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Abstract
Taxonomies are vehicles for thinking about what’s possible, for identifying unconsidered options, as well as for establishing
formal relations between entities. We identify several shortcomings in 10 existing taxonomies for interpretability methods
for explainable artificial intelligence (XAI), focusing on methods for deep neural networks. The shortcomings include
redundancies, incompleteness, and inconsistencies. We design a new taxonomy based on two orthogonal dimensions and
show how it can be used to derive results about entire classes of interpretability methods for deep neural networks.

Keywords
interpretability, taxonomy

1. Two Common Distinctions
Biological taxonomies provide a basis for conservation
and development and are used to generate interesting
questions about missing species [1, 2]. Inconsistent tax-
onomies can, at the same time, hinder research or lead in
the wrong direction [3, 4, 5]. In engineering, taxonomies
play additional roles: They are vehicles for thinking about
what’s possible, for identifying unconsidered options, as
well as for establishing formal relations between meth-
ods.

Several taxonomies of interpretability methods already
exist [6, 7, 8, 9, 10, 11, 12, 13]. These taxonomies provide
us with technical terms for distinguishing approaches to
interpretability and can be efficient tools for researchers
to contextualize their work. They generate interesting
research questions – e.g., if all methods in class A but no
methods in B happen to exhibit property X, it this by neces-
sity, or can we design a method in B with property X? – and
help us see relations between methods – e.g., two methods
in class A are mathematically equivalent. Unfortunately,
the taxonomies that exist, without exception, have short-
comings and are either redundant, incomplete, or incon-
sistent. In §2, we show this, examining the above 10 tax-
onomies, one by one, also discussing between-taxonomy
inconsistencies in how individual methods are classified.
In §2, we present a consistent taxonomy and establish var-
ious observations and results that apply to entire classes
of methods in our taxonomy. Contributions (a) We detect
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inadequacies in 10 interpretability taxonomies. (b) We
establish a simple, yet superior, two-dimensional taxon-
omy. (c) We derive six non-trivial observations or results
based on this taxonomy.
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[6] 4 � (�) (�) time, expertise
[7] 3 � � � � model-specific/model-agnostic
[8] 4 � � � � pre-model/in-model/post-model,

results
[9] 4 � � � � spec./agn., results
[10] 3 � � � types
[11] 3 � � � � � technique
[12] 3 � � � � methodology
[14] 1 � � grad./pert./ simpl.
[15] 1 � � att./rule/sum.
[13] 2 � � � � inst./approx./ attr./counterf.

Table 1
10 existing taxonomies and their shortcomings: Most distin-
guish local from global methods, and intrinsic from posthoc
methods. We argue the additional dimensions all lead to incon-
sistencies and/or redundancies, and that the intrinsic-posthoc
distinction is itself problematic.

The simplest taxonomies presented are one-
dimensional, i.e., simple groupings [14, 15]. Other
methods introduce up to four dimensions and use these
to cross-classify existing methods. The 10 taxonomies
are at most a couple of years old (2019-2021) and
discussed in chronological order. We first discuss two
common distinctions that are largely agreed upon: local-
global and intrinsic-posthoc. One of these distinctions,
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local-global, will be useful, while the other is problematic
in several respects. We define an interpretability method
ℳ(w, 𝑆) as a complex function that takes a model w
and a sample of token sequences 𝑆 ⊆ 𝒮 as input, and is
composed of three types of functions:

Definition 1.1 (Forward functions). Let
forward(w, 𝑆) return w(𝑓 (𝑆)) for all inputs 𝑠 ∈ 𝑆,
i.e., w1(𝑠), … ,w𝑛(𝑠) for 𝑛 layers, with 𝑓 ∶ 𝒮 ↦ 𝒮 a
function from input to input, e.g., perturb, delete, identity.

Definition 1.2 (Backward functions). Let
backward(w, 𝑆) return

𝑔(w−1, (forward(w, 𝑆)))

where 𝑔(⋅, ⋅) is a function that defines a backward pass of
gradients, relevance scores, etc., over the inverse modelw−1.

Definition 1.3 (Inductive functions). Let
induce(w, 𝑆) return a set of parameters v fitted by
minimizing an objective over w and 𝑆.

Examples of inductive functions include, for various loss
functions ℓ(⋅, ⋅): (a) probing [16], in which the objective
is of the form ℓ(v(𝑆), 𝑙(w𝑗(𝑆))) where w𝑗(𝑠) is the repre-
sentation of 𝑠 at the 𝑗the layer of w, and 𝑙 is the probe-
specific re-labeling function of samples; or (c) linear ap-
proximation [17], in which the objective is of the form
ℓ(v(𝑆),w(𝑆)), where v is a linear function.

Local and global explanations The distinction between
local and global interpretability methods is shared across
all the taxonomies discussed in this paper, and will also be
one of the two dimensions in the taxonomy we propose
below. The distinction is defined slightly differently by
different authors, As should be clear from the discussion
below, this is not equivalent to our definition, which uses
the reliance of global methods on samples, rather than
the reliance of local methods on specific instances, as
the distinguishing criterion. One argument against the
definition in [11] is that it is not entirely clear in what
sense global methods such as concept activation vectors
[18], for example, are independent of any particular input.
The function that provides us with explanations is global,
but of course its output depends on the input. or not
defined at all, e.g., [6], but here we present the definition
that our taxonomy below relies on: A method ℳ is said
to be global if and only if it includes at least one inductive
function. Otherwise ℳ is said to be local. Global meth-
ods typically require access to a representative sample of
data, to minimize their objectives, whereas local methods
are applicable to singleton samples.1 Challenge When

1Note that our definition does not refer to how the methods charac-
terize the models, e.g., whether they describe individual inferences,
or derive aggregate statistics that quantify ways the models are bi-
ased. This is to avoid a common source of confusion: Local methods

taxonomies have tried to classify interpretation methods
into local and global ones, in practice, some methods
have seemed harder to classify than others. Concept ac-
tivation approaches [18], for example, use joint global
training to learn mappings of individual examples into
local explanations. Contrastive interpretability methods
[20] provide explanations in terms of pair of examples. It
may also seem unclear whether a challenge dataset pro-
vides a local or global explanation. [10] discuss what they
call semi-local approaches, and [8] introduce a category
for interpretability methods that relate to groups of exam-
ples. Are there methods that are not easily categorized
as global or local? Answer Our definition of local-global
focuses on the induction of explanations from samples.
This focus enables unambiguous classification and leads
us to classify concept activation methods as global, since
the explanatory model component is induced from a sam-
ple (and relies on the representativity of this sample).
Similarly, we classify contrastive and group methods
as local methods, since they do not require induction
or assume representative samples; and, finally, we clas-
sify challenge datasets as local methods, since challenge
datasets also do not have to be representative.2

Intrinsic and post-hoc explanations This distinction,
also called active-passive in [10] and self-explaining-ad
hoc in [11], is between intrinsic methods that jointly out-
put explanations, and methods that derive these expla-
nations post-hoc using auxiliary techniques. While most
taxonomies introduce this distinction, we argue that it
is inherently problematic. Challenge The distinction
between intrinsic and posthoc methods can be hard to

can be used to derive aggregate statistics that characterize global
properties of models. LIME [19], for example, is mostly classified as
a local method ([12] classify it as both local and global), but in [19],
the authors explicitly discuss how LIME can be used on i.i.d. samples
to derive aggregate statistics that characterize model behavior on
distributions (same can be done for all local methods; see §3.6). Our
definition makes it clear that such methods are local; local methods
can be applied globally, whereas global methods cannot be applied
locally. It is also clear from our definition that the two classes of in-
terpretability methods are often motivated by different prototypical
applications: Local methods are often used to explain the motiva-
tion behind critical decisions, e.g., why a customer was assessed
as high-risk, why a traveling review was flagged as fraudulent, or
why a newspaper article was flagged as misleading, whereas global
methods are used to characterize biases in models and evaluate
their robustness.

2Examples of local methods include gradients [21, 22, 23], LRP
[24], deep Taylor decomposition [25], integrated gradients [26, 27],
DeepLift [28], direct interpretation of gate/attention weights [29],
attention roll-out and flow [30], word association norms and analo-
gies [31], time step dynamics [32], challenge datasets [33, 34, 35, 36],
local uptraining [19], and influence sketching and influence func-
tions [37]; examples of global methods include unstructured prun-
ing, lottery tickets, dynamic sparse training, binary networks,
sparse coding, gate and attention head pruning, correlation of rep-
resentations [38], clustering [39, 40, 41], probing classifiers [16],
concept activation [18], representer point selection [42], TracIn
[43], and uptraining [44].



maintain.3 Moreover, for a method to be posthoc means
different things to local and global methods. A post-
hoc, local method is post-hoc relative to a class inference
(in the case of classification); a post-hoc, global method
is post-hoc relative to training, introducing a disjoint
training phase for learning the interpretability functions.
Strictly speaking, the fact that ’post-hoc’ takes on two
disjoint meanings for local and global methods, namely
’post-inference’ and ’post-training’, makes taxonomies
that rely on both dimensions inconsistent.

2. Shortcomings of Taxonomies
We now briefly assess the 10 taxonomies, pointing out
the ways in which they are inconsistent, incomplete or
redundant:

Guidotti et al. (2018) [6] makes the local-global distinc-
tion, as well as two that relate to how explanations are
communicated (how much time the user is expected to
have to understand the model decisions, and how much
domain knowledge and technical experience the user is
expected to have). In addition to the terms local and
global, they also refer, synonymously, to outcome expla-
nation and model explanation. Later in their survey, [6]
make a fourth distinction that is very similar to intrinsic-
posthoc, namely between transparent design (leading to
intrinsically interpretable models) and (post-hoc) black
box inspection, but oddly, this is not seen as an orthogo-
nal dimension, but as two additional classes on par with
outcome and model explanation. Challenge How to
classify methods that are both, say, local and post-hoc,
i.e., do outcome explanation by black-box inspection? Ex-
amples would include gradients [21, 22, 23], layer-wise
relevance propagation [24], deep Taylor decomposition
[25], integrated gradients [26, 27], etc.

Adadi and Berrada (2019) [7] rely on the local-global
and intrinsic-posthoc distinctions (referring to the later
as complexity), and, as a third dimension, they distin-
guish between model-agnostic and model-specific inter-
pretability methods. Inconsistencies We argue that the
distinction between model-specific and model-agnostic
methods is suboptimal in that state-of-the-art models are
moving targets, and so is what counts as model-specific.
This may lead to inconsistencies over time. Challenge
How do we classify a method that applies to all known

3Consider the difference between the two global interpretability
methods, concept activation vectors and probing classifiers: CAV
are trained jointly, probing classifiers sequentially. These are ex-
tremes of a (curriculum) continuum, which is hard to binarize: If a
probing classifier is trained jointly with the last epoch of the model
training, is the method then intrinsic or posthoc? For a real example,
consider TracIn [43], in which influence functions are estimated
across various training check points. Again, is TracIn intrinsic or
posthoc? That the binary distinction covers a continuum, makes
the distinction hard to apply in practice.

methods, but not to all possible methods?
Carvalho et al. (2019) [8] introduce four dimensions in

their taxonomy: (a) scope, which coincides with the local-
global distinction; (b) intrinsic-posthoc; (c) pre-model, in-
model, and post-model, with in-model corresponding to
intrinsic methods, and post-model corresponding to post-
hoc methods, whereas pre-model comprises various ap-
proaches to data analysis. We argue below that (c) is both
redundant and inconsistent. Finally, they introduce (d) a
results dimension, which concerns the form of the expla-
nations provided by the methods. Inconsistencies In
addition to the inconsistency of intrinsic-posthoc, includ-
ing pre-model explanations leads to further taxonomic
inconsistency in that pre-model approaches cannot be
classified along the other dimensions in that they do not
refer to models at all. For the same reason, one might
argue they are not model interpretation methods in the
first place. Redundancies The redundancy of (c) fol-
lows from the observation that the distinction between
in-model and post-model explanations is identical to the
distinctionmade in (b), as well as the observation that pre-
model explanations do not refer to models at all. Chal-
lenge What is an intrinsic interpretability method that
presents post-model explanations, or a post-hoc inter-
pretability method that presents in-model explanations?

Molnar (2019) [9] distinguishes between local-global
and intrinsic-posthoc, between different results, and be-
tween model-specific and model-agnostic methods, mak-
ing their taxonomy very similar to [8]. Inconsistencies
See discussion of [7]. Also, the results dimension is also
inconsistent in that explanations can, simultaneously, be
intrinsically interpretable models and feature summary
statistics. LIME [19], for example, presents local explana-
tions as the linear coefficients of a linear fit, i.e., an intrin-
sically interpretable model that consists solely of feature
summary statistics. Redundancies The most important
redundancy is that all model-agnostic interpretability
methods are also post-hoc, since intrinsic methods re-
quire joint training, which in turn requires compatibility
with model architectures. Moreover, model-agnostic in-
terpretability methods are all grounded in input features
and thus lead to explanations in terms of feature sum-
mary statistics or visualizations. Moreover, all explana-
tions in terms of intrinsically interpretable models are,
quite obviously, intrinsic. ChallengeWhat is a post-hoc
interpretability method whose explanations are intrinsi-
cally interpretable models?

Zhang et al. (2020) [10] rely on these dimensions: (a)
global-local; (b) intrinsic-posthoc (which they call active-
passive; and (c) a distinction between four explanation
types, namely examples, attribution, hidden semantics, and
rules. Inconsistencies The explanation type dimension
in [10] conflates (a) the model components we are try-
ing to explain, and (b) what the explanations look like.
Hidden semantics, e.g., is a model component, whereas



examples and rules refer to the (syntactic) form of the
explanations. The distinction between hidden semantics
and attribution is also apparent. Hidden semantics can
be used to derive attribution (a results type in [8] and [9]),
e.g., in LSTMVis [45]; this is because hidden semantics is
not a type of explanation, but a model component. At-
tribution, examples, and rules are types of explanations,
but this list is not exhaustive, since explanations can also
be in terms of concepts, free texts, or visualizations, for
example. Challenge What is a passive interpretability
method that does not provide local explanations?

Danilevsky et al. (2020) [11] only distinguish between
global-local and intrinsic-posthoc (which they call self-
explaining and ad-hoc) methods. Inconsistencies [11]
say most attribution methods are global and ad-hoc. We
argue attributionmethods are necessarily local, andwhile
aggregate statistics can of course be computed across
real or synthetic corpora, little is gained by blurring tax-
onomies to reflect that. All local methods can be used
to compute summary statistics. Incompleteness [11]
admit their survey is biased toward local methods, and
many global interpretability methods are left uncovered.
Challenge What is a local interpretability method that
cannot be used to compute summary statistics?

Das et al. (2020) [12] distinguish between local and
global methods, gradient-based and perturbation-based
methods on the other (methodology), and intrinsic and
post-hoc methods (usage). Their taxonomy is both in-
complete and redundant: Incompleteness Several ap-
proaches are neither gradient-based or perturbation-
based. Redundancies All gradient-based approaches
are classified as post-hoc approaches in [12]; similarly,
all intrinsic methods are classified as global methods. Of
course these cells may be filled with methods that were
not covered, but in particular, it seems that gradient-
based approaches are, almost always, post-hoc? Chal-
lenge What is an intrinsic, gradient-based approach?

Atanasova et al. (2020) [14] distinguish between
three classes of interpretability methods: gradient-based,
perturbation-based, and simplification-based methods.
Inconsistencies The distinction between gradient-
based and perturbation-based methods is similar to [12],
but the two classifications are inconsistent, with [14]
citing LIME [19] as a simplification-based method. It
seems that the distinction between perturbation-based
and simplification-based methods is in itself inconsistent
in that both perturbations and gradients can be used to
simplify models; similarly, perturbations can be used to
baseline gradient-based approaches. Incompleteness
Clearly, not all interpretability methods are gradient-
based, perturbation-based or simplification-based: Other
methods are based on weight magnitudes, carefully de-
signed example templates, visualizing and quantifying at-
tention weights or gating mechanisms. Challenge How
would you classify attention roll-out [30], for example?

[6
]

[7
]

[8
]

[9
]

[1
0]

[1
1]

[1
2]

GradCAM L L-H L-H
DeepLift H L-H L-H

LRP L/G-H S-H L-I/H L/G-H
LIME L L-H L-H L L-H L-H L/G-H
TCAV G-I G-H G-H
IF L/G L-H

Forward Backward

Lo
ca
l Attention, Attention roll-out, Atten-

tion flow, Time step dynamics, Lo-
cal uptraining, Influence functions

Gradients, Layer-wise relevance
propagation, Deep Taylor decom-
position, Integrated gradients,
DeepLift

G
lo
ba

l Weight pruning, Correlation of rep-
resentations, Clustering, Probing
classifiers, Uptraining

Dynamic sparse training, Binary
networks, Sparse coding, Concept
activation, Gradient-based weight
pruning

Table 2
Left: 4/6 methods (bottom half) are classified incoherently
across taxonomies. Explanation: local (L), global (G), intrinsic
(I), and posthoc (H). Right: Our novel taxonomy.

Kotonya and Toni (2020) [15] distinguish between
attention-based explanations, explanations as rule discov-
ery, and explanations as summarization. Incomplete-
ness Using gating mechanisms to interpret models, e.g.,
does not fit any of the three categories. Inconsistencies
One class of methods is defined in terms of the model
components being interpreted (attention-based), and an-
other class in terms of the form of explanations they
provide (rule discovery and summarization). Mixing or-
thogonal dimensions is inconsistent, i.e., methods can
belong to several categories, e.g., attention head pruning
[46] (attention-based and summarization), or when rules
are induced from attention weights [47].

Chen et al. (2021) [13] introduce the global-local dis-
tinction, but not the intrinsic-posthoc distinction. In ad-
dition they distinguish between interpretability methods
that present explanations in terms of training instances,
approximations, feature attribution and counterfactuals.
Inconsistencies The second dimension again makes or-
thogonal distinctions. Approximations, for example, can
be used to attribute importance to features (LIME). In-
completeness Concepts, attention weights, gate activa-
tions, rules, etc., are not covered by the second dimension.
Redundancies All methods that present explanations in
terms of training instances are necessarily local. Chal-
lenge What’s a global interpretability method providing
explanations in terms of training instances?4

Inconsistent Classifications Table 2 shows that tax-

4Several of the above taxonomies include dimensions that pertain to
the form of the output of interpretation methods. We argue such
distinctions are orthogonal to the methods and should therefore not
be included in taxonomies. To see this, note that most interpretabil-
ity methods, e.g., LIME, can provide explanations of different form:
aggregate statistics, coefficients, rules, visualizations, etc.



onomies are not only internally inconsistent, but also
inconsistent in how they classify methods. Six methods
were mentioned by more than one survey, 4/6 of which
were classified differently.

3. A Novel Taxonomy and
Observations

Our taxonomy is two-dimensional: One is local-global,
the other a distinction between explanations based on for-
ward passes, and explanations based on backward passes.
The forward explanations correlate intermediate repre-
sentations or continuous or discrete output representa-
tions to obtain explanations, whereas backward expla-
nations concern training dynamics. We define forward-
backward:

Definition 3.1 (Forward-backward). A method ℳ is
said to be backward if it contains backward functions;
otherwise, ℳ is said to be forward.

Local backward methods include gradients [21, 22, 23],
integrated gradients [26, 27], layerwise relevance prop-
agation [48], DeepLIFT [28], and deep Taylor decompo-
sition [25], which all derive explanations for individual
instances from what is normally used as training signals,
typically based on derivatives of the loss function (gra-
dients) evaluating ℎ on training data, e.g., 𝑑(ℓ(ℎ(x𝑖), 𝑦𝑖)).
Global backward methods rely on such training signals
to modify or extend the model parameters w associated
with ℎ, typically extracting approximations, rules or vi-
sualizations.5

Observation 3.1. Local backward methods are always
attribution methods (presenting feature summary statis-
tics).

Since local methods have to provide explanations in terms
of input/output (as they do notmodifyweights), and since
backward passes do not generate output distributions,
they have to present explanations in terms of attribution
of relevance or gradients to input features or input seg-
ments. §3.1 is empirical. It follows naturally, but not
5Local forward methods either consider intermediate representa-
tions, e.g., gates [49], attention [29], attention flow [50], etc.; con-
tinuous output representations, e.g., using word association norms
[51] or word analogies [52, 53]; or discrete output, such as when
evaluating on challenge datasets [33, 34, 35, 36], or when approxi-
mating the model’s output distribution [19, 54, 37]. In the same way,
global forward methods can rely on intermediate representations in
forward passes, e.g., in attention head pruning [46], attention factor
analysis [55], syntactic decoding of attention heads [50], attention
head manipulation [56], etc.; continuous output in forward passes,
including work using clustering in the vector space to manually
analyze model representations [57, 58], probing classifiers [16], and
concept activation strategies [18]; or on discrete output, e.g., in
uptraining [44] and knowledge distillation [59].

necessarily, from the fact that backward methods reverse
the direction of connections, thus returning quantities
that hold for the input nodes. Pre-input quantities are
not interpretable.

Observation 3.2. Only global methods can be unfaithful.

§3.2 follows from the definition of faithfulness: ℳ is faith-
ful if the inductive functions of ℳ have ℓ(v, 𝑃) = 0 and
𝑆 ̃𝑃. ℳ can only be unfaithful with respective to inductive
component functions; local methods can therefore not
be unfaithful.6

Observation 3.3. Global methods can at best be epsilon-
faithful and only on i.i.d. instances.

§3.3 follows from the fact that standard learning theory
applies to the inductive component functions of global
interpretability methods. Since their faithfulness is the
inverse of the empirical risk of these inductions, it follows
that global methods can at best be 𝜖-faithful, with 𝜖 the ex-
pected loss of these inductions. Note that when the expla-
nation is a model approximation 𝜃′, 𝜖 = 𝔼[ℓ(𝜃(𝑥), 𝜃′(𝑥))].

Observation 3.4. Only forward methods are used for lo-
cal layer-wise analysis.

Since local backward methods are attribution methods
(§3.1), and layer-wise analysis concerns differences be-
tween layers, local backward methods cannot be used
here, simply because they only output attributions at the
input level. §3.4 thus follows from §3.1, making it, too,
an empirical observation, not a formal derivation.

Observation 3.5. No equivalence relations can hold
across the four categories of methods.

§3.5 follows from the disjointness of the three sets of com-
ponent functions, and how the four classes are defined,
i.e., that global functions cannot be local, and forward
functions cannot be backward. Equivalences between
methods have already been found [28, 26, 27, 60, 61], but
consistent taxonomic classification effectively prunes the
search space of possible equivalences.

Observation 3.6. Local methods can always characterize
models globally on i.i.d. samples.

§3.6 states that any local method that derives quantifies
for an example can be used to aggregate corpus-level
statistics for appropriate-level samples. See [19] for how
to do this with LIME. It should be easy to see how this
result generalizes to all other local methods.
6Local methods compute quantities based on forward or backward
passes, but these quantities are not induced to simulate anything.
Global methods induce parameters to simulate a distribution and
can be more or less faithful to this distribution, but since local
methods simply ’read off’ their quantities, they cannot be unfaithful.
Only, the quantities can be misinterpreted.



4. Conclusion
We examined 10 taxonomies of interpretability methods
and found all to be inconsistent. We introduces a two-
dimensional taxonomy and showed how it can be helpful
in deriving general observations and results.
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