
A System for Trajectory Data Management and Analysis
Johann Bornholdt1

1supervised by Michael Grossniklaus,
University of Konstanz, Germany

Abstract
In a world where the volume of available trajectory data is constantly increasing, the need for efficient storage and processing
of such data has motivated the development of numerous applications and analysis methods. Different analysis methods
require the trajectory data to be in specific data representations. At the same time, in order to efficiently process complex
trajectory queries, multiple representations are necessary. However, current systems focus on a single data representation
for trajectories. In this paper, we present the research outline of a Ph.D. in its early stages, where we plan to propose
an algebra and a corresponding set of logical and physical operators to support complex trajectory queries by considering
different trajectory data representations. Furthermore, we propose to design a demonstrator system as proof of concept.

Keywords
trajectory database systems, mobility analysis, spatiotemporal data management

1. Introduction
Due to technological advances in the last decades that led
to the ubiquity of cheap GPS sensors, there is an abun-
dance of trajectory data available. As a result, the efficient
processing and analysis of trajectory data have attracted
significant interest[1, 2]. Numerous applications that re-
quire the efficient processing of trajectory data have also
been developed. These applications range from optimiz-
ing a fleet of taxi cabs based on past trips [3], to studying
the global migration of animals based on tracking data
from space [4]. In the Centre for the Advanced Study of
Collective Behaviour1, the excellence cluster in which
the presented research is situated, we are building the so-
called Imaging Hangar, which enables us to study small
animal collectives in a controlled environment using tra-
jectory data obtained from video image analysis [5].

When processing or analyzing trajectories, the tra-
jectory’s representation can significantly impact which
operations can be applied or how efficiently they can be
executed. For example, geographic operations are best
processed on a trajectory represented as a spatial object,
while others, e.g., temporal operations, need trajecto-
ries represented as time-series. Apart from these spatial
and temporal trajectory properties, some applications
require processing and analysis of semantic information
attributed to a (sub-sequence of a) trajectory.

While several systems have been proposed to manage
trajectory data, they tend to only focus on and priori-
tize one of the representations mentioned above. Con-

Published in the Workshop Proceedings of the EDBT/ICDT 2023 Joint
Conference (March 28-March 31, 2023, Ioannina, Greece)
" johann.bornholdt@uni-konstanz.de (J. Bornholdt)
� 0000-0001-6183-1500 (J. Bornholdt)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

1https://www.exc.uni-konstanz.de/collective-behaviour/

sequently, these systems are ill-suited to effectively and
efficiently answer what we refer to as complex trajectory
queries, i.e., queries that involve a combination of opera-
tions that require or benefit from trajectory data being
represented in different forms (e.g., spatial and temporal).

We give a brief summary of the state of the art in
trajectory data management systems in Section 2. In
what follows, we outline how we intend to close this gap
in the state of the art by conducting research that follows
the tradition of algebraic query processing. In particular,
we plan to address the following research challenges.

1. Define a data model that supports different, alter-
native representations for trajectory data rather
than building a single general model (Section 3.2).

2. Define an operator algebra that (a) specifies op-
erations that can be applied to trajectory data
and (b) provides operators to translate between
trajectory data representations (Section 3.3).

3. Design a query processor that supports complex
trajectory queries (Section 3.4).

In order to demonstrate the validity of our approach,
we plan to implement a proof-of-concept demonstrator
(Section 4). Concluding remarks are given in Section 5.

2. State of the Art
To the best of our knowledge, no systems currently
support different representations of trajectories. Poly-
stores [6] store the same data multiple times in different
formats, which makes them almost the opposite of what
we need to work efficiently with different representations.
In a recent study, Wang et al. [1] have created an overview
of existing DBMS focused on trajectories. Systems such
as Secondo [7] and MobilityDB [8] can store and query

mailto:johann.bornholdt@uni-konstanz.de
https://orcid.org/0000-0001-6183-1500
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
https://www.exc.uni-konstanz.de/collective-behaviour/

moving object data, but only support a relational repre-
sentation of trajectories. Therefore, these systems are
ill-suited to handle what we define as complex trajectory
queries. We pose our research question: "How can we
extend and apply traditional query processing techniques
to complex trajectory queries?"

3. Data Model and Algebra
A trajectory is defined as 𝑇 = (𝑆,𝐷), where 𝑆
is the spatiotemporal structure of the trajectory, de-
fined as a sequence of (point, timestamp)-tuples 𝑆 =
⟨(𝑝1, 𝑡1), . . . , (𝑝𝑛, 𝑡𝑛)⟩ with 𝑝𝑖 = (𝑥𝑖, 𝑦𝑖) and 1 ≤ 𝑖 ≤
𝑛. Each component of the trajectory can have attributes
with values from a domain 𝒟, given by the function
𝐷 : 𝐼 ×𝒩 → 𝒟, where 𝐼 is an (open or closed) interval
over 𝑆 and 𝒩 is the set of attributes. Note that for rea-
sons of simplicity, we assume that overlapping intervals
do not share common attribute names. As special cases,
the interval [1, 𝑛] denotes the entire trajectory, [𝑖, 𝑖+ 1]
is a single edge, and [𝑖, 𝑖] is a single point.

3.1. Trajectory Representations
Trajectories defined by this conceptual model can be
represented in different data models. Figure 2 illustrates
some possible representations of the trajectories shown
in Figure 1. More specifically, Figure 2a shows a mapping
of our definition into the relational model, where a table
is used to store the structure of the trajectory. Logical
models of this nature are employed in existing trajectory
management systems [7, 8].

Instead of a relational model, trajectories can be rep-
resented by a set of sequences (cf. column-based [9]), as
shown in Figure 2b. When only reading the same parts of
all trajectories, e.g., only the locations, a set of sequences
is more efficient than a relational model.

Another option is to extract a graph representation
from trajectories [10]. The extracted graph can then be
stored using, e.g., the property graph data model [11], as
shown in Figure 2c. In the property graph data model, a
set of trajectories can be represented in labeled nodes and
typed edges. In contrast, attribute values can be stored
as node or edge properties.

Furthermore, it is possible to look at a trajectory as a
time-series (cf. Figure 2d) and use time-series analysis
either on the trajectory itself or on an aggregation, e.g.,
travel distance or speed. Liu et al. [12] use a time-series-
based approach for trajectories to identify types of urban
regions based on taxi trips.

3.2. Logical and Physical Data Model
In order to design a system that can represent trajectory
data in different data models, we begin with a systematic

Figure 1: Sample trajectories.

literature review of the current state of the art [1, 7, 8].
This literature review will identify the most commonly
proposed trajectory representations and the essential op-
erations. Following our approach, in which we do not
want to favor any representation over all others, we will
define a logical data model for each identified representa-
tion. We will use a consistent formal framework to enable
transformation operations (cf. Section 3.3) between these
representations.

There are several options for designing a physical data
model employed by existing database systems that can
be used to store trajectory data in our system, which
can be beneficial for different operations. For instance,
the row-based storage approach of traditional relational
database systems is beneficial to query entire trajectories
or filtering them based on their attribute values. A graph-
based storage benefits queries that depend on regular
path expression. Finally, the column-oriented storage of
column stores and time-series database systems favors
operations that prioritize analyzing a single aspect of
trajectories. Apart from database systems that focus on
a single physical model, we will also investigate poly-
stores [6], typically used to store different data sets in
one system in their most natural representation. In our
case, however, we will study the use of polystores to store
the same data set in multiple representations.

Finally, another well-known option from existing
database systems is using index structures to enable dif-
ferent access paths. For example, a B+Tree index provides
sorted access to a relational table. In the same way, an
index could represent a relational table as a time-series,
or another could represent a time-series as a spatial ob-
ject. Therefore, we will also investigate how clustered,
and unclustered indexes can be employed to render the
need for a fixed physical data model obsolete.

3.3. Algebra
Based on the findings from the literature review in Sub-
section 3.2, we identify the need for handling complex
trajectory queries on a logical level. Consider the follow-
ing query 𝑄: "find all trajectories 𝑇 which pass through
a region 𝑅 during a time interval 𝐼 ." Following a filter-
and-refine strategy to process 𝑄, we can apply multiple

id x y ts
𝑇1 𝑥11 𝑦11 𝑡𝑠11
.

𝑇1 𝑥14 𝑦14 𝑡𝑠14
𝑇2 𝑥21 𝑦21 𝑡𝑠21
.

𝑇2 𝑥25 𝑦25 𝑡𝑠25

(a) Relational table

𝑇1

(𝑥11, 𝑦11) 𝑡𝑠11
.

(𝑥14, 𝑦14) 𝑡𝑠14
𝑇2

(𝑥11, 𝑦11) 𝑡𝑠21
.

(𝑥25, 𝑦25) 𝑡𝑠25

(b) Sequences (c) Graph (d) Time-series

Figure 2: Examples of different trajectory representations.

operators: (a) a spatial operator to find all trajectories
that pass through 𝑅, and (b) a temporal operator to find
all trajectories that were recorded during 𝐼 . While we can
process 𝑄 with these two operators, we can also derive a
third operator, which checks whether the timestamps of
specific sample points of each trajectory lie within 𝑅 dur-
ing 𝐼 . This spatiotemporal operator can use specialized
algorithms that consider spatial and temporal aspects at
the same time, similar to a join in relational databases.

The first two operators can be applied in any order
and aim at reducing the search space, while the third
operator verifies the correctness of the result. Following
the traditional approach of database systems, we will
develop an algebra with logical operators that can be
combined to represent any complex trajectory query.

3.4. Query Processing
Complex trajectory queries combine parameters for dif-
ferent representations. Consider query 𝑄 from Subsec-
tion 3.3. To process 𝑄, the spatial and the temporal parts
of 𝑄 both have to be processed in their respective rep-
resentation. Therefore we need to convert the logical
operators of 𝑄 into physical operators.

Physical operators can be divided into two categories:
query operators and transformation operators. Query op-
erators evaluate the query. In the case of 𝑄, they evalu-
ate the spatial and temporal parameters. Transformation
operators convert the trajectory data from one represen-
tation to another (see Figure 2). Note that both query and
transformation operators can benefit from index struc-
tures.

For the physical operators, it is essential on which
representation they are applied. Not all query operators
work with all representations. Some combinations of
operators and representations are less efficient, and some
are impossible (e.g., extracting the position from a time
series). For the spatial part of 𝑄, we need to check for
all trajectories if they intersect the given region. The in-
tersection can be checked efficiently with the geometric
representation using an R-Tree index. If the query oper-
ator is incompatible with the current representation of

the given trajectory data, another representation should
be obtained using a transformation operator. For the
temporal part of 𝑄, the data can be transformed into a
time-series representation before applying the temporal
query operator.

3.5. Query Optimizer
There are multiple ways to combine query and transfor-
mation operators to evaluate a given query. For instance,
one could directly apply a query operator over an already
materialized representation or perform a transformation
on the fly from one representation to another and use a
query operator over the new representation. As physical
operators have different costs depending on the operator
type, the representation method, and the cardinalities
of the data, we will devise a cost model from them in
order to build an optimizer that can generate execution
plans. Our optimizer will be based on the Cascades Frame-
work [13] building on Apache Calcite. Furthermore, to
enable the reuse of materialized representations of tra-
jectory data, we will investigate existing approaches for
self-tuning database systems [14] and adapt them to our
optimizer. The materialization is relevant if the transfor-
mation procedure is expensive and the representation is
needed multiple times.

4. Proof of Concept
We propose to build the Chameleon system, a proof of
concept, to demonstrate for the concepts shown in this
paper. It is used to evaluate results from Section 3.3 &
Section 3.4 empirically. Chameleon acts as an adapter
layer between the user and a trajectory data source.
Chameleon offers an API to query trajectory data based
on spatial, temporal, and additional rich features. The
API has different methods for each trajectory represen-
tation, meaning the user receives the data in the format
that they need, e.g., as a sequence of tuples or as a rela-
tional table. It can be used with a combination of data
sources for different representations. e.g., spatiotemporal
DBMS (e.g., Secondo [7], MobilityDB [8]), graph DBMS

Operations Layer/API

Query Processing Layer

Data Storage Layer

Figure 3: Overview of Chameleon’s architecture.

(e.g., Neo4j), and can import data from CSV-Files or the
public GPS traces from Openstreetmaps2. Chameleon
supports complex trajectory queries that use properties
from different representations.

The system architecture of Chameleon will consist of
three layers: operations layer, query processing layer, and
data storage layer, as shown in Figure 3.

• The operations layer of Chameleon offers an API
that a user can interact with. The API is in the
form of different methods for different kinds of
operators to pose queries to the system. This
layer is also responsible for returning the query
result to the user.

• The query processing layer is responsible for the
generation of execution plans. Furthermore, it de-
termines which data representations to transform
and which to materialize.

• The data storage layer contains the physical trans-
formation operators and the access methods for
the underlying data sources. It supports multiple
data sources, e.g., CSV, shapefiles, etc.

5. Conclusion
In this paper, we have proposed a system to improve
the management and processing of complex trajectory
queries. By considering the diverse representations for
trajectories, we can process all the parts of a complex
query with the optimal methods. To build an efficient
execution plan, we can use the extensive advancements
of query optimization. Furthermore, we proposed to
develop a proof of concept to evaluate the results of our
system with real-world data.

Acknowledgments
This work is funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC 2117 – 422037984.
2https://www.openstreetmap.org/traces/

References
[1] S. Wang, Z. Bao, J. S. Culpepper, G. Cong, A sur-

vey on trajectory data management, analytics, and
learning, ACM Comp. Surveys 54 (2021) 1–36.

[2] T. Chondrogiannis, J. Bornholdt, P. Bouros,
M. Grossniklaus, History oblivious route recov-
ery on road networks, in: ACM SIGSPATIAL, 2022,
pp. 1–10.

[3] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-
Moreira, L. Damas, Predicting taxi–passenger de-
mand using streaming data, IEEE Trans. on Intelli-
gent Transportation Systems 14 (2013) 1393–1402.

[4] J. Weppler, M. Belyaev, O. Solomina, M. Wikelski,
W. Naumann, W. Pitz, Icarus-animal observation
from iss, in: Proceedings of the International As-
tronautical Congress, IAC, 2017, pp. 5312–5322.

[5] U. Waldmann, H. Naik, N. Máté, F. Kano, I. D.
Couzin, O. Deussen, B. Goldlücke, I-muppet: Inter-
active multi-pigeon pose estimation and tracking,
in: DAGM-GCPR, 2022, pp. 513–528.

[6] R. Tan, R. Chirkova, V. Gadepally, T. G. Mattson,
Enabling query processing across heterogeneous
data models: A survey, in: IEEE BigData, IEEE,
2017, pp. 3211–3220.

[7] R. H. Guting, V. Almeida, D. Ansorge, T. Behr,
Z. Ding, T. Hose, F. Hoffmann, M. Spiekermann,
U. Telle, Secondo: An extensible dbms platform for
research prototyping and teaching, in: IEEE ICDE,
2005, pp. 1115–1116.

[8] E. Zimányi, M. Sakr, A. Lesuisse, MobilityDB: A mo-
bility database based on PostgreSQL and PostGIS,
ACM TODS 45 (2020).

[9] D. J. Abadi, P. A. Boncz, S. Harizopoulos, Column-
oriented database systems, Proceedings of the
VLDB Endowment 2 (2009) 1664–1665.

[10] L.-Y. Wei, Y. Zheng, W.-C. Peng, Constructing pop-
ular routes from uncertain trajectories, in: ACM
SIGKDD, 2012, pp. 195–203.

[11] L. Wörteler, M. Renftle, T. Chondrogiannis,
M. Grossniklaus, Cardinality estimation using la-
bel probability propagation for subgraph matching
in property graph databases., in: EDBT, 2022, pp.
2–285.

[12] X. Liu, Y. Tian, X. Zhang, Z. Wan, Identification
of urban functional regions in chengdu based on
taxi trajectory time series data, ISPRS International
Journal of Geo-Information 9 (2020) 158.

[13] G. Graefe, The cascades framework for query opti-
mization, IEEE Data Eng. Bull. 18 (1995) 19–29.

[14] S. Chaudhuri, V. Narasayya, Self-tuning database
systems: a decade of progress, in: VLDB, 2007, pp.
3–14.

https://www.openstreetmap.org/traces/

	1 Introduction
	2 State of the Art
	3 Data Model and Algebra
	3.1 Trajectory Representations
	3.2 Logical and Physical Data Model
	3.3 Algebra
	3.4 Query Processing
	3.5 Query Optimizer

	4 Proof of Concept
	5 Conclusion

