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Abstract  
The work is devoted to the modernization of closed onboard helicopters turboshaft engines 

automatic control system through the use of a selectable block of neural network controllers in 

front of the control channel selector – gas generator rotor r.p.m. and gases temperature in front 

of the compressor turbine. To ensure the principle of minimal complexity of the neural network 

controller, a three-layer perceptron with two neurons in the input layer, three neurons in the 

hidden layer, and one neuron in the output layer was chosen as a neural network. It is proved 

that in order to fulfill the small gain theorem, which was applied to determine the fault tolerance 

of the automatic control system, the optimal neural network training algorithm is 

backpropagation error algorithm with regularization, which includes a quadratic criterion for 

determining the neural network training error. The results of the research showed that with the 

use of the developed automatic control system for helicopters turboshaft engines, the time 

diagrams of thermo-gas-dynamic parameters of engine control – gas generator rotor r.p.m.  and 

gases temperature in front of the compressor turbine show more stable values compared to the 

standard automatic control system, in which the spread of parameters reaches several percent, 

which for helicopters turboshaft engines is critical, and indicates the indication of a false engine 

defect.  
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1. Introduction 

Currently, neural network technology is one of the most dynamically developing areas of artificial 

intelligence. It has been successfully used in various fields of science and technology, such as pattern 

recognition, diagnostic systems for complex technical objects, ecology and environmental science 

(weather forecasts and various cataclysms), the construction of mathematical models that describe 

climatic characteristics, biomedical applications, etc. in the field of operation of aircraft gas turbine 

engines (GTE), in particular, helicopters (aircraft gas turbine engines with a free turbine (TE)), it is 

relevant to create a unified methodology for the development of algorithms for designing and training 

various types of neural networks to solve problems of managing the operation of engines operational 

status, including: the development of algorithms and software for the neural network control method 

operation of an engine that provides a higher probability of detecting defects in GTE compared to 

existing methods; verification of the effectiveness of the neural network method on the example of 

specific aviation gas turbine engines; identification the architectures of neural networks that are most 

effective for managing the operation of GTE [1, 2]. 
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It is known that among the malfunctions and failures of GTE, a significant part is parametric, 

consisting in the discrepancy between the values of the parameters controlled on the engine and the 

technical specifications. To control and prevent such failures, parametric diagnostic methods are used, 

based on special processing and analysis of the values of thermo-gas-dynamic and other parameters 

measured on a running engine during its operation. 

The assessment of helicopters TE operational status, in the conditions of their flight operation, is 

carried out, as a rule, according to a limited amount of information, due to the small number of standard 

controlled parameters. This significantly limits the effectiveness of parametric methods based on the 

identification of mathematical models of engine workflows. Therefore, it is relevant to conduct research 

to improve the efficiency of onboard methods for helicopters TE operational status monitoring, 

including the method of neural networks [3, 4]. 

2. Related Works  

2.1. Literature review 

Modern helicopters TE are complex nonlinear dynamic systems with the mutual influence of gas-

dynamic and thermophysical processes occurring in its nodes. To simulate such processes, it is proposed 

to use a mathematical apparatus in the form of artificial neural networks. A review of the literature 

shows that neural networks are used to solve various problems and show high accuracy, including in 

the tasks of modeling and identification complex technical systems [5, 6]. In [7, 8], a dynamic neural 

network for monitoring and predicting gas turbine engine operational status was developed. In [9, 10], 

neural network methods for diagnostics of GTE parameters were developed using a semi-alternative 

optimization strategy. 

At the same time, the analysis of modern literature [11, 12] devoted to neural networks and neural 

network control systems shows that, despite the ongoing active developments in this area, many issues 

related to the development of algorithms and methods for identification nonlinear objects based on 

neural network models, synthesis of the structure and adaptation (training) algorithms for the 

parameters of neural network controllers [13, 14], features of their implementation in multi-mode 

control systems for nonlinear dynamic objects. All of the above fully applies to such a dynamically 

complex class of control objects as helicopters TE. 

Thus, the task of synthesizing a neural network controller for helicopters TE characteristics 

identification and their elements in helicopters TE onboard automatic control system (ACS) is relevant. 

2.2. Research problem statement 

In the process of designing GTE ACS, they are subject to strict and often conflicting requirements. 

The scope of these requirements is usually limited to a given set of internal and external parameters of 

the control system. The use of artificial intelligence methods, and, in particular, neural networks, allows 

you to expand and tighten these requirements by removing restrictions on the area of change of these 

parameters. Additional requirements for GTE ACS include: 

– adaptation of GTE ACS characteristics to changing operating modes and flight conditions, 

individual characteristics of a particular engine; 

– predicting the behavior of the system in order to quickly adjust control algorithms in a changing 

environment; 

– ensuring the stability of work processes and the operability of GTE ACS both in design and 

emergency modes associated with failures of actuators, sensors, information input-output devices, 

strong external disturbances at the input of GTE, etc. 

At present, the greatest progress in the design of intelligent control systems has been achieved for 

control systems that have the property of “intelligence in small things” [15]. This means, first of all, 

that the control system uses knowledge in the course of its functioning (to achieve its goals) as a means 

of overcoming the uncertainty of input information, the behavior of the controlled object, and the state 

of the system elements. 



In [16], an onboard helicopters TE ACS is described, which, within the framework of the global 

monitoring task, solves such particular problems: classification of engine operation modes, 

identification of direct, inverse and dynamic engine models, engine operational status control, 

diagnostics and prediction, engine parameters debugging (regulation), trend analysis and others. 
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Figure 1: Helicopters TE automatic control system [16] 
 

The developed helicopters TE on-board intelligent ACS is essentially non-linear, therefore, the 

issues of modification control and monitoring algorithms, as well as studying the stability of this system 

in a wide range of changes in its operating modes, remain open and require research. 

3. Methods and materials  

3.1. Implementation of a general approach to ensuring the fault tolerance of 
the onboard helicopters turboshaft engines automatic control system with a 
neural network controller 

Modern helicopters TE (for example, TV3-117), operating under parametric conditions and 

structural uncertainty, require the use of new approaches to ensuring the fault tolerance of ACS. 

Decision-making algorithms based on fuzzy logic can be used as a basis for developing a fault-tolerant 

intelligent ACS. The presence of a rule base of the "IF-THEN" type allows using expert knowledge to 

solve this problem. 

The fuzzy system for control, diagnostics, prediction and reconfiguring the ACS can be represented 

in this case as a supervisor, whose control signals are used to change the structure of the main neural 

network controller. This controller must contain a certain functional redundancy (for example, 

additional control programs or duplicating simplified NNi algorithms (i = 1, …, m). 

The control and training algorithm are a system of rules: 

if E = S and ΔE = S and … u = S, then choose NN1; 

if E = M and ΔE = M and … u = M, then choose NN2; 

… 

if E = L and ΔE = L and … u = L, then choose NNi; 

where E, ΔE, u – inputs and outputs of the controller; S, M, L – values of the linguistic variable 

corresponding to the sets "Small", "Medium", "Large" (fig. 2). Accordingly, a membership function is 

constructed for each parameter. Further, using the inference mechanism, the value of the output 

parameters of the control and training unit is calculated, which are control signals that connect the 

currently required neural network controller NNi to the actuators. 

A distinctive feature of the above approach from the existing one, first proposed by professor 

Volodymyr Vasiliev, is the use of Gaussians to describe a linguistic variable, and not a function of a 

triangular type. This is explained by the fact that the Gaussian curve has a narrower distribution, and 

the membership of the parameter is close to the given value, compared to the triangular function. 



 
Figure 2: Membership functions general view: 1 – "Small", 2 – "Medium", 3 – "Large" 

 

As an effective way to ensure fault tolerance, you can use the so-called active approach based on the 

reconfiguration of the neural network controller using a selector (fig. 3) in case of emergency situations 

in the operation of the ACS. 
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Figure 3: Diagram of the project of a fail-safe helicopters turboshaft engines automatic control system 
with a selectable block of neural network controllers 

3.2. Synthesis of a supervisory neural network approximating the coefficients 
of the PID controller 

According to the developed block diagram of the onboard helicopters TE ACS [16], as well as the 

generalized one (the most common option for including a neural network in helicopters TE ACS), in 

Fig. 4 shows a diagram of a closed-loop helicopters TE ACS, in which a supervisory neural network is 

used to tune the parameters of a linear PID controller depending on the engine operational status and 

external conditions. Compared to the classical (tabular) method of approximating the coefficients, the 

neural network approximator provides more flexible adaptation (training) to changes in external 

conditions and GTE parameters. 
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Figure 4: Generalized diagram for switching on a neural network controller in helicopters turboshaft 
engine automatic control system 
 

The neural network performs the functions of a nonlinear multi-mode controller, providing the 

formation of the required control actions on the helicopters TE actuators based on the training 

procedure. The structural redundancy embedded in the neural network implies increased noise and fault 

tolerance compared to classical algorithms. 

To construct a training sample containing the required values of the coefficients of the linear 

controller in different modes, various methods can be used, of which the sequential simplex search 

method is the most effective for solving the problem posed [17]. The essence of this method is that the 

movement towards the optimum in the n-dimensional space of variable parameters (in our case, the 

coefficients of the PID controller) is carried out by successive reflection (relative to one of the faces) 

of the vertices of the simplex. A simplex is a figure in n-dimensional space formed by (n + 1) vertices 

that do not belong to any of the spaces of lower dimension. 

To solve the approximation problem, we chose a neural network based on a perceptron with three 

neurons in the hidden layer, three neurons in the output layer, and a logistic sigmoid activation function 

for neurons in the hidden layer. The search was carried out in six engine operating modes under constant 

external conditions, which are the training sample for the initial training of the neural network. The 

input data for training are the values of the setting (setting action) Y0 at the basic modes of helicopters 

TE operation. To train the neural network, we used the error backpropagation algorithm (method of 

moments) with regularization. Fig. 5 shows the dependence of the coefficients of the PID controller on 

the value of the control setpoint (in relative terms). 

 

 
 

Figure 5: Diagram of dependence of the PID controller coefficients on the value of the control setpoint: 
1 – proportional coefficient; 2 – integral coefficient; 3 – differential coefficient (the solid line shows 
the values obtained using the neural network; the dotted line shows the values obtained using the 
piecewise linear approximation) 
 



Fig. 6 shows diagram of transients when testing the operation of a neural network as part of a closed 

onboard helicopters TE ACS, where 1 – desired transients (output of the reference model); 2 – transients 

on the frequency of gas generator rotor r.p.m., obtained for successive 5 % increases in the setpoint signal. 

 

 
Figure 6: Diagram of transient processes by gas generator rotor r.p.m. 
 

The analysis of the obtained transients shows that the set requirements for the quality indicators of 

the control processes of helicopters TE are met. 

For the synthesis of a multi-mode neural network controller, the technique proposed in [18, 19], 

synthesized and systematized by professor Volodymyr Vasiliev, was applied, and includes the 

following steps: 

1) choosing a method for including a neural network as a regulator in the GTE control system; 

2) choice of architecture (structure) of the neural network; 

3) determining the composition of the training sample for training the neural network controller as 

part of a closed onboard helicopters TE ACS; 

4) selection of criteria and algorithm for training the parameters of helicopters TE neural network 

controller. 

The inclusion of the neural network controller, which is a non-linear PI controller, the weight 

coefficients of which are adjusted from the condition of obtaining the specified quality indicators in all 

operating modes of the system, is carried out before the selector of the channels of gas generator rotor 

r.p.m. (free turbine rotor speed) and the gas temperature before the compressor turbine (fig. 2). 

According to the minimum complexity criterion, the simplest possible solution in this case is to use a 

perceptron that has three neurons in the hidden layer. 

To train the neural network, it is necessary to determine the steady-state values of the inputs and 

outputs of the PI controller in one of helicopters TE ACS operating modes and use these values as a 

training sample. After receiving the training sample for the neural network controller, preliminary 

training (initialization) of the neural network is carried out using any optimization method. 

After preliminary initialization of the neural network, it is possible to proceed to the training of the 

neural network controller as part of closed onboard helicopters TE ACS. To do this, at each of the 

specified basic helicopters TE operating modes, a small setpoint deviation is applied to the ACS input, 

the mismatch between the helicopters TE output parameter and the output of the reference model 

(desired ACS response) is calculated, after which the neural network weights are adjusted in the 

direction of decreasing the mismatch. These actions are repeated until the mismatch (training error) 

reaches the specified value. 

According to [17], the method of sequential simplex search showed high efficiency in the process 

of training a neural network. The variable parameters in this case are the values of the weights of the 

synaptic connections of the neural network. For the correct operation of the algorithm, it is necessary 

to preprocess the initial data to construct the initial simplex, since the weights of the pretrained neural 

network have values that vary in a wide range – from tens to hundredths of a unit. For each neuron, the 

maximum values of its weights were determined, the corresponding weights were normalized in the 

range [–1, 1]. As a criterion for training the neural network in this case, according to the requirements 

for closed onboard helicopters TE ACS, a quadratic criterion was used: 



( ) 2 210 ;
OVERi G

i i

E k n T = +         (1) 

where k – iteration number; 2

in  – value of the control error on the channel of gas generator rotor r.p.m. 

nTC (free turbine rotor speed nFT); 2

OVERGT  – value of overshoot on gas temperature before the compressor 

turbine TG channel. 

Fig. 7 shows diagrams of transients when testing the operation of a neural network controller as part 

of closed onboard helicopters TE ACS: 1 – transients in terms of gas generator rotor r.p.m. nTC when 

using a pre-initialized neural network controller; 2 – transients in terms of gas generator rotor r.p.m. nTC 

in a system with a neural network controller trained in the entire range of operating modes for successive 

5% increases in the setpoint signal. 

 
Figure 7: Diagram of transient processes by gas generator rotor r.p.m. 
 

A distinctive feature of the developed helicopters turboshaft engines automatic control system from 

the existing ones is the division into separate links, respectively, turboshaft engines and actuating 

mechanism – fuel metering unit (FMU). This modification of the classic ACS of complex dynamic 

objects is associated with the neglect of dynamic processes in the fuel system – in helicopters turboshaft 

engines, transient processes in the fuel metering unit and the engine itself occur almost simultaneously. 

The main elements of the developed ACS are: comparison element (CE), regulator, FMU and TE. 

The CE input receives the initial value of gas generator rotor r.p.m. nTC and gas temperature in front of 

the compressor turbine TG and the obtained values of the number of these parameters. At the output of 

the ACS, an inconsistency of the incoming parameters is formed and a system error ξ is formed, which 

is fed to the input of the controller, the signal u is generated at the output, which is fed to the input of 

the FMU, the fuel consumption signal GT is generated at the output, which is fed to the input of the gas 

turbine engine and, respectively, the signal Y, entering the CE [16]. 

An analysis of the obtained transients in closed onboard helicopters TE ACS shows that the set 

requirements for the quality indicators of control processes are met and the use of the proposed 

procedure for training the parameters of the TE multi-mode neural network controller is effective. The 

general diagram of the closed onboard helicopters TE ACS is shown in fig. 8, where: TE – helicopter 

TE; TE Model – model of helicopter TE; LB – logical block; FMU – fuel metering unit; FMU model – 

model of fuel metering unit [16]. 

In the logical block (LB) the input signals are analyzed as follows: a knowledge base is built on the 

basis of experimental data and conclusions. In relation to it, membership functions are formed for the 

input parameters of the LB, as well as output signals. Having formed the necessary change, the LB 

sends response signals to the input of the comparison element, forming a control signal that is fed to 

the input of the FMU and its model. The LB receives two signals: the inconsistency of the FMU and 

TE models with the FMU and TE models – model error (ξmod) and the inconsistency of the FMU with 

the FMU model – FMU error (ξFMU). As practice shows, the TE error is small and is not taken into 

account in the course of the research [16]. 

The regulator is designed on the basis of the ACS diagram with channel regulators after the selector 

(developer by professor Valery Petunin), where one of the channels is a control channel, which can be 

considered a channel for controlling the gas generator rotor r.p.m. nTC, and the other channel is a 



limitation channel, for example, a channel for controlling the gases temperature before the compressor 

turbine TG. 

The TE model is presented as a self-adjusting neural network control system with interconnected 

coordinates. The control error vector after the comparison elements is fed to the input of the neural 

network and the weight correction block, in which, depending on the control error signal, the weight 

coefficients of the neural network are corrected at each discrete time point. The output signal vector of 

the neural network is a control vector and is fed to the input of the control object (helicopters TE). The 

neural network is multilayered with one intermediate layer containing N0 neurons in the input layer and 

N2 neurons in the output layer, while N2 = N0 = n. The network is characterized by the number of neurons 

N1 in the inner layer. The input layer (layer 0) consists of nodes – signal receivers – control error vector, 

and the output layer – of neurons – signal sources [16]. 

For the purpose of signal or parametric adaptation, the developed modified closed onboard 

helicopters TE ACS is supplemented with connect adaptation modules that implement adaptive control 

methods: 

– signal adaptation module; 

– parametric adaptation module; 

– linear model submodule; 

– customizable model submodule. 

The adaptive control subsystem is developed as a software module in accordance with the developed 

algorithm [20], then the resulting software module is directly integrated into the standard selective 

modified closed onboard helicopters TE ACS.  

Key 1 performs the function of enabling or disabling connect adaptation modules, key 2 – switching 

signal or parametric adaptation models, key 3 – switching submodules of the reference or customizable 

models. 

As a result, an improvement in the quality indicators of regulation was obtained for the channel of 

the free turbine speed nFT of onboard helicopters TE ACS introduced into the developed helicopters TE 

ACS by an average of 3...5 % in terms of the maximum deviation and by 20...30 % with the standard 

onboard helicopters TE ACS, the time spent (by 2...2.5 times or more) on setting the regulators of 

onboard helicopters TE ACS was reduced due to the use of an adaptive control module connected in 

parallel with the regulators of onboard helicopters TE ACS. 

To check the calculated parameters and the correspondence of the code to mathematical expressions, 

the developed modules were supplemented with a module of models and controllers of helicopters TE 

and a control module that allows you to set: simulation time, simulation step, initial load value, load 

change time, new load value. As a result, a software package for preliminary adjustment of the adaptive 

module was obtained. 

The desired behavior of the system over the entire operating range is ensured by adjusting the 

regulators. Optimization methods, fitting methods, and other methods can be used to tune the custom 

and reference models. The structure of the custom and reference models allows you to tune them to the 

symmetric optimum [21]. In this case [22], a zero static error will be provided. For an open-loop system 

tuned to symmetric optimum, the transfer function has the following form: 

( )2

4 1
;

8 1
desired

T
W

T T p



 

 +
=

   +
       (2) 

where Tμ – small uncompensated time constant. 

The software package for pre-configuring modules allows you to check modules both individually 

and together. The main task of this software package is to check the software implementation of 

adaptive control algorithms. 

Algorithms for adaptive control of helicopters turboshaft engines based on a reference model and a 

customizable model are implemented in the form of an adaptive control module and are used as part of 

developed closed onboard helicopters turboshaft engines automatic control system, which makes it 

possible to conduct computer tests of closed onboard helicopters turboshaft engines automatic control 

system in real time, predict the engine operational status, which, ultimately, affects the current 

management process. 
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Figure 8: Modified closed onboard helicopters turboshaft engines automatic control system  
 



3.3. Analysis of modified closed onboard closed helicopters turboshaft engine 
automatic control system stability 

Since the synthesized modified closed onboard helicopters TE ACS with a neural network controller 

is essentially non-linear, the question of the stability of control processes in this system during the 

development of external disturbances remains open. 

In the general case, various methods are used to study the stability of nonlinear ACS: the first and 

second methods of Oleksandr Lyapunov, the circular stability criterion of Volodymyr Yakubovich, etc. 

In this paper, we propose an approach to studying the stability of ACS with a neural network controller 

using the theorem on low gain [23, 24]. 

According to the methodology developed by professor Volodymyr Vasiliev it is assumed that in the 

basic (steady) helicopters TE operating modes (taking into account the dynamics of the actuator) is 

described by transfer functions of the form:  

( ) ( )
( )

( )

( )

( )

( ) ( )

( ) ( )
0

0

...
;

...

r rm
r TC m

TE r rn
T n

N s a s a s a
W s

G s b s b s b

+ +
= = =

+ +
      (3) 

where NTC(s) and GT(s) – Laplace images for variables nTC and TG; r – helicopters TE operation mode 

number, r = 1…M, m < n. The coefficients 
( ) ( )
0 ...
r r

ma a  and 
( ) ( )
0 ...
r r

nb b  transfer functions depend on the 

specific mode of operation of the engine. 

Fig. 9 shows a typical equivalent block diagram of a non-linear closed onboard helicopters TE ACS 

obtained by equivalent transformations of the onboard ACS (fig. 8), where y = (e, V)T, x – vectors of 

the output coordinates of the linear part (LP) and the output of the non-linear element (NE) dimensions 

2x1 and mx1, respectively; u – NE scalar output; u = Ф(x) – neural network "input-output" 

characteristic; ( ) ( ) ( ) ( )11,
Tr

LP TEW s W s s−=   – matrix transfer function of LP size 2x1; f1 = f1(t) and f2 = 

f2(t) – external influences on the system, limited in magnitude. 

Ф(x)

WLP(s)

Linear Part 

Non-Linear Element 

f1 = f1(t) f2 = f2(t)

xu

+

+

+

-

 
Figure 9: Equivalent block diagram of a non-linear closed onboard helicopters TE ACS 
 

In accordance with the small gain theorem, control processes in a given system are stable if it is 

possible to find such a linear feedback control law u = Cx and a positive number r for which the 

following conditions are satisfied: 

1) the boundary gain of the nonlinear mapping Ф(x) – Cx must be less than the slope of the cone r: 

( )

0

sup ;
x

x

x C
r

x

 −
         (4) 

2) the closed linear system obtained by replacing Ф(x) with Cx and described by the matrix of 

transfer functions ( )
( )

( )
LP

LP

W s
H s

I CW s
=

+
, is stable; 

3) the product of the linear system gain H given by its matrix frequency response H(jω) and the cone 

slope r must be less than 1: 

( ) sup 1;H j r


            (5) 

With regard to the aircraft TE TV3-117 considered in this paper, which is part of the power plant of 

the Mi-8MTV helicopter and its other modifications, the transfer function coefficients ( ) ( )r

TEW s  for 

various engine operating modes are given in table 1. 



Table 1 
Transfer function coefficient values 

Mode a0 a1 b0 b1 b2 b3 b4 

1 1.93 2.26 0.12 1.54 6.35 5.65 2.73 
2 2.04 3.11 0.12 1.82 9.21 1.21 4.11 
3 1.79 8.97 0.12 2.93 35.73 60.09 1.57 

 

A multilayer neural network of the perceptron architecture with three neurons in the hidden layer 

and one neuron in the output layer is taken as a neural network controller (fig. 10). The total number of 

weights of synaptic connections (configurable parameters of the neural network controller) – 9; type of 

neuron activation function – tangential sigmoid. 

E = Δni

( )i

t

V n t dt= 
u = GT

 
Figure 10: Multi-mode neural network controller modified structural diagram 
 

For the synthesized neural network controller, the “input-output” characteristic of the neural network 

u = Ф(e, V) was develop, for which the dependence u = 0.5e + 0.5V was chosen as the linearizing 

characteristic u = Cx, that is, C = (0.5; 0.5). For this method of approximation of the operator Ф(x), we 

obtain for the ranges  1,1e −  and  0,1V   the value of the coefficient r = 0.392. 

Matrix eigenvalue calculation 

( )
( )

( )

( ) ( )

( ) ( ) ( )
( )11;

0.5 1

r
TLP TE

r

LP TE

W s s W s
H s s

I CW s s s W s

−


= = 
+ + + 

      (6) 

carried out according to the rule: 
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     (7) 

where H*(jω) is the transfer function matrix conjugate to H(jω). 

Thus, the product of the boundary values of the LP and NE gains in this case is equal to: 

( ) 
0

sup 0.392 2.471 0.969 1;H j r


 


 =  =   

i.e., the conditions of the small gain theorem are satisfied. Consequently, all forced processes in the 

studied ACS, corresponding to the limited setting action (setpoint) g(t) and other external perturbations 

acting during the helicopter TE operation, are asymptotically stable in general, which is a necessary 

condition for the performance of the synthesized modified closed onboard helicopters TE ACS. 

3.4. Rationale for choosing a neural network training algorithm 

When choosing an algorithm for implementing the proposed training diagram, one should consider 

methods of sequential training of a neural network with a high convergence rate, such methods primarily 

include first and second order gradient descent methods. 

As a diagram algorithm in this paper, we adopted the error backpropagation algorithm (method of 

moments) with regularization [25], due to the simplicity of its implementation and low computational 

costs. At the same time, it is proposed to use a variable training rate parameter for each layer of the 

neural network as a function of the error of neurons of the corresponding layer. The diagram algorithm 

is a set of actions shown in table 2. 



Table 2 
Steps of backpropagation algorithm with regularization 

Step Description 

1 Initialization of weights W with random small values, choice of initial η0 and 
maximum training rate ηmax, control errors δ. 

2 Zero initialization of the initial values of the change in weights ΔW. 
3 Definition of error E(k) according to (1). The use of a quadratic criterion when 

calculating the training error of a neural network allows you to increase the accuracy 
of closed onboard helicopters TE ACS parameters identification by reducing root-
mean-square error. 

4 If the result is satisfactory, namely |E(k)| ≤ δ, then network training is not 
implemented; otherwise, go to step 5. 

5 Calculation of the value of the gradient of the loss function ∇E(k) at the current 
iteration. 

6 Determining the training rate parameter for the i-th layer according to the 
expression: 

max 1 ;i

i e 
−

=  +
G  

where ηmax – maximum training rate; 
( )1

1

l

i l
j i

i
i

+
= +

=

 x

G  – arithmetic mean value of the 

error for the i-th layer of the network; l – number of neurons in the j-th next relative 
to the i-th layer; x – network error matrix, where ( )  maxdim m d= x , mmax – 

maximum value of neurons among all layers of the neural network; d – number of 
layers of the neural network. In this case, we consider the network inputs as the 
first layer. 

7 Calculation of parameter change according to the expression: 

( ) ( ) ( )( ) ( )1 1 ;W k E k W k W k   =  +  − +  −  

where η – coefficient characterizing the training rate; ρ – regularization coefficient; 
ΔW(k – 1) – weight change at the previous iteration; μ – moment coefficient;           
W(k – 1) – value of the weight coefficients at the previous iteration. 

8 Network weight adjustment: 
9 Go to step 3 

4. Experiment 

The input parameters of helicopters TE mathematical model are the values of atmospheric parameters 

(h – flight altitude, TN – temperature, PN – pressure, ρ – air density). The parameters recorded on board of 

the helicopter (nTC – gas generator rotor r.p.m., nFT – free turbine rotor speed, TG – gas temperature in front 

of the compressor turbine) reduced to absolute values according to the theory of gas-dynamic similarity 

developed by Professor Valery Avgustinovich (table 3). We assume in the work that the atmospheric 

parameters are constant (h – flight altitude, TN – temperature, PN – pressure, ρ – air density) [26]. 

Table 3 
Part of training set 

Number TG nTC nFT 

1 0.932 0.929 0.943 

2 0.964 0.933 0.982 

3 0.917 0.952 0.962 

4 0.908 0.988 0.987 



5 0.899 0.991 0.972 

6 0.915 0.997 0.963 

7 0.922 0.968 0.962 

8 0.989 0.962 0.969 

9 0.954 0.954 0.947 

10 0.977 0.961 0.953 

11 0.962 0.966 0.955 

… … … … 

256 0.953 0.973 0.981 
 

Table 4 shows a comparative analysis of the training results of the developed three-layer perceptron 

The reverse propagation algorithm was chosen as the training algorithm, which ensures high 

convergence velocity and accuracy of the training process. 
 

Table 4 
The training results of neural network perceptron 

Traning Algorithm Root-mean-
square error 

Number of training 
stages 

Number of neurons 
in the hidden layer 

Reverse propagation 
with regularization 

 
0.597 

 
500 

 
3 

Reverse propagation 0.936 600 5 
Fast propagation 2.374 750 6 

Conjugate gradient 2.991 750 10 
Quasi-Newton 2.038 700 8 

Lewenberg-Marquardt 1.628 600 5 

In this article [27], the sigmoid neuron activation function of the form ( )
1

1

x

x

e
f x

e

−

−

−
=

+
, is used as the 

activation functions of neurons for a three-layer perceptron.  

To determine the optimal number of neurons in the hidden layer, an experimental addiction E = f(N) 

was built, shown in fig. 11, where E – neural network training error; N – number of neurons in the 

hidden layer (it is assumed that the number of neurons in the input layer – 2, in the output layer – 1). 

The neural network was trained for 500 stages, the training accuracy characteristic is shown in fig. 

11, a, while the steady-state root-mean-square error (RMS) is ∼0.597. In accordance with fig. 11, b, the 

number of neurons in the hidden layer that provide the smallest training error is 3 neurons. 
 

 
a              b 

Figure 11: Neural network training results: a – characteristic of the accuracy of neural network 
training; b – addiction of training error on the complexity of the neural network 
 



As you can see from fig. 11, with 3 neurons in the hidden layer, the smallest training error of the 

neural network is achieved, that is, the optimal structure of the neural network is 2–3–1. 

Valuation is an important issue of the homogeneity of the training and test samples. To do this, we 

use the Fisher-Pearson criterion χ2 [28] with r – k –1 degrees of freedom: 

( )

( )
2

1

min ;
r

i i

i i

m np

np




=

 −
=   

 
                   (8) 

where θ – maximum likelihood estimate found from the frequencies m1, …, mr; n – number of elements 

in the sample; pi(θ) – probabilities of elementary outcomes up to some indeterminate k-dimensional 

parameter θ. 

The final phase of statistical data processing is their normalization, which can be executed according 

to the expression: 

min

max min

;i i
i

i i

y y
y

y y

−
=

−
        (9) 

where 
i

y  – dimensionless quantity in the range [0; 1]; yimin and yimax – minimum and maximum values 

of the yi variable. 

For the purpose of establishing representativeness of the training and test samples, a cluster analysis 

of the initial data was performed (table 3), during which eight classes have been identified (fig. 12, a). 

Following the randomization procedure, the actual training (control) and test samples were selected (in 

a ratio of 2:1, that is, 67 % and 33 %). The process of clustering the training (fig. 12, b) and test samples 

shows that they, like the original sample, contain eight classes each. The distances between the clusters 

practically coincide in each of the considered samples, therefore, the training and test samples are 

representative [26]. 

 
    a             b 

Figure 12: Clustering results: a – initial experimental sample (I…VIII – classes); b – training sample [26] 
 

The above mentioned statistics χ2 permits, under the above assumptions, to check the hypothesis 

about the representability of sample variances and covariance of factors contained in the statistical 

model. The field of hypothesis acceptance is 2

,n m   − , where α – significance level of the criterion. 

The results of calculations in accordance with (7) are in table 5. 

Table 5 
Part of the training sample during the operation of helicopters TE (on the example of TV3-117 TE) 

Number P(TG) P(nTC) P(nFT) 

1 0.561 0.109 0.652 
2 0.588 0.155 0.574 
3 0.542 0.128 0.515 
4 0.612 0.147 0.655 
5 0.644 0.121 0.612 
… … … … 

256 0.537 0.098 0.651 



Calculation of the χ2 value based on the observed frequencies m1, …, mr (summing line by line the 

probabilities of the outcomes of each measured value) and comparing it with the critical values of the 

distribution χ2 with the number of degrees of freedom r – k –1. In this article, with the number of 

degrees of freedom r – k –1 = 13 and α = 0.05, the random variable χ2 = 3.588 did not exceed the critical 

value from table 4 is 22.362, which means that the hypothesis of the normal distribution law can be 

accepted and the samples are homogeneous [26]. 

5. Results 

From the point of view of adaptive and optimal control, the minimized functional plays a key role. 

Often, this functional is presented in the form of a generalized work functional (GWF) [29], proposed 

by academician A.A. Krasovsky. Computer simulation of various variants of the ACS by the extraction 

cascade has established that the root-mean-square deviation of the gas generator rotor r.p.m. nTC (free 

turbine rotor speed nFT) and gases temperature in front of the compressor turbine TG, which does not 

exceed 1 % of the set value, ensures stable engine operation. Therefore, in the system (see fig. 8), the 

goal of control is to stabilize the gas generator rotor r.p.m. nTC (free turbine rotor speed nFT) and gases 

temperature in front of the compressor turbine TG. This means that the GWF written in the following 

form can act as the target functional: 

( )0

22 ;
k he k hu

i i kY
i i

J u u
+ +

= =

= + −       (10) 

where k = 1, 2, …, ∞; εi – control error of gas generator rotor r.p.m. nTC (free turbine rotor speed nFT) 

and gases temperature in front of the compressor turbine TG; ui – control action; he is the interval of 

optimization by control error; hu – control optimization interval. In this paper, it is proposed to split the 

GWF (9) into four parts: 
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where ΔnTC, ΔnFT, ΔTG – permissible standard deviation of gas generator rotor r.p.m. nTC (free turbine 

rotor speed nFT) and gases temperature in front of the compressor turbine TG; Δu – allowable root-mean-

square change in the control action over the control optimization interval. The value of Δu was determined 

experimentally in order to achieve the goals (11–14) and the acceptable performance of the system. 

In this paper, the process of controlling the rotor speed loop of gas generator rotor r.p.m. nTC. At 

various operating points of gas generator rotor r.p.m. nTC (table 3), a parametric synthesis of a neural 

network controller was carried out using the following methods: optimal modulus, Kuhn, Kopelovich, 

Kopelovich–Sharkov, aperiodic stability, dynamic compensation. At each operating point, from the 

obtained parameters of the neural network controller, parameters were selected that provide the best 

direct indicators of control quality (control time, dynamic control coefficient) and coarseness. Thus, 

grid functions ( )p

i TCk n , ( )i

i TCT n , ( )d

i TCT n  were obtained. In order to improve the accuracy of control, 

amplification ( ) ( )8.5p p

i TC i TCk n k n=   was performed. Using these grid functions, training data was 

obtained for a neural network of size n = 256.  



It was experimentally established that the error in the approximation of tabular given dependencies 

using neural networks [30, 31], reduced to the range of their change, did not exceed 0.025 %. 

From the one shown in fig. 13, fig. 14 of the transient process it follows that the automatic control 

system with a neural network controller provides the best quality of control: the dynamic control 

coefficient is 6 times less, the control time is 2 times less compared to a system based on a PID controller 

with constant settings. Fig. 15 shows gas generator rotor r.p.m. nTC signal timing diagram with 

continuous disturbances and the operation of gas generator rotor r.p.m. nTC ACS with and without neural 

network adaptation (fig. 3). 

 
a 

 
b  

Figure 13: Transient processes diagrams in modified closed onboard helicopters TE ACS (gas generator 
rotor r.p.m. nTC channel): a – input signal; b – real transient processes (1 – with neural network 
regulator (fig. 3); 2 – without neural network regulator) 

 

 
    a      b 

Figure 14: Transient processes diagrams in modified closed onboard helicopters TE ACS (gas generator 
rotor r.p.m. nTC channel): a – sector I in fig. 13, b; sector II in fig. 13, b (1 – with neural network regulator 
(fig. 3); 2 – without neural network regulator) 

 



 
a 

 
b 

Figure 15: Signal timing diagram (gas generator rotor r.p.m. nTC channel): 1 – with neural network 
regulator (fig. 3); 2 – without neural network regulator 

6. Discussions 

As a result of a comparative analysis of neural network accuracy (perceptron (fig. 10), RBF, modular 

neural network) and classical methods: least squares method (LSM) and group argument accounting 

method (GAAM) of identifying the ACS controller by three engine parameters (table 6), it was found 

that the maximum identification error when using the perceptron neural network is 2.14 times less than 

for the 12th order polynomial regression model built using LSM and 1.85 times less than the GAAM, 

and less for the modular neural network and for the RBF, respectively 1.29 and 1.25 times. At the same 

time, the perceptron provides an identification error not exceeding 0.441 %; modular neural network – 

0.732 %; neural network RBF – 0.755 %; GAAM – 0.817 %; LSM – 0.942 %. 

Table 6 
Results of identifying a neural network controller 

Calculation method Parameter 
TG nTC nFT 

Classical methods: 
least squares method 
group argument accounting method 

 
0.887 
0.663 

 
0.844 
0.701 

 
0.942 
0.817 

Neural network methods: 
perceptron (fig. 10) 
modular neural network 
RBF network 

 
0.267 
0.499 
0.542 

 
0.318 
0.535 
0.573 

 
0.441 
0.732 
0.755 

 

In order to analyze the stability of neural networks to changes in input data (table 3), additive noise 

was added to them in relation to the current value of each of the parameters in the form of white noise 

with zero mathematical expectation and σi = ± 0.01 (table 7). 



Table 7 
Results of identifying a neural network controller under conditions of additive noise (M = 0, σi = ± 0.01) 

Calculation method Parameter 

TG nTC nFT 

Classical methods: 
least squares method 
group argument accounting method 

 
2.999 
2.618 

 
3.717 
2.962 

 
5.866 
1.957 

Neural network methods: 
perceptron (fig. 10) 
modular neural network 
RBF network 

 
0.535 
1.184 
1.305 

 
0.604 
1.198 
1.308 

 
0.695 
1.215 
1.324 

 

The results of the analysis of the identification accuracy of an ACS controller by three engine 

parameters under noise conditions showed the following results: neural network perceptron (fig. 10) – 

0.695 %; modular neural network – 1.215 %; RBF network – 1.324 %; GAAM – 1.957 %; LSM – 

5.866 %. 

Thus, the paper considers a promising approach that makes it possible to increase the efficiency of 

automatic control of complex technological objects [32, 33] (helicopters turboshaft engines at flight 

modes) in the conditions of limited computing capabilities of control controllers [33, 34], which is the 

use of neural network controllers in ACS. 

7. Conclusions 

1. An improved approach has been improved to improve the efficiency of automatic control of 

helicopters turboshaft engines in conditions of limited computing capabilities of control controllers 

through the use of a reconfigured neural network controller in front of the engine control channel 

selector and an adaptive control subsystem, which was a connect adaptation modules. 

2. Neural network control algorithms for gas turbine engines based on multilayer perceptron’s have 

been further developed, which, due to the use of a quadratic training error criterion for a neural network 

in a modified error backpropagation algorithm with regularization, provide the required indicators of 

the quality of transient processes of helicopters turboshaft engines thermo-gas-dynamic parameters at 

flight modes in a given range of mode changes engine operation. 

3. The algorithm for analyzing the stability of a neural network control system based on the low gain 

theorem was further developed, which, due to the use of a reconfigured neural network controller in 

front of the engine control channel selector, as well as the Gaussian form of linguistic variables in the 

system of rules for the control and training algorithm of the neural network controller, guarantees the 

absolute stability of helicopters turboshaft engines automatic control system at flight modes for an 

arbitrary range of driving and disturbing influences. 

4. The use of the proposed adaptive modified closed onboard helicopters turboshaft engines 

automatic control system at flight modes can significantly reduce the influence of the human factor due 

to more significant roughness and stability compared to classical automatic control systems based on 

PID controllers. 

5. It was found that the error in identification the ACS controller using the perceptron neural network 

did not exceed 0.441 %; modular neural network – 0.732 %; RBF network – 0.755 %; GAAM – 

0.817 %; LSM – 0.942 %. 

6. It has been experimentally confirmed that neural network methods are more robust to external 

disturbances: for the noise level σi = ± 0.01, the error in identifying the ACS controller increased from 

0.441 to 0.695 % using the perceptron neural network; modular neural network – 0.732 to 1.215 %; 

RBF network – from 0.755 to 1.324 %; GAAM – from 0.817 to 1.957 %; MNC – 0.942 to 5.866 %. 

7. The conducted experimental studies have shown the feasibility of using a multi-stage neural 

network controller in modified closed onboard helicopters turboshaft engines automatic control system. 
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