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Abstract  
The development of information technology in the modern world affects the public health 

sector on the one hand and accumulates enormous amounts of data on the other hand. The 

global COVID-19 pandemic has contributed to the digitalization of healthcare. Heart disease 

is a global problem that causes death worldwide. Therefore, this study proposes a model for 

determining the information content of signs of diagnostic data of heart diseases based on the 

cumulative frequency method. The software implementation of the model has been 

completed. A database of 303 patients, consisting of 14 attributes, was used for the 

experiments. As a result of the model's work, the features with the most significant 

information content were identified. The study is promising and can apply diagnostic models 

in public health practice. 
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1. Introduction 

Cardiovascular disease is the leading cause of adult death worldwide. Mortality reaches 30% of the 
total number of all deaths [1]. Cardiovascular diseases are congenital and acquired. The following are 
distinguished among cardiovascular diseases [2]: 

• Arterial hypertension. 

• Cardiac ischemia. 

• Acute coronary syndrome. 

• Heart disease. 

• Heart failure. 

• Arrhythmia. 

• Venous thrombosis. 

• Atherosclerosis. 
The main danger of cardiovascular disease is the disability or sudden death. The likelihood of such 

consequences increases when ignoring the signs of the disease. Among the main risk factors are [3]: 

• Smoking. 

• Alcohol abuse. 

• Lack of physical activity. 

• Unbalanced nutrition. 

• Stress. 
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Also, the causes of cardiovascular diseases include high blood pressure and diabetes. Therefore, 
early diagnosis is one of the most effective methods of preventing cardiovascular diseases. 

The COVID-19 pandemic has stimulated research in the field of data-driven medicine to solve 
various problems. These areas include modeling the epidemic process of infectious diseases [4, 5], the 

study of molecular structures [6], the study of social factors affecting the spread of disease [7], the 
study of the behavior of viruses [8], medical diagnostics [9], etc. 

However, the available data on the disease does not always allow the construction of high-quality 
models of automated medical diagnostics. 

This study aims to determine the information content of signs for the diagnosis of cardiovascular 
diseases using the cumulative frequency method. 

Given research is part of a complex intelligent information system for epidemiological diagnostics, 
the concept of which is discussed in [10]. 

2. Materials and Methods 
2.1. Features informativeness 

Often the data sets to be processed contain a large number of features. When building machine 
learning models, it is not always clear which of the features are important for it and which are 

redundant [11]. At the same time, the removal of redundant data allows a better understanding of the 
data, as well as reducing the time for setting up the model, improving its accuracy and facilitating 
interpretability. Often this is the most important task. Feature selection methods are divided into three 
types: 

• Filter methods. 

• Embedded methods. 

• Wrapped methods. 
The choice of the appropriate method is not obvious and depends on the data. 
In the field of data-driven medicine, it is possible to recognize the presence or absence of a disease 

only when certain signs inherent in the patient are received and analyzed. Such signs are called 

informative [12]. But informative features are not equivalent to achieve a specific goal, so 
determining their informativeness is an important task. 

Informativeness of a sign means how much this sign characterizes the state of the object, that is, 
how much the diagnosis depends on it - the result of recognition. At the same time, two approaches 
can be distinguished for determining the information content: energy and information. 

The energy approach is based on the fact that the information content is estimated by the value of 
the feature. However, this approach may be poorly suited for object recognition. If some attribute is 

large in absolute value, but almost the same for objects of different classes, then it is difficult to 
attribute the object to a certain class by the value of this attribute. And if the attribute is relatively 
small in size, but differs greatly for objects of different classes, then the object can be easily classified 
by its value. 

According to the informational approach, feature information is considered as a reliable difference 
between classes of images in the feature space. When classifying objects, such a significant difference 
can be the difference in the probability distributions of a feature built on samples from comparable 
classes.  

2.2. Cumulative frequency method 

The essence of the cumulative frequency method is that if there are two samples of a feature x 
belonging to two different classes, then for both samples in the same coordinate axes, there are 
empirical distributions of the feature x [13]. The cumulative frequencies are calculated, i.e. the sum of 
frequencies from the initial to the current distribution interval. In this case, the module of the 
maximum difference of the accumulated frequencies serves as an estimate of information content: 

𝐼(𝑥) = max
𝑗=0,..,𝑞

|𝑀1𝑗 −𝑀2𝑗|, (1) 



where M1j is the cumulative frequency for the j-th sampling interval A1; 
M2j is the cumulative frequency for the j-th sampling interval A2; 
q + 1 is the number of intervals. 
The cumulative frequency algorithm is shown in Figure 1. 

 

 
Figure 1: The algorithm of the cumulative frequency method. 

 



3. Results 

Experimental studies were carried out using the Python programming language. The open Heart 
Disease Cleveland dataset [14] was used for the analysis. The dataset contains data on 303 patients 

with 14 attributes. Attribute data is shown in Table 1. 
 

Table 1 
Description of the data 

Attribute Description 

Age Age in years 
Sex Sex (1=male; 0=female) 

Chest pain type 1: typical angina; 2: atypical 
angina; 3: non-anginal plan; 4: 

asymptomatic 
Blood pressure Resting blood pressure 

Cholesterol Serum cholesterol in mg/dl 
Fasting blood sugar < 120 1=trye; 2=false 

Resting ECG 0: normal; 1: having ST-T wave 
abnormality; 2: showing 
probable or definite left 

ventricular hypertrophy by 
Estes’ criteria 

Maximum heart rate Maximum heart rate achieved 
Angina Exercise included angina 

(1=yes; 0=no) 
Peak ST depression induced by 

exercise relative to rest 
Slope The slope of the peak exercise 

ST segment 
Colored vessels Number of major vessels (0-3) 

colored by flourosopy 
Thal 3=normal; 6=fixed defect; 

7=reversable defect 
Predicted attribute 0: <50% diameter narrowing; 

1: >50% diameter narrowing 

 
Data was distributed to two classes: “Healthy” and “Sick”. 
The results of informative features by cumulative features method are presented in Table 2. 
As a result, the information content was calculated for different groups of cardiological data. It 

was found that the following signs are the most informative: thal, chest pain type, colored vessels, 
angina, age. The cumulative frequency method is used to determine the information content of a 
feature involved in the recognition of two classes of objects. 

The use of an automated software package developed in the framework of this study allows its use 

at workplaces in medical institutions to support decision-making when making a diagnosis. An 
automated solution is especially relevant in conditions of limited resources in low- and middle-
income countries and during force majeure, such as war, natural disasters, and other conditions in 
which access to medical care is limited. 

 
 
 
 

 



Table 2 
Description of the data 

Attribute Result 

Age 19 
Sex -1 

Chest pain type 50 
Blood pressure 37 

Cholesterol 6 
Fasting blood sugar < 120 45 

Resting ECG 147 
Maximum heart rate 11 

Angina 99 
Peak 21 
Slope 142 

Colored vessels 66 
Thal 118 

 

4. Conclusions 

As a result of the study, an automated software package was used to determine the information 
content of the signs of these patients with suspected heart disease based on the accumulated frequency 
method. An open dataset of patients with suspected heart disease was used for experimental studies, 
which included 303 patients and 14 attributes. It was found that the following signs are the most 

informative: thal, chest pain type, colored vessels, angina, and age. 
The proposed software package is highly relevant in Russia's war in Ukraine, as it does not require 

high computing power. At the same time, automating a doctor's diagnosis and decision-making 
support in conditions of limited resources is an urgent task. 
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