviewed, we leave
this to the reader to explore the relevant literature.

5. Activation Space Analysis
Methods

There are two types of interpretability analysis that are
carried out in the related research work: 1) Analyze indi-
vidual neurons and 2) Analyze the entire set of neurons
of the feed-forward layer. We look into both approaches
from four perspectives: categorization, linguistic knowl-
edge sought for, methodology, and evaluations, and con-
duct a comparative analysis of these methods.

Linguistic Phenomena: Investigating the linguistic
phenomena that occurs within the activations of pre-
trained models, when trained for a specific task set, using
various interpretability analysis methods, is a common
way to interpret the features learned by these models.
The linguistic phenomenon refers to the presence of var-
ious linguistic features such as word morphology, lexical
semantics, syntax or linguistic knowledge such as parts-
of-speech, grammar, coreference, lemmas. Linguistic
Correlation Analysis (LCA) is one such method that fo-
cuses on understanding what the model learned about
linguistic features and determining those neurons that
explicitly focus on such phenomena. A toolkit with three
major methods, Individual Model Analysis, Cross-model
Analysis and LCA, to identify salient neurons within



the model or related to a task under consideration, is
presented by Dalvi et al. [13].

Probing using diagnostic classifiers to understand the
knowledge captured in neural representations is another
common method for associating model components with
linguistic properties [34, 35, 36]. This involves extracting
feature representations from the network and training
an auxiliary classifier to predict the linguistic property.
Layer-wise and neuron-level diagnostic classifiers that
probe representation from individual layers w.r.t linguis-
tic properties and find neurons that capture salient fea-
tures, respectively, are used to conduct analysis on pre-
trained models BERT, RoBERTa and XLNet [14]. The task
of predicting a certain linguistic property is defined. A
diagnostic classifier (logistic regression) is trained on gen-
erated activations, for both layer-wise and neuron-wise
probes, to predict the existence of this linguistic prop-
erty. An LCA is conducted to generate neuron ranking
based on weight distribution. Additionally, an elastic-net
regularization is fine-tuned using grid-search to balance
between focused and distributed neurons. The top N
salient neurons extracted from this ranked list are used to
retrain the classifier until an Oracle accuracy is achieved.

Durrani et al. [15] and Alammar [16] conducts sim-
ilar experiments, where the entire neuron activations
from the feed-forward layers are used to train an exter-
nal classifier. Durrani et al. [15] uses a probing classifier
(logistic regression) with the additional elastic-net regu-
larization to conduct a fine-grained neuron level analysis
on pre-trained models ELMo, T-ELMo, BERT, and XLNET.
This variance of models, in this study, covers different
modeling choices of the blocks, optimization objectives,
and model architectures. The case study conducted by
Alammar [16] uses probing the feed-forward neuron acti-
vations for Parts-of-Speech (POS) Information. A control
task is created where each token is assigned to a random
POS tag and a separate probe is trained on this control
set. This allows us to measure the difference in predic-
tion accuracy between the actual and control dataset,
selectivity score, thereby concluding if the probe really
extracts the POS information. The author collects exist-
ing methods that examines input saliency, hidden state
evolution, neuron activations, and non-negative matrix
factorization of neuron activations, along with dimen-
sionality reduction methods to extract patterns into an
open-source library known as Ecco [16]. These methods
can be directly employed on pre-trained models such as
GPT2, BERT, RoBERTa.

Neural Memory Cells: In the context of a neural net-
work with a recurrent attention model, Sukhbaatar et al.
[37] introduced input and output memory representa-
tions. A recent work extends this neural memory concept
and shows that the feed-forward layers in the transformer
models operate as key-value memories, where keys cor-
relate to specific human-interpretable input pattern sets

and simultaneously, values induce a distribution over
the output vocabulary [12]. The work analyzes these
memories present in the feed-forward layers and further
explores the function of these layers in transformer-based
language models.

A neural memory is defined as a key-value pair, where
each key value is a d-dimensional vector. The emula-
tion, mathematical similarity between feed-forward and
key-value neural memories, allows the hidden dimension
to be considered as number of memories in each layer
and the activations as vectors containing un-normalized
non-negative memory coefficients. Using this similarity,
the study posits that the key vectors act as pattern detec-
tors. This hypothesis is tested by looking for the highest
memory coefficient that is associated with the input text,
retrieving those input examples, and conducting human
evaluations to identify patterns. The study further ex-
plores intra-layer memory composition and inter-layer
prediction refinement.

The concept of knowledge neurons, neurons that ex-
press a fact, is introduced by Dai et al. [8]. The authors
propose a method to find the neurons that express facts
and how their activations correlate in expressing these
facts. The evaluations on pre-trained models for fill-in-
the-blank cloze tasks show that these models have the
ability to recall factual knowledge even without fine-
tuning. The work considers feed-forward layers as key-
value memories, hypothesize that these key-value mem-
ories store factual knowledge and proposes a knowledge
attribution method. The knowledge attribution method,
based on integrated gradients, evaluates the contribu-
tion of each neuron, in BERT-base-cased transformer, to
knowledge predictions by assigning them an attribution
score. Those neurons with a higher gradient i.e attribu-
tion score are identified as those contributing to factual
expressions. Further refinement of these neurons is done
under the hypothesis that there are chances that the same
fact can share the same set of true positive knowledge
neurons. This refinement allows in retaining only those
knowledge neurons that are shared by a certain percent-
age of input prompts.
Knowledge Illusion: Based on the generalization

of the hypothesis that concepts are encoded in the lin-
ear combinations of neural activations, Bolukbasi et al.
[17] describe a surprising phenomenon “interpretabil-
ity illusion”. Probing experiments conducted on BERT-
base-uncased model determines if individual neurons
contained human-interpretable meaning. The final layer
creates embeddings for four datasets (QQP, QNLI, Wiki,
and Books) and top 10 activating sentences for a neuron
are annotated to determine a pattern. Here a pattern is
defined as a single property such as sentence length or
lexical similarity shared by a set of sentences. By propos-
ing three sources: dataset idiosyncrasy, local semantic
coherence in BERT’s embedding space, and annotator



error, the authors explain this illusion. The same exper-
iment is repeated, by keeping a set of target neurons
constant, on various datasets to reveal the illusion as
described by the authors. The work further explores the
causes of this illusion by investigating local, global and
dataset-level concepts.

6. Evaluations
Linguistic Phenomena: A layer-wise probing is con-
ducted to understand the redistribution of linguistic
knowledge (syntactic chunking, POS, and semantic tag-
ging) when fine-tuned for downstream tasks [14]. Us-
ing this probing across three fine-tuned models BERT,
RoBERTa, and XLnet, on GLUE tasks and architectures
reveal the following observations: The morpho-syntactic
linguistic phenomenon that is preserved, post fine-tuning,
in the higher layers is dependent on the task; Different
architectures preserve linguistic information differently
post fine-tuning. The neuron-wise probing further re-
fines to the fine-grained neuron level, where the most
salient neurons are extracted and their distribution across
architecture and variations in downstream tasks are stud-
ied. An alignment of findings is found with Merchant
et al. [38], where the fine-tuning affects only the top layer.
In comparison with Mosbach et al. [39], which is focused
on sentence level probing, Durrani et al. [14] studies core-
linguistic phenomena. Additionally, their findings from
fine-grained neuron analysis extend the core-linguistic
task layer-wise analysis, along with fine-tuning effects
on these neurons. Another interesting observation made
is the different patterns that are entailed when these net-
works are pruned from top or bottom.

An ablation study conducted by Durrani et al. [15] on
the top salient neurons, from four pre-trained models
ELMo, T-ELMo, BERT, and XLNet, indicates higher distri-
bution of linguistic information across the network when
the underlying task is more complex (CCG supertagging),
revealing information redundancy. Further refined study,
considering only a minimal set of neurons, to identify
the network parts that predominantly capture the lin-
guistic information and understand the localization or
distribution of this information, indicate that the number
of neurons required to achieve the Oracle accuracy varies
and is dependent on the complexity of the task. By em-
ploying a selectivity score next to the prediction accuracy
score, and training separate POS probes for the actual
dataset and a control task, Alammar [16] observes that
the activation space encodes POS information at levels
comparable to BERT’s hidden states. The non-negative
matrix factorization method helps in identifying those
patterns in neuron activations that correspond to syn-
tactic and semantic properties of the input text. The
NeuroX toolkit is compared with the What-if tool from

Google, that inspects trained models based on predic-
tion and Seq2Seq-Vis [40], that can trace back prediction
decisions in Neural Machine Translation input models
[13].
Neural Memory Cells: Relating the patterns identi-

fied by human experts (NLP graduate students) to human
understanding, the patterns are classified as shallow or
semantic and are associated with lower layers and up-
per layers of a 16-layer transformer model, respectively
[8]. Further analysis of the corresponding values from
the key-value memories complements the patterns ob-
served in the respective keys. The agreement rate, the
fraction of memory cells that match the corresponding
keys and values, is seen to increase in higher layers. The
authors suggest that the memory cells in the higher lay-
ers contribute to the output whereas the lower layers
do not show such a clear key-value correlation to con-
tribute toward the output distribution of the next word.
A qualitative analysis, by manually analyzing a few ran-
dom cases, is conducted on the layer-wise distribution of
memory cells and how the model refines its prediction
from layer to layer using residual connections. The work
is an extension of Sukhbaatar et al. [37], which suggests
a theoretical similarity between feed-forward layers and
key-value memories. Additionally their observations, of
shallow feature encoding, confirms with recent findings
from Peters et al. [41], Jawahar et al. [42], Liu et al. [43].

The BERT-base-cased model is experimented with the
knowledge attribution, where activation value is consid-
ered as the attribution score for a neuron, to measure
neuron sensitivity towards input. Similar observations
to Geva et al. [12] and Tenney et al. [44] are identified:
fact-related neurons are distributed in the higher layers
of the transformer. Further, the authors investigate how
these neurons contribute to expressing the knowledge ei-
ther by suppressing or amplifying their activations. Two
additional use cases, updating facts and erasing relations,
are presented, where the authors demonstrate the poten-
tial application of these identified knowledge neurons.
Two evaluation metrics are used: change and success
rate for measuring fact updating and inter/intra-relation
perplexity for measuring the influence on other knowl-
edge. These evaluations indicate that changes in very
few neurons in the transformers can affect certain facts.
Erasing of facts is also measured using perplexity and
is observed that post fact erasing operation, i.e. setting
knowledge neuron to zero vectors, the perplexity of the
moved knowledge increased. The knowledge attribution
method, built on integrated gradients, is inspired by Hao
et al. [45] and Sundararajan et al. [46].

Knowledge Illusion: A qualitative evaluation is con-
ducted by annotating three sets of sentences for a neuron
in consideration: 1) top ten activating sentences for the
neuron, 2) top ten activating sentences in random direc-
tion and 3) ten random sentences [17]. The objective



of this annotation is to find patterns, where a pattern is
defined as a property shared by a set of sentences. A pat-
tern is considered as a proxy for a learned concept by the
model. For each neuron under consideration, an average
of 2.5 distinct patterns across four datasets are observed.
This illusion is further explored by studying the regions
of activation space the input data occupies, the influence
of top activating sentences on patterns from both local
semantic coherence and global directions, and annotation
error. Qualitative analysis is conducted through (UMAP
dimensionality reduction) visualization and it is observed
that sentences cluster in accordance with datasets. Addi-
tionally, the high accuracy of a Support Vector Machine
classifier distinguishes between these datasets and pro-
vides quantitative evidence for this observation. This
indicates the dependence of information encoded within
neurons on the idiosyncrasies of the natural language
datasets, even though they have similar activation values.
The analysis of global directions in BERT’s activation
space using activation quantiles helps in understanding
the correlation between word frequency change and its
monotonicity in each combination of datasets. This cor-
relation indicated that despite BERT’s illusionary effect,
there still exists meaningful global direction in its activa-
tion space. While comparing the observed illusions with
previous works, it is in alignment with Aharoni and Gold-
berg [47], where they demonstrate the usage of BERT
representations to disambiguate datasets. This explains
the existence of patterns in datasets, further experiments
are conducted to understand the cause of such pattern
existence.

We observe that all the methods that we reviewed so
far fall under the local interpretability methods and limit
themselves to the top N salient neurons (see Table 1).
From reviewing these studies, we observe dimensionality
reduction is required to understand the properties under
consideration. Dimensionality reduction is associated
with information loss and this loss is not accounted for
in these studies. Another observation is that the focus
of these studies alternates between identifying the neu-
rons that capture the relevant linguistic information and
those subsets of these neurons that affect the prediction
accuracy. Moreover, some interpretability methods are
evaluated through user studies (where users subjectively
evaluate the explanations), whereas others are evaluated
in terms of how they satisfy some properties, either quan-
titatively or qualitatively, without real users’ evaluations.
In the next section, we further discuss our observations
and present our insights and future detections.

7. Insights and Future Directions
A common observation that we see in the contempo-
rary general surveys and from our focused reviews is

the lack of both theoretical foundations and empirical
considerations in evaluations [25, 23, 24]. Even though
each method has quantitative measures for evaluation,
there is no standard set of metrics for comparing various
observations, hence, confining the scope of respective in-
terpretability technique results to specific model architec-
tures or task-related domains. Studies have proposed var-
ious desiderata for interpretable concepts such as Fidelity,
Diversity and Grounding [48] for qualitative consistency
Additionally, a few studies employ human experts for
qualitative analysis such as pattern annotation and iden-
tifications, but again lack a standard framework for a
comparative study and consistent explanations. More-
over, the subjective nature of interpretability and the lack
of existence of ground truth in qualitative analysis makes
it even more challenging to evaluate these methods.

By reviewing the above works, that focus on activation
space, we observe the following from the model perspec-
tive: For a fixed model architecture and when a fixed
set of neurons are examined, each set of neurons encode
different information, dependent on the input dataset;
On the contrary, when a wider set of model architectures
are considered, the same set of neurons encode similar
information at lower and higher layers across these ar-
chitectures but the information encoded is dependent on
the underlying task. These observations emphasize the
dependency on the input data and the underlying task
of interpreting the linguistic information encoded in the
activation space.

Experiments conducted align with the definition of
interpretability and explainability in understanding the
rationale behind the model’s decision but lack human
understandable explanations. In the context of ex-
plainability, we observe that there is a gap in human-
understandable linguistic concepts and linguistic features
captured in the network. We make a clear distinction be-
tween linguistic features and concepts: features consist
of linguistic properties such as parts-of-speech, syntactic
and semantic properties, and word morphology whereas
the linguistic concepts, from a human understandable
perspective, encode general human knowledge and how
it is expressed in natural language. Various contempo-
rary methods such as Concept Relevant Propagation [49],
Testing Concept Activation Vector [50], Integrated Con-
ceptual Sensitivity [51] that are based on human under-
standable local and global concept-based explanations
exist. These methods are applied and evaluated in the
image processing domain and are yet to be explored in
understanding linguistic concepts. It is evident that ex-
ploring activation space is a promising research direction
and we propose a potential future direction: extend the
interpretability techniques from image processing to the
natural language processing domain through transfer
learning.
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A. Evaluation Metrics Definitions
• Selectivity: The difference between linguistic task

accuracy and control task accuracy
• Prediction Accuracy: Performance measure of the

model on a given task
• Agreement Rate: The fraction of memory cells

(dimensions) where the value’s top prediction
matches the key’s top trigger example

• Value Probability: Probability of the values’ top
prediction

• Projection Score: The dot product between a sen-
tence embedding and a direction

• Activation Quantile: Equally sized smaller subsec-
tion of the activation space

• Word Frequency Correlation: The correlation be-
tween directions and words in the embedding
space

• Attribution Score: Measures the contribution of
the neuron to the factual expressions

• Perplexity: Measurement of how well a proba-
bility model predicts a sample, degree of ‘uncer-
tainty’ a model has in predicting

• Change Rate: The ratio that the original predic-
tion is modified to another

• Success Rate: The ratio that becomes learned
prediction the top predictions
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