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Abstract  
A task of time delay estimation for interferometric antennas for wideband signals embedded 
in Gaussian noise is classical. However, in practice, there are several factors that make its 
solving problematic including the non-Gaussian nature of the additive noise, low signal-to-
noise ratio, limited time of signal registration, source motion, restrictions imposed by the 
necessity to process data in real-time, and so on. In this paper, we consider possible 
approaches to providing efficient processing of signal/noise mixtures acquired by two sensors 
forming a stationary base within a limited time of data registration for signal-noise ratio 
about unity or smaller in the case of non-Gaussian noise with a priori knowledge on its 
statistical characteristics. In such conditions, not only quite large normal estimates are 
possible but also abnormal estimates (outliers) might be observed with high probability. This 
makes the task of signal source tracking extremely complicated. Thus, we concentrate on 
considering the approaches to decrease the probability of abnormal error occurrence rather 
than to reduce the variance of normal estimates. Peculiarities of wideband signals are 
discussed. Three possible approaches are studied. Their advantages and drawbacks are 
considered. The final recommendations are given.  
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1. Introduction 

The task of providing an accurate estimation of time delay appears in numerous applications 
including hydroacoustics (passive sonars) [1, 2], teleconferencing [3, 4], seismic data analysis [5], and 
others [6, 7]. Originally, the task was formulated as time delay estimation (TDE) or direction of 
arrival (DOA) estimation for two sensors with fixed and a priori known distance between or for an 
antenna array with fixed and known geometry for a point-like non-moving signal source where the 
signal spectrum is known in advance, signal-to-noise ratio (SNR) is considerably larger than unity, 
observation time is large enough, and noise is additive white Gaussian and independent for all sensors 
used [2, 8]. For such idealized conditions, methods of optimal signal processing were designed [2] 
and potential accuracy of TDE that depend on signal and noise power spectra and observation time 
was determined.  

However, it was understood many years ago that a few or several aforementioned assumptions 
could be violated and can be different depending on an application at hand. For example, for 
hydroacoustics, SNR can be low (smaller than unity), signal source can move, signal spectrum might 
change in time and be known only approximately. These obstacles result in necessity to carry out 
elementary processing for intervals of limited length [9] and non-zero probability of obtaining 
abnormal estimates of time delay and DOA [1]. This led to necessity to apply more complex methods 
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of joint estimation of TDE and its derivatives [10, 11]. The estimation of derivatives allows to 
perform tracking better especially if efficient and robust methods and algorithms are employed for 
this purpose [10]. The use of particle filtering results in more accurate time delay estimation as well 
[11].  

If accuracy of original elementary estimates of time delay is not accurate enough it is worth 
employing robust post-filtering of elementary time delay estimates [12]. This helps to improve 
tracking but under condition that probability of abnormal errors of TDE for elementary intervals is not 
too high. Otherwise, the tracking algorithm might fail and this can lead to undesired consequences 
[13]. The signal source can be “lost” and the process of its detection should be renewed.  

In teleconferencing, TDE used for speaker tracking has other peculiarities. First, a signal under 
interest (human speech) is non-stationary [14] and changes its spectrum more than for the 
hydroacoustic case. Recall here that standard Fourier-based methods of spectral analysis can be then 
replaced by modern methods of temporal-spectral analysis [14]. Second, speech contains pauses that 
might cause abnormal elementary estimates of time delay if a pause falls on an elementary interval of 
signal registration. Third, a source of a signal might move more unpredictably compared to the source 
motion in hydroacoustics.  

In other applications, there can be other peculiarities. However, one common specific feature is 
that noise statistical characteristics are non-Gaussian where the probability density function of the 
noise can be a priori unknown or change in time [15-17]. Impulsivity of the noise leads to necessity to 
apply special methods of signal detection [17] and, e.g., processing with fractional lower order 
moments [15]. Additive noise non-Gaussianity also leads to a radical reduction of TDE accuracy 
especially if the noise is intensive and impulsive (having heavy tails) [18]. Then, the task is to make 
signal processing robust to reduce the negative influence of the noise impulsivity.  

Thus, the goal of this paper is to consider approaches that provide appropriately fast and efficient 
data processing in TDE for an antenna consisting of two sensors spaced by a fixed and a priori known 
distance. Certainly, it is supposed that digital signal processing is performed where amplifiers that can 
be used as initial cascades have identical amplitude-frequency characteristics. The additional goal of 
this paper is to point out new directions of research in the field.  

2. Signal/Noise Model and Standard Approach to TDE 

We assume that one has two point-like (small dimension) sensors displaced by a distance L (in 
most applications, it is supposed that the antenna is positioned horizontally [1, 4]). The informative 
signal is supposed wideband and random. It can be almost stationary or locally stationary as in 
hydroacoustics or essentially non-stationary as in teleconferencing. In the latter case, some additional 
information on informative signal properties can be needed for TDE.  

We have carried statistical analysis of pause duration in a speech signal. Fig. 1,a shows an example 
of such a signal of duration 10 s with the total number of signal samples equal to 97000 with marked 
intervals of speech and pauses. It is possible to see that the signal has intervals of high and low 
intensity. If an elementary interval of signal processing (mean and variance estimation, spectral 
analysis, etc.) is less than pause duration, than the following types of intervals are possible: a) 
intervals of high intensity, b) intervals of low intensity (pauses), c) intervals of transition from high 
intensity to low one or vice versa.  

For signal/noise mixture processing for intervals that corresponds to pauses, obtaining of abnormal 
estimates of time delay (and DOA) for speech source is practically guaranteed. In the case of interval 
falling in the transition area, it is also quite possible to have abnormal errors or normal estimates with 
quite large deviations from a true value of time delay.  

Note that there are pause detectors for speech signals [19, 20]. An example of their operation is 
shown in Fig. 1,b. It is seen that pauses appear quite often. The pause detector offered at 
https://www.mathworks.com/help/audio/ref/voiceactivitydetector-system-object.html#d122e45905 
analyzes speech in fragments of duration about 30 ms. It has detected 127 blocks of the 
aforementioned size as pauses whilst 279 have been identified as signals. Thus, for 30 ms blocks, 
about 30% of them are identified as pauses where one can expect that estimation of time delay can be 
problematic in the sense of obtaining abnormal estimates. 

https://www.mathworks.com/help/audio/ref/voiceactivitydetector-system-object.html#d122e45905
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Figure 1: Speech signal with different fragments (a) and automatically detected speech and pause 
areas (b) 
 

To analyze the distribution of power in speech intervals of another (fixed) size, we have estimated 
variances of the considered wideband signal. The histograms are shown in Fig. 2 for two cases: a) 
observation intervals containing 1024 samples with a duration about 0.1 s; b) observation intervals of 
duration about 0.2 s that contain 2048 samples. It is seen that the distributions have slightly different 
properties. The first one corresponds to quite many intervals that have very low intensities (Fig. 2,a) 
and the distribution also has a heavy right hand tail. The second distribution has larger minimal values 
and smaller maximal values with the tendency to normalization.   
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Figure 2: Histograms of variance (signal power) estimates for intervals of the size 1024 samples (a) 
and 2048 samples (b) 
 

Let us also give some examples of signals for different types of intervals. Examples of speech 
signal realizations and Fourier spectra for them are given in Fig. 3 for low and high-intensity 
fragments. Although a few low frequency quasi-harmonic components concentrated in the limits from 
about 150 to 800 Hz are present in both spectra, the spectra are essentially different.  

Thus, there are sufficient differences in signal properties in passive sonar and teleconference 
applications. In the latter case, the signal component is more non-stationary, which can lead to a 
higher probability of elementary abnormal errors of TDE for the same mean SNR.  

Consider now additive noise properties. For sensors displaced by a rather large distance L (and this 
is needed to provide appropriately high accuracy of DOA estimation [2]), noise in sensors can be 
considered independent. Then, we have to be more interested in its statistical characteristics and the 
corresponding models. In this sense, quite many experiments have been conducted to establish the 
model and its parameters. Symmetric α-stable (SαS) distribution has been shown to be a good option 
[15, 16]. This distribution is described by two parameters that can be varied. The first parameter is 
αSαS, which is responsible for tail heaviness. A smaller αSαS corresponds to heavier tails where αSαS 
relates to standard Gaussian distribution. In practice, it is quite difficult to meet situations where αSαS 
< 1.2. However, the αSαS values of the order 1.4-1.8 are quite typical [15, 16]. The second parameter γ 
describes the data scale. Larger values of γ correspond to greater noise intensity. If one varies γ in 
simulations, this is equivalent to SNR variation. 
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Figure 3: Examples of speech realizations and spectra for them for low intensity fragment (a) and 
high intensity fragment (b)  

  
However, the SαS distribution used as the noise model has one drawback. Theoretically, the 

variance of such a noise is infinite [16]. This does not correspond to physical assumptions on the 
power of the noise that should be limited. Besides, this makes problematic the simulation of different 
SNRs that is usually employed in the analysis of TDE method performance. The only thing one can 
do in simulations based on the SαS distribution of the noise is to get dependences of the accuracy 
criteria as the variance of normal estimates or probability of abnormal estimates on different values of 
γ [18-20].  

Thus, we consider that two sensors receive the following mixtures of information wideband noise-
like (WNL) signal and additive noise:  

𝑥𝑥1(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝜉𝜉1(𝑡𝑡),    𝑥𝑥2(𝑡𝑡) = 𝑠𝑠(𝑡𝑡 − 𝜏𝜏0) + 𝜉𝜉2(𝑡𝑡)                           (1) 

where 𝑠𝑠(𝑡𝑡), t = [Tb; Te] is the WNL information signal (irradiated by a considered signal source); 
ξ1(t) and ξ2(t) are the noise realizations for the first and second sensors, respectively, 𝜏𝜏0 is the true 
delay value. The WNL signal mean is supposed to be equal to zero. Similarly, the means (more 
correctly, location parameters) of ξ1(t) and ξ2(t) are assumed equal to zeroes, too. The observation 
interval starting and ending time instances are denoted as Tb and Te where it is assumed that the 
maximal possible τ0 (which is determined by the distance between receivers and the speed of wave 
propagation in a given medium C as 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿/𝐶𝐶) is sufficiently smaller than Te − Tb. In turn, from 
the upper side, Te − Tb is restricted by source motion (angular) speed: Te − Tb should not be so large 
that the absolute value of 𝜏𝜏0(𝑇𝑇𝑒𝑒) − 𝜏𝜏0(𝑇𝑇𝑏𝑏) exceeds the main lobe width of autocorrelation function 
𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜏𝜏). Besides, in some implementations of data processing algorithms, it is desired to have such 



Te − Tb with taking into account the sampling rate ∆t that (Te − Tb)/ ∆t is equal to power of two (e.g., 
1024 or 2048 as in examples above and in some simulations below).  

A traditional approach to TDE in a Gaussian noise environment is to calculate cross-correlation 
function (CCF) 𝑌𝑌(𝜏𝜏) of a received signal, to find 𝜏𝜏 that corresponds to its global maximum and accept 
it as the estimate 𝜏̂𝜏 of time delay (that can be further used for estimation of DOA). Conventional 
expression for CCF (without normalization) is  

 

𝑌𝑌(𝜏𝜏) =  ∫ 𝑥𝑥1(𝑡𝑡)𝑥𝑥2(𝑡𝑡 + 𝑇𝑇/2
−𝑇𝑇/2 𝜏𝜏)𝑑𝑑𝑑𝑑    (2) 

 
where 𝑇𝑇 = 𝑇𝑇𝑒𝑒 − 𝑇𝑇𝑏𝑏. In fact, for a given application, it is enough to calculate 𝑌𝑌(𝜏𝜏) in the limits from 
−𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 to 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 that can accelerate calculations. Another conventional way to accelerate processing is 
to determine cross-spectrum as  
 

𝑆̇𝑆12(𝜔𝜔) =  𝑆̇𝑆1(𝜔𝜔)𝑆𝑆2∗(𝜔𝜔) 
 
where 𝑆̇𝑆1(𝜔𝜔) = 𝐹𝐹𝐹𝐹𝐹𝐹�𝑥𝑥1(𝑡𝑡)� and 𝑆̇𝑆2(𝜔𝜔) = 𝐹𝐹𝐹𝐹𝐹𝐹�𝑥𝑥2(𝑡𝑡)�, 𝜔𝜔 = 2π𝑓𝑓 is the cyclic frequency. FFT means 
fast Fourier transform that, under certain conditions as a rather large number of samples N being the 
power of two, allows calculating the cross-spectrum and the CCF estimate faster than directly where 
the CCF estimate is obtained as  

𝑌𝑌(𝜏𝜏) =  𝐹𝐹𝐹𝐹𝐹𝐹−1(𝑆̇𝑆12(𝜔𝜔)) 
 
where 𝐹𝐹𝐹𝐹𝐹𝐹−1  denotes inverse fast Fourier transform (FFT). Obviously, 𝑌𝑌(𝜏𝜏) = 𝑅𝑅𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜏𝜏 − 𝜏𝜏0) +
𝑛𝑛(𝜏𝜏)  where 𝑛𝑛(𝜏𝜏)  corresponds to the sum of ∫ 𝑆𝑆1(𝑡𝑡)𝜉𝜉2(𝑡𝑡 + 𝑇𝑇/2

−𝑇𝑇/2 𝜏𝜏)𝑑𝑑𝑑𝑑 , ∫ 𝜉𝜉1(𝑡𝑡)𝑆𝑆2(𝑡𝑡 + 𝑇𝑇/2
−𝑇𝑇/2 𝜏𝜏)𝑑𝑑𝑑𝑑 , and 

∫ 𝜉𝜉1(𝑡𝑡)𝜉𝜉2(𝑡𝑡 + 𝑇𝑇/2
−𝑇𝑇/2 𝜏𝜏)𝑑𝑑𝑑𝑑 that are all zero mean random functions containing no useful information on 
𝜏𝜏0 and preventing its accurate estimation.  

3. Possible approaches to accuracy improvement 

In this Section, we consider three approaches to the improvement of TDE accuracy for elementary 
intervals. It is supposed that if such elementary estimates are accurate, then it will be easier to provide 
robust tracking of the signal source by robust post-processing of the elementary estimate sequence.  

It is clear that if one obtains an estimate of 𝑆̇𝑆1(𝜔𝜔)  closer to 𝑆̇𝑆𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝜔𝜔) = 𝐹𝐹𝐹𝐹𝐹𝐹�𝑆𝑆(𝑡𝑡)�  than 
according to standard methodology, then the influence of 𝑛𝑛(𝜏𝜏) can be diminished and, thus, the 
accuracy of TDE can be improved. One way to do this [18] is based on the so-called robust forms of 
discrete Fourier transform [21, 22] (RDFT). The main assumption put in the basis of RDFT is that the 
complex-valued spectrum obtained by RDFT-method in discrete form can be written as 

 
𝑆̇𝑆𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) = 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) + 𝑗𝑗𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝),      (3) 

 
where Rrob(p) and Irob(p) are some robust (with respect to outliers or impulses in a considered 
signal/noise mixture) estimates of RE and IM components of the spectrum. The index p in (2) relates 
to a frequency fp where fp=pΔf, Δf=1/T; Rrob(p)=Rrob(fp), Irob(p)=Irob(fp).  

As it is known, the optimal DFT method for signals embedded in Gaussian noise averages 
x(n)·exp(-j2πfpnT)=x(n)·exp(-j2πpn/N) for each frequency: 

𝑋̇𝑋𝑆𝑆(𝑝𝑝) = 𝑋̇𝑋𝑆𝑆(𝑓𝑓𝑝𝑝) =
1
N
�𝑥𝑥(𝑛𝑛) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)
𝑁𝑁

𝑛𝑛=1

= mean{𝑥𝑥(𝑛𝑛) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)} = 

= mean{𝑅𝑅𝑅𝑅[𝑥𝑥(𝑛𝑛) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)]} + 𝑗𝑗mean{𝐼𝐼𝐼𝐼[𝑥𝑥(𝑛𝑛) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)]},  (4) 
 

Here Re[·] and Im[·] are, in general, operators that produce real and imaginary parts of a complex-
valued number, respectively. Instead of mean, these can be some robust operators (location 
estimators) if this provides certain benefits. Generally, the RDFT can be described as: 

 
𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) = 𝑇𝑇{𝑅𝑅𝑅𝑅[𝑥𝑥(𝑛𝑛) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)]}, 𝐼𝐼𝑟𝑟𝑟𝑟𝑟𝑟(𝑝𝑝) = 𝑇𝑇{𝐼𝐼𝐼𝐼[𝑥𝑥(𝑛𝑛) 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)]}   (4) 



 
where T{·} denotes a used robust estimator.  

Some robust estimators such as sample median or α-trimmed mean [23] are well known whilst 
other ones such as sample myriad and meridian [24] are almost unknown. Without going deeply into 
the theory and practice of robust estimation, let us formulate the requirement for robust estimation for 
the considered application. Here it is worth stating that there are no fast algorithms for processing 
based on RDFT in opposite to FFT. Thus, taking into account the necessity of real-time processing in 
the case of tracking a source of WNL signal, the use of robust estimators that require intensive 
computations (sample myriad or meridian, Wilcoxon estimate, bootstrap-based estimate) is limited.  

Another requirement deals with a priori knowledge of WNL signal spectrum and noise properties. 
Concerning the WNL signal spectrum, one might have some a priori information about it. For 
example, lower and upper cut-off frequencies can be known. The main sub-band of signal power 
concentration can be known as well. Concerning the additive noise, one might know α for the SαS 
distribution model (at least, approximately) or the range of its possible variation. If these 
characteristics are known in advance, it is possible to carry out preliminary simulations for the 
corresponding conditions and to choose the best robust estimator. Otherwise, one has to adapt to the 
situation at hand to perform some adaptive robust estimation or to provide robustness in the wide 
sense [23].  

To describe some details of this approach, let us give some results taken from [18] and consider 
the approach’s efficiency and its possible modifications in the future. Let us consider four robust 
estimators, namely standard median (the robust estimate of cross-spectrum obtained using it is 
denoted as 𝑆̇𝑆12𝑚𝑚𝑚𝑚𝑚𝑚(𝜔𝜔)  0), α-trimmed mean with αtr=0.25 ( 𝑆̇𝑆12𝛼𝛼𝛼𝛼𝛼𝛼(𝜔𝜔)), Hodges-Lehman estimate 
(𝑆̇𝑆12𝐻𝐻−𝐿𝐿(𝜔𝜔)) and the adaptive estimate based on switching between the Hodges-Lehman and median 
estimates based on distribution impulsivity estimation (𝑆̇𝑆12𝐻𝐻−𝐿𝐿(𝜔𝜔) , see the details in [18]). The 
reasons for such analysis and comparisons are the following. First, the mechanism of RDFT action is 
quite complicated and it is difficult to predict in advance what robust operator would provide the best 
results [22]. Second, the considered robust estimators possess different robustness where the median 
has the best ability to remove outliers (impulses) and the adaptive hard-switching operator is able to 
tune to the situation at hand (distribution of data to be processed).  

Here and below, we consider two quantitative criteria of the method efficiency. First, we calculate 
and analyze the probability of abnormal errors 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 equal to the ratio of abnormal estimates number 
to the total number of experiments (noise realizations considered). Depending on the method (data 
processing algorithm) computational efficiency, the total number of experiments is from 1000 to 
10000. Second, the variance of normal estimates (𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 ) is determined (sometimes we will analyze 
RMSE of estimates 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). An estimate is considered normal if it differs from the true value by no 
more than the main lobe half-width  𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚/2. Since the simulated WNL signal true spectrum is known 
in advance or can be estimated, 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚  can be determined in advance, too. Then, any time delay 
estimate in experiments can be referred to normal or abnormal.  

First, one has to be sure that the approach presuming the use of RDFT is able (at least, in some 
practical situations) to provide better accuracy than the standard approach to TDE. The results of the 
preliminary tests are presented in Figure 1. The informative WNL signal has been obtained from 
white Gaussian noise by linear low-pass filtering in such a manner that its upper cut-off frequency is 
five times smaller than the data sampling frequency (equal to 20 kHz, T is about 0.05 s)). WNL signal 
variance is fixed and equal to unity. Equivalent SNR has been varied by changing the parameter γ of 
the SαS noise.  

As one can see (Fig. 4,a), 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 increases if γ becomes larger, e.g., if SNR reduces. For a certain 
γ, saturation is achieved, 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 becomes approximately equal to 𝛿𝛿𝛿𝛿𝑚𝑚𝑚𝑚/3.5, this happens when 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 
exceeds 0.5 (Fig. 4,b), e.g. quite many abnormal errors are observed. The standard method (mean) 
produces the best accuracy (smaller 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 for the same γ), at least until the TDE starts to 
fail. Among two other variants, the one based on the α-trimmed version of the RDFT produces better 
performance than the version based on the median form of the RDFT. As one can see, the comparison 
of the method performance according to 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 (Fig. 4,b) leads to the same conclusions. The values 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 tend to saturation if γ increases although 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 1 is never attained (see also the dependencies 
below). 



Consider now a more realistic case of α not equal to 2. Fig. 5 presents the dependences like in Fig. 
4 but for α = 1.8. 
 
 

γ γ 
a                                                                                b  

Figure 4: Dependences of 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (a) and 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 (b) on γ for the standard approach (mean) and two 
variants of RDFT-based approach exploiting median (med) and α-trimmed mean (atrim) estimators 
for α=2 (Gaussian noise) 

   
As it is seen, in this case, the standard method occurs to be the worst. It produces the largest 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

and 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 for the same small γ and reaches saturation for the smallest γ. Meanwhile, signal processing 
methods based on robust DFT forms produce sufficiently better results where the α-trimmed form is 
more efficient than the median form. The presented results allow concluding that it is worth 
considering different forms of RDFT-based processing for the considered application. It is also clear 
that more attention has to be paid to the analysis of dependencies of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ since the reduction of 
𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is more important than decreasing normal estimate variance.  

  

γ γ 
a                                                                                b 

Figure 5: Dependences of 𝜎𝜎𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (a) and 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 (b) on γ for the standard approach (mean) and two 
variants of RDFT-based approach exploiting median (med) and α-trimmed mean (atrim) estimators 
for α=1.8 (heavy-tailed noise)  
 

So, let us present the results obtained for the same test signal but for the four versions of the 
RDFT-based processing. The data for α=2 (Gaussian noise) are given in Fig. 6. The results for the 
standard approach and the RDFT-based version for median and α-trimmed estimators are practically 



the same as in Fig. 4,b. But we are more interested in two other estimators. They produce practically 
the same results, which are better than for the median form but slightly worse than for the α-trimmed 
form of RDFT-based processing. All other tendencies are the same as earlier, i.e. the plots tend to 
saturation (𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 close to unity) if γ increases.  
 

 
Figure 6: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ for the standard approach (mean) and four variants of RDFT-
based approaches exploiting median (med), α-trimmed mean (atrim), Hodges-Lehman (H-L), and 
adaptive (ad) estimators for α=2 (Gaussian noise) 

 
Let us look what happens if α is smaller than 2, i.e. if noise is impulsive. For α=1.8 (Fig. 7,a), the 

performance of the standard approach is the worst, and the median form of RDFT performs only 
slightly better. The processing based on other robust forms of DFT clearly outperforms the latter two 
methods where the best results are provided by the adaptive form of the RDFT.  

The situation is, in some sense, different for α=1.6 (Fig. 7,b). The standard approach produces the 
worst results as in the previous case, but the median form of RDFT starts to outperform the α-trimmed 
form. The reason is, probably, in higher robustness of the median form. As in the previous case, the 
best results are provided by the adaptive form of RDFT. Recall here that α=1.6 is considered to be 
typical for hydroacoustic and atmospheric noises.  
 

  
a                                                                                b 

Figure 7: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎   on γ for the standard approach (mean) and four variants of RDFT-
based approaches exploiting median (med), α-trimmed mean (atrim), Hodges-Lehman (H-L), and 
adaptive (ad) estimators for α=1.8 (a) and α=1.6 (b), heavy-tailed noise in both cases 
 

Consider now the cases of heavier tail noises. Fig. 8 presents the plots for α=1.4 and α=1.2. For 
α=1.4 (Fig. 8,a), the standard approach fails for very small γ. The α-trimmed form of RDFT performs 
slightly better but its robustness is not high enough. Again, the adaptive and Hodges-Lehman forms of 
RDFT provide the best results. For α=1.2 (Fig. 8,b), the standard approach produces large 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 for 
very small γ (note that the considered γ values are in this case smaller than in previous cases). The α-



trimmed form of RDFT performs better. However, other forms produce even better results and there 
are no abnormal errors of TDE for all three forms for the considered range of γ variation. Thus, 
summarizing the obtained results, it is possible to state that the adaptive robust form of RDFT-base 
processing proposed in [18] provides the best or almost the best results for a wide range of noise 
impulsivity variation and, thus, it can be recommended for practical use.  
 

 
a                                                                                b 

Figure 8: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ for the standard approach (mean) and four variants of RDFT-
based approaches exploiting the median (med), α-trimmed mean (atrim), Hodges-Lehman (H-L), and 
adaptive (ad) estimators for α=1.4 (a) and α=1.2 (b), heavy-tailed noise in both cases  
 

It is worth mentioning the drawbacks of the RDFT-based approach and the directions of its further 
development. The main drawback is that its computational efficiency is sufficiently worse compared 
to the standard approach where 𝑆̇𝑆1(𝜔𝜔) = 𝐹𝐹𝐹𝐹𝐹𝐹�𝑥𝑥1(𝑡𝑡)� and 𝑆̇𝑆2(𝜔𝜔) = 𝐹𝐹𝐹𝐹𝐹𝐹�𝑥𝑥2(𝑡𝑡)� . RDFT does not 
allow using FFT, it also requires accomplishing a lot of sorting operations for data samples of a rather 
large size (if N=1024, then one needs 1024 sortings for data samples of the size N=1024 for real 
component data and the same for imaginary component data for the median and α-trimmed forms of 
RDFT; for more complex forms even more operations are needed). Thus, it is desired to find more 
computationally efficient approaches to signal processing. Concerning directions of further studies, it 
is possible to try using RDFT instead of FFT at the stage of obtaining the estimate of CCF from cross-
spectrum. Besides, it is possible to apply RDFT at both stages of obtaining the estimate of cross-
spectrum as well as obtaining the CCF estimate from cross-spectrum.  

Keeping in mind the aforementioned drawbacks of the RDFT-based approach, consider two other 
possible approaches. Let us suppose that the main structure of the signal processing algorithm remains 
the same, i.e. the cross-spectrum estimate is obtained using to FFTs and the CCF estimate is derived 
using inverse FFT. Meanwhile, improvements are due to signal/mixture pre-processing (pre-filtering) 
before applying FFT.  

The goal of such pre-filtering is to remove non-Gaussian noise as efficiently as possible with 
preserving the informative WNL signal. The task of denoising a signal embedded in non-Gaussian 
noise is a standard one and quite many approaches based on scanning window nonlinear filtering have 
been already proposed and tested [25, 26]. They have been mainly designed to preserve sharp 
transitions in signals as, e.g., step or ramp edges. The main advantage of this group of techniques is 
that they are able to remove impulsive and mixed noise. Later, more advanced methods applicable to 
electrocardiogram and audio signal denoising have been proposed (let us mention [27, 28] to name a 
few). They are more based on orthogonal transforms as discrete cosine transform (DCT) and 
wavelets. Different combined approaches exploiting the impulse removal ability of scanning window 
nonlinear filters and the Gaussian noise removal ability of transform-based filters have been 
developed as well.  

For the considered application, our desire [19] was not to develop new advanced methods but to 
exploit the positive features of the already existing filters. Our idea is that some one-dimensional 
robust scanning window filter removes “obvious” impulses whilst the DCT-based filter (with settings 
adjusted to residual noise) suppresses the additive noise that is quasi-Gaussian. Then, we have several 



tasks to be solved: 1) what robust filter and with what parameters to choose? 2) how to choose (set) 
parameters of the DCT-based filter? 3) what improvement (reduction) in processing efficiency can be 
gained due to such a pre-filtering?  

First of all, let us give some examples of noisy signal pre-processing. Fig. 9,a shows the example 
of the WNL signal fragment for Gaussian noise (taken from [19]). Comparing the two upper plots, it 
is seen that additive white Gaussian noise which is quite intensive (γ=1) considerably masks the WNL 
signal. The center-weighted median filter (scanning window size is equal to 7, the center weight is 
equal to 3) partly removes noise (see the third plot in the column) but introduces specific distortions. 
In turn, the DCT-based filter (the fourth plot in the column) has smoothed the peaks but the 
information signal occurred to be smeared as well. This always happens in signal/image denoising 
that, alongside with positive effect of noise removal, the negative effect of detail smearing takes 
place. The main aspect concerns the degree of positive and negative effects and attaining the possible 
trade-off.  

Fig. 9,b demonstrates the case of WNL signal corrupted by SαS noise with α=1.4. It is seen well 
that the noise absolutely masks the informative signal (pay attention that the scales for two upper plots 
differ sufficiently). Peak amplitude values in the second plot are by about ten times larger than in the 
first plot. The center-weighted median filter removes the most obvious impulses but introduces 
specific distortions. The DCT filter additionally removes noise. The final denoised signal (the lower 
plot) is still “far away” from the noise-free WNL signal (the upper plot), but there is much less noise 
than in the original noisy signal.  

Recall that we are more interested in the indirect influence of the pre-filtering on TDE accuracy 
than in the traditional analysis of denoising efficiency. Hence, let us present some results. Two 
versions of DCT-based denoising have been tested. For the first version, the threshold Thr has been 
set as 2.7𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 where 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 is the estimate of residual noise standard deviation (according to traditional 
recommendation on threshold setting in DCT-based filtering) whilst, for the second version, the 
threshold has been set as Thr=2𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 to improve detail preservation ability.  

 

 
a                                                                                b 

Figure 9: Illustrations of noise pre-filtering for α=2.0 (a) and α=1.4 (b)  
 

Figure 10, a shows the results for the same signal/noise model as earlier for α=2.0. One can 
compare these plots to the plots in Fig. 4,b and see that pre-filtering leads to reduction of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 . 



Among three considered versions off pre-filtering, the sequential application of the center weighted 
median filter and DCT with Thr=2.7𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟 produces, on average, the best results.  

 

 
a                                                                         b  

Figure 10: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ for three variants of data processing with pre-filtering by 
center-weighted median filter (cwmf) and two-stage denoising (cwmf+dct) for α=2.0 (a) and α=1.8 
(b) 
 

The plots for α=1.8 are represented in Fig. 10,b. They can be compared to the plots in Fig. 5,b. As 
one can see, e.g., for γ=4 or 5, the data processing based on signal pre-filtering provides sufficiently 
less 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 than the standard procedure and less 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 than data processing by the α-trimmed form of 
RDFT. Additional removal of residual noise by the DCT-based filter (Fig. 10,b) produces certain 
benefits compared to the use of only center weighted median filter, especially for large γ.  

Fig. 11 gives the results for α=1.6 and α=1.4. They can be compared to the plots in Figures 7,b and 
8,a. As one can see, the efficiency for the pre-filtering-based approach for α=1.6 is higher than for the 
best RDFT-based method (Fig. 7,b, consider, e.g., the data for γ=4). Post-filtering by the DCT-based 
denoiser produces a certain benefit compared to pre-processing by only the center-weighted median 
filter but this benefit (reduction of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎) is not large. Comparison of the plots in Fig. 11,b to the plots 
in Fig. 8,a show that the pre-filtering-based approach performs sufficiently better than the best RDFT-
based approach (analyze the 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 values for, e.g., γ=3). Additional denoising by the DCT-based filter 
produces certain improvements in accuracy although they are not large.  

Among the three considered versions of pre-processing the mixture of signal and noise, the 
simplest version presuming the use of the center-weighted median filter is slightly less efficient in the 
sense of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 compared to the two-stage processing, but it requires considerably fewer computations.  

Data processing by the center-weighted median filter is very fast while DCT-based denoising 
requires not only just DCT-based filtering (which is rather fast) but also blind estimation of residual 
noise standard deviation, which requires efforts comparable to filtering. Keeping this in mind, we can 
recommend using only the center-weighted median filter for signal pre-processing. 

Consider now one more possible approach to TDE. Let us rewrite the expression (2) for CCF as  
 

𝐸𝐸1 + 𝐸𝐸2 − 2𝑌𝑌(𝜏𝜏) = ∫ (𝑥𝑥1
2(𝑡𝑡) − 2𝑥𝑥1𝑥𝑥2(𝑡𝑡 +  𝜏𝜏) + 

𝑇𝑇
2
−𝑇𝑇2

𝑥𝑥22(𝑡𝑡 +  𝜏𝜏))𝑑𝑑𝑑𝑑  (3) 

where 𝐸𝐸1 =  ∫ 𝑥𝑥12(𝑡𝑡) 𝑇𝑇/2
−𝑇𝑇/2 𝑑𝑑𝑑𝑑 and 𝐸𝐸2 =  ∫ 𝑥𝑥22(𝑡𝑡 +  𝜏𝜏) 𝑇𝑇/2

−𝑇𝑇/2 𝑑𝑑𝑑𝑑  are the energies of 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡)  in 
the first and second channels, respectively [20]. One can assume that 𝐸𝐸1 and 𝐸𝐸2 are almost constant if 
WNL signal and noises are stationary.  
 



 
a                                                                         b  

Figure 11: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ for three variants of data processing with pre-filtering by 
center weighted median filter (cwmf) and two-stage denoising (cwmf+dct) for α=1.6 (a) and α=1.4 
(b) 
 

Hence, instead of searching for the global maximum of (2), it is possible to find the global 
minimum of Euclidian distance (3) [29] between the sampled received signals 𝑥𝑥1(𝑡𝑡) and 𝑥𝑥2(𝑡𝑡 +  𝜏𝜏). 
In other words, for signals 𝑥𝑥1(𝑖𝑖), 𝑖𝑖 = 1, … , 𝑁𝑁 and 𝑥𝑥2(𝑖𝑖 + 𝑗𝑗), 𝑖𝑖 = 1, … ,𝑁𝑁, one needs to calculate the 
similarity measure 𝑆𝑆(𝑗𝑗), 𝑖𝑖 = −𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, … , 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑗𝑗𝑚𝑚𝑚𝑚𝑚𝑚∆𝑡𝑡 = ∆𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿/𝐶𝐶.  

Meanwhile, the Euclidian distance 𝑆𝑆𝐸𝐸(𝑗𝑗) =  𝛴𝛴(𝑥𝑥1(𝑖𝑖) − 𝑥𝑥2(𝑖𝑖 + 𝑗𝑗))2 (dealing with L2 norm where 
the summation is carried out for all available i in a circular manner) is known to be not robust with 
respect to outliers. If outliers are possible, it is usually replaced by more robust similarity measures 
[29]. Thus, it was possible to try different other norms for the considered application with an attempt 
to find more powerful solutions [20]. 

In a general form, the similarity function for mutually shifted received mixtures can be written as 
 

 𝑆𝑆𝛽𝛽(𝑗𝑗) =  𝛴𝛴|𝑥𝑥1(𝑖𝑖) − 𝑥𝑥2(𝑖𝑖 + 𝑗𝑗) |𝛽𝛽,                (4) 
 

where β denotes the power (that can be any positive value). Let us consider the cases of β equal to 0.5 
1.0, and 1.5 under the assumption that some of these three values can be close to a quasi-optimal for 
given characteristics of a signal and noise. We consider 𝛽𝛽 values smaller than 2 since our focus is on 
heavy tail noise. 

As in the previous cases, the variance of WNL signal has been fixed and equal to 1.0. Meanwhile, 
its spectral properties were slightly other than in previous cases. To get the WNL signal, AWGN has 
been passed through the low pass filter in such a way that WNL signal upper frequency occurred to be 
about three times smaller than the Nyquist frequency (again equal to 20 kHz). This was done to check 
does the method work well enough for the test signal, which is slightly different from the model data 
used earlier.  

The dependences Pabn(γ) (given in %) are represented in Fig. 12. Here the following notations are 
used: the Fourier approach means conventional approach and New approach relates to the use of (4), 
if β is equal to 0.5 or 1.5, it is marked at plots. It is seen that the approach (4) outperforms the 
standard approach if β is equal to 1.0 or 1.5 even for Gaussian noise (α=2.0, Fig. 12,a). If α=1.8, the 
standard method fails even for very small values of γ. The results for the method (4) are considerably 
better and they are approximately the same for all three considered values of β.  

It is impossible to compare the plots in Fig. 12 to the previously analyzed dependences since the 
signal properties are other. Meanwhile, it is possible to compare the results from [20] to the plots 
presented above since the signal with the upper frequency 4 kHz was used in [20]. The comparison 
shows that the approach (4) for β=1 performs slightly worse than the approach based on pre-filtering. 
The same holds for α=1.8.  

Consider now the plots for α=1.6 and α=1.4 given in Fig. 13, a and 13,b, respectively. Obviously, 
approach (4) outperforms the standard approach that fails even for small γ. It is also interesting that 



the use of β=0.5 or 1.0 produces better results than the use of β=1.5. This means that for noise with 
heavier tails one has to use a smaller β in (4).  

The “fixed” option in the case of unknown α (which is within the considered range of its variation) 
could be to use β=1.0, but if one knows or can estimate α, an adaptive setting of β seems possible and 
reasonable. However, such studies have not been done yet and this is one possible direction for further 
studies. Besides, other similarity measures can be used and, maybe, some of them can be better (more 
efficient) than the already considered ones. 
 

 
a                                                                         b  

Figure 12: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ for four variants of data processing for α=2.0 (a) and α=1.8 (b) 
 

Comparison of data in [20] obtained for the signal with the upper frequency 4 kHz to the pre-
filtering-based approach shows that the method (4) is slightly less efficient. Meanwhile, the approach 
(4) has an obvious advantage that deals with high computational efficiency since it is based on simple 
arithmetic operations (no sorting is needed compared to two previous approaches).   
 

 
Figure 13: Dependences of 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 on γ for four variants of data processing for α=1.6 (a) and α=1.4 (b) 

4. Conclusions 

The task of TDE is considered for the case of non-Gaussian environment, which is quite typical for 
several important applications. The restrictions typical for these applications are discussed. The signal 
and noise peculiarities are mentioned showing that the task is complicated even for the simplest 
configuration of receiving antenna having two sensors. If noise is non-Gaussian, performance of the 
standard approach (optimal for Gaussian noise) becomes worse radically and special means to cope 
with impulsive nature of the noise is needed.  



Three approaches based on RDFT, signal pre-filtering and the use of robust similarity measures 
are presented. Simulation results that allow analyzing and comparing their performance are given and 
discussed. The advantages and drawbacks of these approaches are considered.  

It is shown that the approach based on RDFT is less efficient than others in the sense of accuracy 
and it requires sufficiently more computations since Fast Fourier Transform algorithms cannot be 
employed in RDFT calculation. Two other approaches can be implemented easily and are very fast. 
The pre-filtering approach is able to produce a little bit better accuracy whilst the approach based on 
robust similarity measures is faster.    
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