
A Medical Question Answering System with NLP and graph
database

Ioannis Tsampos
1, Emmanouil Marakakis

1

1Department of Electrical & Computer Engineering, Hellenic Mediterranean University, Heraklion, Crete, 71410,

Greece

Abstract
A Question Answering (QA) System has been developed that is able to process medical and

other documents in Greek language and to provide answers to user questions. It integrates

Natural Language Processing (NLP) methods and a graph database. It retrieves information

from text and creates an efficiently searchable graph using rule-based matching methods.

Search results are provided to the user as an answer to question in Greek language. Our

approach is natural language independent and domain independent. Moreover, our approach

handles efficiently complex queries and large volumes of texts. In medicine, our approach can

be used for smart healthcare applications which require QA support.

Keywords
Question Answering, Natural Language Processing, Medical Knowledge, Greek Language,

Graph Databases, Query languages

1. Introduction

There is a growing trend for users to ask for

specific answers to their questions rather than lists

of search results. A typical example is the

chatGTP1 where, as soon as it came available to

the public, a large number of users rushed to try it

asking questions of any difficulty. Many users

adopted it in everyday tasks. It is important for

average users to be able to receive fast, clear and

accurate answers to their questions especially

with regard to their health.

Having in mind that it is important for

everyone to be informed accurately about medical

matters, we developed a medical question

answering system. The system is intended to

retrieve information from professional documents

and to provide it to the average user as answers to

questions.

We have designed and developed a system that

analyzes texts and represents the parse tree as

nodes and relationships of a graph database. The

1 https://openai.com/blog/chatgpt/

Published in the Workshop Proceedings of the EDBT/ICDT 2023
Joint Conference (March 28-March 31, 2023), Ioannina, Greece

EMAIL: tsamposg@uoc.gr (I. Tsampos); mmarak@hmu.gr (E.

Marakakis)
ORCID: 0009-0000-1446-9377 (I. Tsampos); 0000-0002-5685-

0480 (E. Marakakis)

© 2023 Copyright for this paper by its authors. Use permitted under Creative

Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

relationships are enriched analyzing grammatical

and logical dependencies between nodes. The

graph data can be searched using graph database

queries with high retrieval efficiency. The system

processes user questions and converts them to

database queries. The results are returned to the

user in the natural language as a Greek text.

The scope of our research is to propose an

implementation of a highly-efficient QA system

utilizing modern technologies and open-source

tools. Additionally, we want to study the

efficiency and accuracy of such a system in the

medical domain.

2. Related work

Over the last years research on automated

question answering systems has rapidly increased.

It is indicative that the count of QA publications

in Association for Computational Linguistics

https://openai.com/blog/chatgpt/

(ACL) had more than doubled between years

2017 and 2020 [1]. There are many types of QA

systems according to the classification presented

in the aforementioned survey. According to the

modeling approach there are Rule Based,

Machine Learning and Deep Learning Systems.

On medical QA Systems domain, research has

been done on rule based [2] and machine learning

[3] implementations.

In Greek language, the research on NLP and

QA systems compared to other languages is

limited. According to the paper “NLP for the

Greek Language: A Brief Survey” [4], published

in 2020 the only publication about QA in the

Greek language was the “APANTISIS, a modular

QA system implemented for the Greek language

for plugging it to databases or knowledge bases.”

[5]. The system accepts questions to Greek

language and returns answers based on database

tables.

Since then, there were 2 more papers published

on Question Answering in Greek language. The

first one is an intelligent chatbot which relies on

semantic web technologies and offers an

intelligent controlled natural language interface

for accessing the information available in

DBpedia [6]. The second is a research prototype

named Tiresias that relies on Machine Translation

tools, and BERT QA models to implement

Bilingual Question Answering over DBpedia

Abstracts [7].

To the best of our knowledge no other

implementation is currently available for

Question Answering on medical or other domain

in the Greek language able to process free-text

documents.

On the other hand, there are many

implementations of Medical [2] and Open

Domain Question [8] Answering Systems in

English [9] and other languages, based on

machine learning [3] and rule-based methods. A

common approach is the question answering over

knowledge graph, which aims to use facts in

knowledge graph to answer the questions [10].

Another approach is the Grammatical Question

Answering [11] for parsing questions posed in

natural language by means of Grammatical

2 https://neo4j.com/

Framework and then transforming them to

SPARQL queries.

3. Approach

The application has been developed in Python

programming language, using the open-source

natural language processing library spaCy, the

graph database management system Neo4j and

the graph query language Cypher. We also used

the Neo4j graphical interface for visualization of

the graph.

We use the Neo4j2 graph database to store the

parse tree extracted by spaCy3. Tokens extracted

by spaCy POS tagger are transferred to the

database as nodes. Grammar relationships

extracted by spaCy Dependency Parser are

transferred as relationships between nodes (Figure

1). We use Cypher to query the graph database

according to the user’s question and we provide

the answer based on the returned results (Figure

2).

3.1. spaCy NLP

spaCy is an open-source natural language

processing library for Python that can be used to

tokenize, tag, and parse natural language text. It

provides tools for NLP processing and pre-trained

models, in many languages including Greek [12]

and English. Among other tools provided by

SpaCy, the POS tagger categorizes words as Parts

of Speech, the Morphologizer assigns

morphological features and coarse-grained POS

tags following the Universal Dependencies UPOS

and FEATS annotation guidelines and the

Dependency Parser creates and describes

syntactic functions of distinct words in a phrase.

We used spaCy for Dependency Parsing

assigning word types to tokens describing the

grammar relationships between them.

3 https://spacy.io/

Question NLP
Graph

Database Answer

Figure 1: Data Storage Process

Figure 2: Question Answering Architecture

NLP
Graph

Database
Text

3.2. Neo4j graph database and
Cypher query language

Neo4j is a graph database that is well-suited

for storing and querying complex relationships

between data [13]. A graph data structure consists

of nodes (discrete objects) that can be connected

by relationships. Nodes are the entities in the

graph that can be tagged with labels, representing

their different roles. Nodes can hold any number

of key-value pairs, or properties. Node labels may

also attach metadata to certain nodes.

Relationships describe a connection between a

source node and a target node and provide

directed, named, connections between two node

entities. Relationships always have a direction, a

type, a start node, and an end node, and they can

have properties, just like nodes. Relationships can

be navigated in any direction. Graph databases are

storing highly variable data that is difficult to

contain in a pre-defined schema. Because graph

databases focus on the relationships between

instances, they are a natural choice to store

relationally focused data [14].

Cypher [15] is a declarative query language for

Neo4j optimized for graphs. Cypher allows

efficient data storage and retrieval from the graph.

Cypher's expressive syntax allows modeling the

relationships between data in a way that is

intuitive and easy to understand.

3.3. Implementation

The application reads a text, creates the parse

tree, and represents it as a graph in the graph

database. The processes of making a parse tree

includes the following steps:

1. Sentence segmentation: the text is divided

into sentences and each one is processed

separately.

2. Tokenization: The text is segmented into

chunks of information that can be

considered as discrete elements like

words, numbers, symbols, and

punctuation.

3. Part-of-speech (POS) tagging &

morphological analysis: Each word is

grammatically classified after

morphological analysis. A word is

classified as VERB, NOUN, etc and its

morphological features like VerbForm,

Mood, Gender, Case, etc are specified.

4. Dependency Parsing: Assignment of

syntactic dependency labels, describing

the relationships between individual

tokens, like subject or object.

spaCy uses statistical models for parsing and

tagging and makes predictions of which tag or

label most likely applies in this context.

As an example, we have the sentence

“Sufferers often have ideas of inadequacy related

to specific social skills.”, and the Greek

translation “Οι πάσχοντες συχνά έχουν ιδέες

ανεπάρκειας που σχετίζονται με τις συγκεκριμένες

κοινωνικές δεξιότητες”. After the sentence is

processed, all the tokens are labeled as relevant to

a particular part of speech. Also, dependency

labels between words are added, describing their

grammatical relationship. The data extracted after

the POS tagging and morphological analysis are

shown in Table 1 (only verbs, nouns and

adjectives are included). The parse tree of the

Greek sentence is shown in Figure 3.

Parse tree is transferred to the graph database.

The database’s nodes and relationships are

created with Cypher queries according to the

following rules:

1. Each token is represented by a Node

which has the token’s name. Each Node

Figure 3: Parse tree created by spaCy

is labeled by the name of POS tag of the

token.

2. Each dependency is represented as a

relationship between two Nodes.

3. Word text, lemma, token position in the

sentence and all the morphological

features for each token are stored as

properties of the Nodes.

The text given by a user for information

extraction, is split into sentences. Each sentence is

processed, and the related data are stored in the

graph database. After the completion of the

processing of our example sentence, the data can

be visualized as shown in Figure 4.

Table 1
POS Tagging and Morphological analysis data

TOKEN POS MORPHO-
LOGICAL

FEATURES

πάσχοντες ADJ Case=Nom,

Gender=Masc,

Number=Plur

έχουν VERB Aspect=Imp,

Mood=Ind,

Number=Plur,

Person=3,

Tense=Pres,

VerbForm=Fin,

Voice=Act

συχνά

ADV -

ιδέες NOUN Case=Acc,

Gender=Fem,

Number=Plur

ανεπάρκειας NOUN Case=Gen,

Gender=Fem,

Number=Sing

σχετίζονται VERB Aspect=Imp,

Mood=Ind,

Number=Plur,

Person=3,

Tense=Pres,

VerbForm=Fin,

Voice=Pass

συγκεκριμένες ADJ Case=Acc,

Gender=Fem,

Number=Plur

κοινωνικές ADJ Case=Acc,

Gender=Fem,

Number=Plur

The size and the color of each node are related

to its label. The nodes labeled as “NOUN” are

blue, the nodes labeled as “VERB” are red, the

nodes labeled as “ADJ” are orange and the node

labeled as “ADV” is green. Other node labels like

“DET” and “PRON” are hidden for simplicity.

Information in database can be retrieved using

Cypher queries. The syntax is quite simple. We

construct a query to get the subject of the phrase,

so we need the token that is connected to the verb

“έχω” (“have”) with the relationship nsubj. The

query is:

match (who)-[:nsubj]-(VERB{name:'έχω'})

return who

Figure 4: The parse tree stored in graph database
as Nodes and Relationships

The query returns as result the node named

“πάσχων” (sufferer). If it is necessary, we can

retrieve the initial text “πάσχοντες” (“sufferers”)

which is included in the node’s properties.

The query can be more specific by including

the object noun “ιδέα” (“idea”)

match p=(who)-[r1:nsubj]-(VERB{name:'έχω'})-

[r2:obj]-(NOUN{name:'ιδέα'}) return p

The result will be the same as the previous

query. Another scenario is to ask for the object of

a phrase. In our example the query will be:

match ({name:'πάσχων'})-[:nsubj]-

(VERB{name:'έχω'})-[:obj]-(what) return what

The query returns as result the node named

“ιδέα” (“idea”). As shown in Figure 4 there are

more nodes connected to the result. The words

associated with the result and the connected

nodes, form the object clause. We can reconstruct

the object clause of the phrase using information

which is included as properties in these nodes.

Specifically, we can use the initial text of the

tokens and their position in the sentence. The

object clause will include all the words related to

these nodes and the tokens between them. In our

example the object clause will be “ιδέες

ανεπάρκειας που σχετίζονται με τις συγκεκριμένες

κοινωνικές δεξιότητες” (“ideas of inadequacy

related to specific social skills”). This phrase is

the answer to the question “Τι έχουν οι

πάσχοντες;” (“What do the sufferers have?”).

To get answers to the user’s questions posed in

natural language, we need to process the questions

grammatically and express them as Cypher

queries. The parse tree of the question is extracted

and its components are used to determine the type

of the question, the included words and their

relationships. These parameters are provided as

input to the algorithm for the Cypher query

construction. In the sequel we provide two

examples:

Question Example 1:

User question: “Ποιος έχει ιδέες;” (“who has

ideas?”). The algorithm determines the subject of

the verb being searched and constructs the

following query which returns a graph path

containing the node of the question and one of the

subjects.

match p=(who)-[r1:nsubj]-(VERB{name:'έχω'})-

[r2:obj]-(NOUN{name:'ιδέα'}) return p

The query returns the path in Figure 5.

Figure 5: Path returned by the query.

After reconstructing the initial text, the

provided answer is “Οι πάσχοντες έχουν ιδέες”

(“The sufferers have ideas”).

Question Example 2:

User question: "Ποιος έχει ιδέες ανεπάρκειας;”

(“Who makes thoughts that he/she is

insufficient?”). The algorithm creates a more

complex query:

match p=(who)-[r1:nsubj]-(VERB{name:'έχω'})-

[r2:obj]-(n:NOUN{name:'ιδέα'}) where

exists((n)-[:nmod]-

(:NOUN{name:'ανεπάρκεια'})) return p

After reconstructing the initial text using

query’s results, the answer is “Οι πάσχοντες έχουν

ιδέες ανεπάρκειας” (“sufferers have ideas of

inadequacy”).

Our algorithm includes in the answer that it has

constructed up to this point, the nodes which are

connected to the node named “ιδέα”. So, the final

answer becomes, “Οι πάσχοντες συχνά έχουν ιδέες

ανεπάρκειας που σχετίζονται με τις συγκεκριμένες

κοινωνικές δεξιότητες” (“Sufferers have ideas of

inadequacy which are related to specific social

skills”).

3.3.1. Complex questions

We provided some basic examples of our

system where the initial text given for information

retrieval and the related questions were quite

simple. Real world documents and real users’

questions tend to be more complex. Our QA

system should be able to answer complex user’s

questions. This demands advanced text

processing operations to be designed and

implemented. These operations include the

following:

1. Search for relations between remote nodes

indirectly connected.

2. Replace syntax relationships to pronouns

with relationships to referred nouns and

proper nouns.

3. Add new relationships between nodes that

refer to the same entities met in different

sentences, paragraphs, or documents.

4. Words and phrases are replaced by

synonyms to search and match nodes or

paths having the same or similar meaning.

5. Developing of a complementary

conversational search algorithm to ask

user for additional info in case of partial

match.

Operations 1 and 2 have already been

implemented and tested while the others are under

development. Our system can process

successfully complex web text medical

documents as the one in Figure 6.

Figure 6: An example graph of a non-trivial
document

4. Future Work

The system which has been developed is able

to provide precise answers to users’ questions.

Prerequisite for accurate answers is the

construction of the right query based on user’s

question text. As the entities and their

relationships in a question increase, the

complexity of the query is increased as well. We

will keep on working on query optimization.

We plan to extend our approach on several

directions such as the following ones.

• Study and implement the synthesis of

answers combining different phrases in

a document.

• Perform ranking of possible different

candidate right answers.

• Develop methods to deal with ambiguity.

• Perform optimization of the knowledge

representation method focusing on semantics

and building a knowledge graph.

After the system has been developed, we plan

to test it with a big number of documents and

users’ questions in order to evaluate its accuracy

and its efficiency. In future, we will also

consider if our approach can be extended with

ontologies. We will study if a graph database and

its enhanced representation as a knowledge

graph can be mapped to an ontology and vice

versa.

5. Conclusion

We have designed and developed a medical

Question Answering System to be accurate, fast

and expandable.

We carry out research on an enriched parse tree

navigation utilizing the advantages of a graph

database.

The use of graph database provides fast

development, it makes it easy to handle complex

queries and it can handle big data efficiently.

Our system has been designed with the

objective to derive correct and accurate answers

to user’s queries.

In summary, the advantages our approach are

the following. It supports information retrieval

from texts for constructing its enhanced parse tree

and storing it in a graph database. Our

methodology is natural language independent. In

its current form, it supports the Greek and the

English languages, moreover it can be extended to

other natural languages as well. It is also

application domain independent. Apart from

medicine which is the test domain for our

approach it can be used in other domains where

natural interaction is required.

Our approach can have diverse applications in

healthcare. It can be used in clinical practice for

communication and data collection and in clinical

decision support. It can be used in hospital

management for data management due to the large

medical documentation. It can be used for

personal health assistants. Finally, it can be used

from people for getting health knowledge and in

medical education.

6. Acknowledgements

This research work is funded by the Public

Investment Program of the Ministry of Education

and Religious Affairs of Greece.

7. References

[1] H. A. Pandya and B. S. Bhatt,

"Question Answering Survey:

Directions, Challenges, Datasets,

Evaluation Matrices," arXiv preprint

arXiv:2112.03572, p. 2, 2021.

[2] Z. Jiang, C. Chi and Y. Zhan,

"Research on medical question

answering system based on knowledge

graph," IEEE Access, vol. 9, pp. 21094-

21101, 2021.

[3] Q. Shuai, "Research on Intelligent

Question Answering System Based on

Medical Knowledge Graph," IEEE 4th

Advanced Information Technology,

Electronic and Automation Control

Conference (IAEAC), vol. 1, no. IEEE,

2019, 2019.

[4] K. Papantoniou and Y. Tzitzikas,

"NLP for the Greek language: a brief

survey," 11th Hellenic Conference on

Artificial Intelligence, pp. 101-109,

2020.

[5] E. Marakakis, H. Kondylakis and A.

Papakonstantinou, "APANTISIS: A

greek question-answering system for

knowledge-base exploration," in

Strategic Innovative Marketing: 5th IC-

SIM, Athens, Greece 2016, 2017.

[6] H. Kondylakis, D. Tsirigotakis, G.

Fragkiadakis, E. Panteri, A. Papadaki, A.

F. and E. Tzagkarakis, "R2D2: A

dbpedia chatbot using triple-pattern like

queries," Algorithms, vol. 13, no. 9, p.

217, 2020.

[7] M. Mountantonakis, B. Michalis, M.

Loukas and T. Yannis, "Tiresias:

Bilingual Question Answering over

DBpedia," 2022.

[8] D. Chen, A. Fisch, J. Weston and A.

Bordes, "Reading wikipedia to answer

open-domain questions," arXiv preprint

arXiv:1704.00051, 2017.

[9] Y. Tang, H. Han, X. Yu, J. Zhao, G.

Liu and L. Wei, "An Intelligent Question

Answering System based on Power

Knowledge Graph," 2021 IEEE Power

& Energy Society General Meeting

(PESGM), pp. 1-5, 2021.

[10] X. Huang, J. Zhang, D. Li and P. Li,

"Knowledge Graph Embedding Based

Question Answering," Proceedings of

the twelfth ACM international

conference on web search and data

mining, pp. 105-113, 2019.

[11] E. Zimina, J. Nummenmaa, K.

Jarvelin, J. Peltonen, K. Stefanidis and

H. Hyyrö, "GQA: Grammatical

Question Answering for RDF data,"

Semantic Web Challenges: 5th

SemWebEval Challenge at ESWC 2018,

Heraklion, Greece, June 3–7, 2018,

Revised Selected Papers 5, vol. 927, pp.

57-61, 3-7 June 2018.

[12] E. Partalidou, E. Spyromitros-

Xioufis, S. Doropoulos, S.

Vologiannidis and K. Diamantaras,

"Design and implementation of an open

source Greek POS Tagger and Entity

Recognizer using spaCy,"

IEEE/WIC/ACM International

Conference on Web Intelligence, 2019.

[13] J. Guia, V. G. Soares and J.

Bernardino, "Graph Databases: Neo4j

Analysis," ICEIS, vol. 1, pp. 351-356,

2017.

[14] J. Stothers and A. Nguyen, "Can

Neo4j replace PostgreSQL in

healthcare?," AMIA Summits on

Translational Science Proceedings, p.

646, 2020.

[15] N. Francis, A. Green, P. Guagliardo,

L. Libkin, T. Lindaaker, V. Marsault, S.

Plantikow, M. Rydberg and P. Selmer,

"Cypher: An Evolving Query Language

for Property Graphs," Proceedings of the

2018 international conference on

management of data, pp. 1433-1445,

2018.

