=Paper=
{{Paper
|id=Vol-3324/om2022_preface
|storemode=property
|title=None
|pdfUrl=https://ceur-ws.org/Vol-3324/om2022_preface.pdf
|volume=Vol-3324
}}
==None==
Ontology Matching OM-2022 Proceedings of the ISWC Workshop Introduction Ontology matching1 is a key interoperability enabler for the semantic web, as well as a useful tactic in some classical data integration tasks dealing with the semantic heterogeneity problem. It takes ontologies as input and determines as output an alignment, that is, a set of correspondences between the semantically related entities of those ontologies. These correspondences can be used for various tasks, such as ontology merging, data interlinking, query answering or navigation over knowledge graphs. Thus, matching ontologies enables the knowledge and data expressed with the matched ontologies to interoperate. The workshop had three goals: • To bring together leaders from academia, industry and user institutions to assess how academic advances are addressing real-world requirements. The workshop strives to improve academic awareness of industrial and final user needs, and therefore, direct research towards those needs. Simultaneously, the workshop serves to inform industry and user representatives about existing research efforts that may meet their requirements. The workshop also investigated how the ontology matching technology is going to evolve. • To conduct an extensive and rigorous evaluation of ontology matching and instance matching (link discovery) approaches through the OAEI (Ontology Alignment Evaluation Initiative) 2022 campaign2 . • To examine similarities and differences from other, old, new and emerging, techniques and usages, such as process matching, web table matching or knowledge embeddings. The program committee selected 9 submissions for oral presentation and 4 submissions for poster presentation. 18 matching systems participated in this year’s OAEI campaign. Fur- ther information about the Ontology Matching workshop can be found at: http://om2022. ontologymatching.org/. 1 http://www.ontologymatching.org/ 2 http://oaei.ontologymatching.org/2022 Acknowledgments. We thank all members of the program committee, authors and local organizers for their efforts. We appreciate support from Trentino Digitale3 , the EU SEALS (Semantic Evaluation at Large Scale) project4 , the EU HOBBIT (Holistic Benchmarking of Big Linked Data) project5 , the MELT (Matching EvaLuation Toolkit) project6 , the Pistoia Alliance Ontologies Mapping project7 , IBM Research8 and SIRIUS Centre for Scalable Data Access9 . Pavel Shvaiko Jér^ome Euzenat Ernesto Jiménez-Ruiz Oktie Hassanzadeh Cássia Trojahn December 2022 3 www.trentinodigitale.it 4 www.seals-project.eu 5 https://project-hobbit.eu/challenges/om2020/ 6 https://dwslab.github.io/melt/ 7 www.pistoiaalliance.org/projects/current-projects/ontologies-mapping 8 research.ibm.com 9 https://www.mn.uio.no/sirius/ Organization Organizing Committee Pavel Shvaiko, Trentino Digitale SpA, Italy Jér^ome Euzenat, INRIA & University Grenoble Alpes, France Ernesto Jiménez-Ruiz, City, University of London, UK & SIRIUS, University of Oslo, Norway Oktie Hassanzadeh, IBM Research, USA Cássia Trojahn, IRIT, France Program Committee Alsayed Algergawy, Jena University, Germany Manuel Atencia, Universidad de Málaga, Spain Jiaoyan Chen, University of Oxford, UK Jér^ome David, University Grenoble Alpes & INRIA, France Gayo Diallo, University of Bordeaux, France Daniel Faria, INESC-ID & IST, University of Lisbon, Portugal Alfio Ferrara, University of Milan, Italy Marko Gulić, University of Rijeka, Croatia Wei Hu, Nanjing University, China Ryutaro Ichise, National Institute of Informatics, Japan Antoine Isaac, Vrije Universiteit Amsterdam & Europeana, Netherlands Naouel Karam, Fraunhofer, Germany Prodromos Kolyvakis, EPFL, Switzerland Patrick Lambrix, Linköpings Universitet, Sweden Oliver Lehmberg, University of Mannheim, Germany Fiona McNeill, University of Edinburgh, UK Majeed Mohammadi, Eindhoven University of Technology, Netherlands Hoa Ngo, CSIRO, Australia George Papadakis, University of Athens, Greece Henry Rosales-Méndez, University of Chile, Chile Booma Sowkarthiga, Microsoft, USA Kavitha Srinivas, IBM, USA Ludger van Elst, DFKI, Germany Xingsi Xue, Fujian University of Technology, China Ondřej Zamazal, Prague University of Economics, Czech Republic Songmao Zhang, Chinese Academy of Sciences, China Lu Zhou, TigerGraph, USA Table of Contents Long Technical Papers The impact of imbalanced class distribution on knowledge graphs matching Omaima Fallatah, Ziqi Zhang, Frank Hopfgartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Exploring Wasserstein distance across concept embeddings for ontology matching Yuan An, Alex Kalinowski, Jane Greenberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 LamAPI: a comprehensive tool for string-based entity retrieval with type-base filters Roberto Avogadro, Marco Cremaschi, Fabio D’Adda, Flavio De Paoli, Matteo Palmonari . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 BiodivTab: semantic table annotation benchmark construction, analysis, and new additions Nora Abdelmageed, Sirko Schindler, Birgitta König-Ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 An eye on representation learning in ontology matching Guilherme Sousa, Rinaldo Lima, Cássia Trojahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 A simple standard for ontological mappings 2022: updates of data model and outlook Nicolas Matentzoglu, Joe Flack, John Graybeal, Nomi L. Harris, Harshad B. Hegde, Charles T. Hoyt, Hyeongsik Kim, Sabrina Toro, Nicole Vasilevsky, Christopher J. Mungall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Short Technical Papers Too big to match: a strategy around matching tasks for large taxonomies Alsayed Algergawy, Naouel Karam, Amir Laadhar, Franck Michel . . . . . . . . . . . . . . . . . . . . . . . . 67 Self-learning ontological concept representation for searching and matching tasks Duy-Hoa Ngo, Bevan Koopman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Matching pharmacogenomic knowledge: particularities, results, and perspectives Pierre Monnin, Adrien Coulet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 OAEI Papers Results of the Ontology Alignment Evaluation Initiative 2022 Mina Abd Nikooie Pour, Alsayed Algergawy, Patrice Buche, Leyla J. Castro, Jiaoyan Chen, Hang Dong, Omaima Fallatah, Daniel Faria, Irini Fundulaki, Sven Hertling, Yuan He, Ian Horrocks, Martin Huschka, Liliana Ibanescu, Ernesto Jiménez-Ruiz, Naouel Karam, Amir Laadhar, Patrick Lambrix, Huanyu Li, Ying Li, Franck Michel, Engy Nasr, Heiko Paulheim, Catia Pesquita, Tzanina Saveta, Pavel Shvaiko, Cássia Trojahn, Chantelle Verhey, Mingfang Wu, Beyza Yaman, Ondřej Zamazal, Lu Zhou . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 ALIN results for OAEI 2022 Jomar da Silva, Kate Revoredo, Fernanda Baião, Cabral Lima . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 A-LIOn - alignment learning through inconsistency negatives of the aligned ontologies Sarah M. Alghamdi, Fernando Zhapa-Camacho, Robert Hoehndorf . . . . . . . . . . . . . . . . . . . . . . . 137 AMD results for OAEI 2022 Zhu Wang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 ATBox results for OAEI 2022 Sven Hertling, Heiko Paulheim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 Cross-lingual ontology matching with CIDER-LM: results for OAEI 2022 Javier Vela, Jorge Gracia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 DLinker results for OAEI 2022 Bill Happi, Géraud Fokou Pelap, Danai Symeonidou, Pierre Larmande . . . . . . . . . . . . . . . . . . . . 166 GraphMatcher: a graph representation learning approach for ontology matching Sefika Efeoglu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 KGMatcher+ results for OAEI 2022 Omaima Fallatah, Ziqi Zhang, Frank Hopfgartner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 LogMap family participation in the OAEI 2022 Ernesto Jiménez-Ruiz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 LSMatch and LSMatch-multilingual results for OAEI 2022 Abhisek Sharma, Archana Patel, Sarika Jain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Matcha and Matcha-DL results for OAEI 2022 Daniel Faria, Marta Contreiras Silva, Pedro Cotovio, Patrı́cia Eugénio, Catia Pesquita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 SEBMatcher results for OAEI 2022 Francis Gosselin, Amal Zouaq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 TOMATO: results of the 2022 OAEI evaluation campaign Philippe Roussille, Olivier Teste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 WomboCombo results for OAEI 2022 Peter Kardos, Zsolt Szántó, Richárd Farkas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Posters What should be the minimum requirements for making FAIR ontology alignments? Cássia Trojahn, Nicolas Matentzoglu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Towards a unified metadata model for semantic and data mappings Sarah Alzahrani, Declan O’Sullivan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Meta2KG: transforming metadata to knowledge graphs Nora Abdelmageed, Birgitta König-Ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Multifarm11 - extending the multifarm benchmark for Hindi language Abhisek Sharma, Sarika Jain, Cássia Trojahn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229