
Neural  Network  Method  for  Detecting  and  Diagnostics 
Helicopters Turboshaft Engines Surge at Flight Modes 
 
Serhii Vladov1, Yurii Shmelov1, Ruslan Yakovliev1 and Maryna Petchenko2  

 
1 Kremenchuk Flight College of Kharkiv National University of Internal Affairs, vul. Peremohy, 17/6, 
Kremenchuk, Poltavska Oblast, Ukraine, 39605  
2 Kharkiv National University of Internal Affairs, L. Landau Avenue, 27, Kharkiv, Ukraine, 61080  

 
  

Abstract  
The work is devoted to the development of a neural network method for diagnostics 
(monitoring) helicopters turboshaft engines pre-surge status in real time (at helicopter flight 
mode). The developed method for helicopters turboshaft engines is based on a mathematical 
model of the time distribution of air pressure in the compressor during the transient process, 
which is construct on the basis of the classical theory of the movement of liquids and gases, 
taking into account the features of the thermogas-dynamic flow in the compressor of 
helicopters turboshaft engines. Diagnostics (monitoring) helicopters turboshaft engines in real 
time is carried out using a linear neural network with the optimal number of neurons – 10 or 
more. It is proposed to train a linear neural network on dynamic neurons, which, due to the 
adjustable smoothing parameter from the range from zero to one, made it possible to obtain an 
accuracy of 99.99 % of the task being solved. The developed method can serve as one of the 
blocks of the onboard neural network expert system for the integrated monitoring and operation 
of helicopters turboshaft engines, which automatically decides on helicopters turboshaft 
engines operational status at helicopter flight mode and provides the crew with information 
about the possibility of helicopter further movement.  
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1. Introduction 

At present, a modern aircraft gas turbine engine (GTE) and its control systems are a complex 
dynamic system. The correctness and safety of the operation of aviation gas turbine engines require 
constant and continuous monitoring of its parameters, the effectiveness of which significantly depends 
on the probability of correct recognition of its technical condition, including defects, which directly 
affects the quality of gas turbine operation control systems, which ultimately determines the efficiency 
and safety of flights. 

One of aircraft GTE leading defects is the stall mode of its operation – surge, which is characterized 
by various non-stationary phenomena resulting from the loss of stability of the air flow in the 
compressor. In this case, strong pulsations of the air flow appear, a drop in its pressure, which leads to 
vibrations of the compressor blades and can cause its destruction. Thus, surge is not allowed during 
engine operation [1], which indicates the need for its monitoring (diagnostics). 

The development of approaches to diagnostics aircraft GTE operational status, including helicopters 
turboshaft engines (TE), is proceeding in several directions. Much attention is paid to the improvement 
of algorithmic support, which expands the capabilities of diagnostic models and increases the reliability 
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of diagnostics. In [2, 3], the advantages of using artificial intelligence methods over classical diagnostic 
methods for troubleshooting are shown. It is noted that neural networks are the most effective, since 
they have high adaptive characteristics and can solve complex problems of classification and pattern 
recognition. Existing neural network diagnostic methods are limited by the specificity of the tasks being 
solved, the insufficient development of the theory of their application for TE diagnostics, the lack of 
universal and formalized approaches, and the imperfection of the methods themselves. In this regard, 
an urgent scientific and practical task is the development of a neural network method for monitoring 
(diagnosing) surge (pre-surging state) of TE in helicopter flight conditions, which will significantly 
improve the safety of helicopter flights. 

2. Related Works  

There are known surge diagnostic methods [4, 5], in which the measured parameters are: gas 
temperature in front of the compressor turbine, pressure at the inlet and outlet of the compressor, gas 
generator rotor r.p.m. As is known [6], when a surge occurs, gas temperature in front of the compressor 
turbine increases, gas generator rotor r.p.m. decreases, and the air pressure behind the compressor 
sharply decreases relative to the pressure at the inlet to air inlet section. The conclusion about the 
development of surge in the compressor is made in case of exceeding a predetermined threshold value 
of the ratio of gas temperature in front of the compressor turbine to gas generator rotor r.p.m. 

The disadvantage of the known methods is that the ratio of gas temperature in front of the compressor 
turbine to gas generator rotor r.p.m. can exceed a predetermined threshold value when the engine 
operation mode changes, for example, when throttling, on the basis of which a false conclusion can be 
made about the presence of surge. 

An analysis of published works devoted to the use of neural networks for diagnostics the aircraft 
GTE operational status shows that in [7, 8] the main trends are outlined and the characteristic features 
of solving the problems of diagnostics aircraft GTE based on neural networks are highlighted. 

At the same time, they are mainly devoted to solving particular problems (for example, GTE turbine 
blades operational status diagnostics [9], forming a space of diagnostics signs of aircraft GTE operational 
status to build a neural network classifier [10], indirectly measuring the temperature of gases behind the 
combustion chamber based on neural networks for diagnostics the thermal state of the engine [11]. 
However, they do not contain instructions on the choice of architecture, structure and training algorithms 
for the neural network, there is no engineering methodology for designing neural networks in relation to 
the problems of aircraft GTE operational status diagnostics) of helicopters TE are also missing. 

3. Methods and Materials 

Let ρ(x, t) be the density of the liquid, then applying the law of conservation of mass, we obtain that 
the rate of change of mass in the volume V must be equal to the mass flow crossing the surface S of the 
volume V (fig. 1, a). The mass flow through the surface element dS is equal to –ρvdS [12, 13]: 
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Applying the Gauss's-Ostrogradsky's theorem, we arrive at the differential equations for 
conservation of mass [12, 13]: 
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Similarly, the equation of motion for the medium can be derived from the condition of conservation 
of pulse. Consider the preservation of the projection of the pulse in the X-direction (fig. 1, b). The X-

component of the total pulse in the volume V is x

V

v d  . Due to pulse convection and the influence 

of pressure p in the X-direction, the X-component of the pulse of the medium in the volume V increases 

with time (ex – unit vector in the X-direction), i.e.,  x x

S

v V pe dS � . Then, from the law of 

conservation of pulse (X-components), we get the equation: 
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Using the Gauss's-Ostrogradsky's theorem, we obtain: 
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Similarly, the equations of motion for the Y- and Z-directions are obtained. Let's combine these 
equations and get: 
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where I – unit tensor. 
Let's draw two cross-sections at any place of the flow in the gas pipeline, let the distance between 

them be dx. 
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Figure 1: Diagram of conservation in the environment: a – mass; b – pulse [12] 
 

Using the pulse theorem, we obtain (fig. 1, b): 

  2 sin sin ;
f f

f p
vdfdx v df fpdx dx fdx p f dx dx fdx

t x x x x
       

       
                      

   (7) 

where ρ – density; p – average pressure in the section; f – cross-sectional area; v – longitudinal velocity 
in the cross-sectional element; t – time; τ – projection of the tangential stress on the pipe wall onto the 
X axis – flow direction – average over the wetted perimeter; χ – wetted perimeter; γ – gas volume unit 
weight; α – elevation angle of the dx element axis above the horizon. 

We reduce this equation to dx, we get: 
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where M – flow rate; I – projection on the X-axis of the amount of movement of the mass M: 
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Equation (8) is a general equation that is valid for any gas-dynamic flow in a pipe. 
Consider the mass balance entering and leaving the dx element, using the continuity theorem, we 

obtain the equation: 
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In the general case, the quantity I can be given in the form: 
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where ω – average velocity in the section, β – Coriolis correction for the uneven distribution of 
velocities in the expression of the amount of flow movement due to the average velocity and the average 
density in the section. As is known, in steady motion for a normal distribution of velocities in a turbulent 

flow β ≈ 0, in a parabolic distribution 
1

3
  . In case of unsteady motion, β will naturally be a variable 

value that depends on the nature of the distribution of velocities in the pipe sections. 
Next, we will use the following formula from gas dynamics for the tangential stress τ: 
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where λ – resistance coefficient in the Darcy-Weisbach formula for frictional head loss in the pipe. Its 
λ can always be set knowing the roughness of the pipe and the flow rate. 

It is known that λ depends on the roughness of the pipe and the mode of movement (Reynolds 
number). We will accept the following assumption that the resistance characteristics established for 
stationary movements are preserved for non-stationary ones as well. 

Rigorous substantiation of this assumption is quite difficult, although it is confirmed by a rather 
satisfactory agreement between theory and experience. Using the above remarks, equation (8) will be 
rewritten in the form: 
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Since M = ρSω, the equation can be simplified: 
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where δ – hydraulic radius of the section, which is equal to: 
2

4 ;
4

d
f d

X d





                     (16) 

where d is the diameter of the gas pipeline. 
Next, let's return to the inseparability equation (11). For gas compression, let's take S = const and 

use the following formula: 
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where c – gas sound speed, from which we obtain, opening the full differentials dp and dρ: 
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Since the increments of dt and dx are arbitrary, it is necessary that 2
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the following equation: 

 
2

.
S S p

S
t t c t

   
 

  
                  (19) 

As a result, the equation of motion (8) and continuity (11) can be written in the form of the following 
system: 
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The system of equations (20) is a system of two differential equations of the first order in partial 
derivatives of the hyperbolic type, in the general case nonlinear. Dividing both parts of the system by 
S, we get: 
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Let's simplify the system of equations (20). We will show that in equations (8) and (21) it is possible 

to neglect the term   1
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Let us denote sin
dz
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  , where z – excess of the center of gravity of the pipe section above an 

arbitrary horizontal plane. It is possible to integrate the first of equations (21) over x from x1 to x2 at a 
fixed t and present the result in the following form: 

           
2 2

1 1

2
2 2

1 1 2 2 2 1
1 1 .

8

x x

x x

p z p z x x
t

       



          

   (22) 

During the movement of gas with subsonic speed, it is always possible to neglect the dynamic 
pressure corresponding to the high-speed pressure, as well as to neglect the hydrostatic pressure of the 

gas due to its low density. It follows that in (21) the last difference      2 2
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system (20). In the future, under pressure p we mean the sum p + γz and omit the term γsinα. As a result, 
we will get the following system: 

 

 

2

2

;
8

.

p

x t

p
c

t x

 




 
    


   

    (23) 

Let's transform system (23) into the form: 
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Equations known in electrical engineering that describe the change in electric potential along an 
electric circuit (dφ/dx) and over time (dφ/dt) have a similar form, if this electric circuit is composed of 
elements that have, per unit length, an ohmic resistance of R0, capacity С0 and inductance L0. These 
equations are known as telegraph equations of a long line and have the form [14, 15]: 
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where p → u, ρω → i, 
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In order to detect surge in the helicopter aircraft TE compressor, an elementary section of its model 
is considered in the form of a long line, which is a sequential RCL-oscillating circuit with a voltage 
source U0 acting on it. The analysis of free oscillations in a sequential oscillating circuit leads to the 
solution of a system of two linear differential equations of the first order with constant coefficients of 
the relative variable state – current in the inductance (blood flow) and the voltage (pressure) on the 
capacity of the circuit. One of the equations is formed as a result of applying Kirchhoff's second law to 
the contour: 

UL + UR + UC – U0 = 0.                                         (26) 
The second equation relates the current in the circuit to the voltage on one of the elements: 
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It is also worth adding two more auxiliary equations describing the voltages on the inductance and 
resistance: 
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Taking into account the above, the system of differential equations according to Kirchhoff's laws 
has the form: 
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Having expressed from system (30) the derivatives of the voltage on the capacitor and the current in 
the inductance, we obtain the equation of state: 
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The unknown state variables in the obtained system of equations (31) are the voltage on the 
capacitors and the current in the inductance. The matrix of system coefficients (31) in this case has the 
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The matrix of free members is determined by the parameters of the active sources in the circuit and 
has the form: 
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The matrix of initial conditions has the form: 
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We determine the eigenvalues of matrix A: 
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λ1 – λ2 = (a + jb) – (a – jb) = 2jb. 
Sylvester's formula is used to calculate eAt, which has the form: 
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where 
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  – diagonal identity matrix of order n for two states iL and UC. Then Sylvester's formula 

takes the form: 
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To calculate the voltage on the capacitor and the current in the inductance, the state equations are 
solved in matrix form: 
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Taking into account L = 1, the voltage on the capacitor is calculated as follows: 

( ) ( ) ( )( ) ( )( )0 0
0 0

0

1 1
( )

2 2 2 2 2 2

t
a jb t a jb t a jb t a jb t

C

U Ua a
U t e U e U e e d

jb jb jbC jbC
            

             
     

  

21 4

2 2( ) ( ) 0
0 0

1 1 1 1

2 2 2 2 2

Rat jbt at jbt j R t
Ca jb t a jb t Ua a e e

e U e U e
jb jb jbC a jb a jb

 
               

                   
 

2

2

1 4
1 4 2

2 2 0
0 0

2 2 2 2

1 1 12 2
2 24 4 4 1 4

2 2

R
j R tR L Cj R t

C

R R
U e

U e U
R

j R j R jC R j R
C C C C

 
             

 

    
                    
             
    

 

21 4

2 2

2

1
.

1 4

2 2

R
j R t

C
e

R
j R

C

 
       
 




  
     


     (39) 

Expression (39) describes the pressure distribution in the compressor over time. Since surge is 
characterized by a sharp change in pressure at the inlet and outlet of the compressor, an increase in the 
gas temperature in front of the compressor turbine and a decrease in gas generator rotor r.p.m., therefore, 
it is advisable to use expression (39) to monitoring the pre-surge engine status. 

Since the air flow turbulence phenomenon takes place in the compressor of helicopters TE [16, 17], 
we assume that the useful signal UC(t) is mixed with noise δ0 that is not correlated with it. The signal δ is 
set, it is not correlated with UC, but correlates in an unknown way with the interference signal δ0. It is 
assumed that UC, δ0 and δ are statistically stationary, and their average values are equal to zero. The task 
of the neural network is to process the signal δ in such a way that the signal y at the output of the network 
is as close as possible to the noise signal δ0. The error signal ε is determined according to the expression: 

0 .CU y          (40) 
The objective function is presented in the form of the expected value E of the quadratic error: 
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If we take into account that the signal UC does not correlate with the noise signal, then the expected 
value  0 0E y      , and the objective function is simplified to the expression 
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Since the filter does not change the signal UC, minimization of the objective function of the error Z 

is ensured by selecting its parameters in such a way that the value of  2

0 minE y    . Thus, 

reaching the minimum of the objective function Z means the best adaptation of the value of y to the 



noise δ0. The minimum possible value 2
Cx E U     for which y = δ0. In this case, the output signal ε 

corresponds to the useful signal UC completely denoised. 
In the task of monitoring helicopters TE pre-surge status, the input signal and the objective function 

coincide, that is, the training error of the neural network, which must be minimized, is determined 
according to the expression: 
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To solve the task of monitoring helicopters TE pre-surge status, we consider the use of a linear neural 
network (fig. 2), which consists of K neurons located in one layer and connected to R inputs through 
the weight matrix W.  

For a given network and the corresponding set of input and target vectors, it is possible to calculate 
the network output vector and form the difference between the output vector and the target vector, 
which will determine some error [18]. In the training process, it is required to find such values of 
weights and biases so that the sum of the squares of the corresponding errors is minimal. A supervised 
training procedure is proposed that uses a training set of the form      1 1 2 2, , , ,..., ,K Kp t p t p t , where 

p1, p2, …, pK – neural network inputs, t1, t2, …, tK – corresponding target outputs. It is required to 
minimize the following mean square error function: 
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Figure 2: Neural network structure 
 

If signal values at different time intervals are used as an input vector for a neural network, then the 
linear network is a linear adaptive filter with a finite impulse response. The difference equation 
describing the communication between the input and output signals of such a filter has the form [20]: 

       0 1 1 ... ;Py n b x n b x n b x n P         (45) 

where P – filter order; x(n) – input signal; y(n) – output signal; bi – filter coefficients. 
 
For a linear neural network, a recurrent training least squares rule is used; it minimizes the mean 

value of the sum of squares of training errors [19]. You can estimate the total standard error using the 
standard error of one iteration.  

It is known that a standard static neuron implements a non-linear mapping [21, 22]: 
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the synaptic weights  1
,j iw  of which are subject to refinement in the process of training the neural 

network. 
A nonlinear mapping implemented by a dynamic neuron can be written as: 
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To train neural networks on dynamic neurons, according to [23], a gradient procedure is used – the 
back propagation of errors in time. 

According to [23], the one-step training criterion is defined as: 
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where d(k) is the training signal, which in the problem being solved is taken as the current value x(k), 
that is, the signal UC(k). 

According to [23], the procedure for minimizing the training criterion is: 
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where    1 k  – parameter that determines the training convergence rate. 

According to [23], local training error is defined as: 
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The procedure for setting the neurons of the output layer is [23]: 
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The local training error for the hidden layers of the neural network is [23]: 
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An adaptive procedure is written as [23]: 
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where β > 0 – regularizing parameter. 
The procedure for setting up the training process in hidden layers is optimized for speed. Thus, 

taking into account [23], the modified neural network training method has the form: 
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    (54) 

where 0 ≤ α ≤ 1 – smoothing parameter, which is selected within a given interval for the most efficient 
value of the neural network. 

A distinctive feature of the modified neural network training method from the method proposed in 
[23] is the use of a custom smoothing parameter α. The proper choice of the value of the smoothing 
parameter α is critical to the performance of the neural network. Note that the value of α affects the 
quality of restoring the output signal of the neural network. The method has been modified in order to 
impart smoothing properties necessary for processing "noisy" signals, such as UC(t). 

However, a significant limitation [23] is the lack of a description of the criterion for choosing the 
smoothing parameter. In this paper, we propose to select the smoothing parameter for the task 
diagnostics (monitoring) helicopters TE pre-surge status in real time. 

4. Experiment 

In the experimental work, the signal UC(t) obtained according to (39) is used and analyzed for the 
TV3-117 TE, which is part of the power plant of the Mi-8MTV helicopter, according to the data 
obtained on board the helicopter during the flight [24] (table 1). 



Table 1 
Transfer function coefficient values 

Number  λ  ω  δ  с 

1  0.985  0.992  0.973  0.999 
2  0.989  0.991  0.976  0.999 
3  0.987  0.996  0.977  0.999 
4  0.974  0.983  0.971  0.999 
5  0.977  0.982  0.968  0.999 
6  0.972  0.987  0.978  0.999 
7  0.981  0.988  0.973  0.999 
8  0.983  0.993  0.975  0.999 
9  0.992  0.990  0.977  0.999 
…  …  …  …  … 
256  0.985  0.991  0.974  0.999 

 
To conduct experimental researches (test example), the Matlab application package was used. The 

diagram of the dependence of the signal amplitude on time for the signal under study is shown in fig. 
3, where a – signal with noise taken into account, b – simulated area of a sharp pressure drops [12]. On 
fig. 3 input signal values are given in absolute units. Fig. 4 shows a diagram of the probability 
distribution for a noise signal, where a – signal probability distribution (Gaussian form), b – signal 
correlation function. 

 

 
        a              b 

Figure 3: Input signal diagram: a – signal with noise taken into account; b – sudden pressure drop area [12] 
 

 
                                                 a                      b 
Figure 4: Input signal diagram: a – signal probability distribution; b – signal correlation function 

 
To form the training and test subsets, cross-validation [25] was used to estimate the values of TV3-

117 TE parameters, the results of which are shown in fig. 5. 



 
        a              b 

Figure 5: Scatter diagram of input parameters: a – parameter R; b – parameter C 
 

As the input signal UC for the neural network (fig. 2), a sequential sampling of the values of the 
fragment of the noise signal was used. The delay line consists of 10 blocks, that is, a sequence of UC/10 
values is fed to the input of each neuron. The output signal of the network was the sum of the output 
signals of each of the neurons. The network had one layer of neurons with a linear activation function. 
The number of neuron inputs was equal to the sample length of the studied signal. The initial weights of 
neurons were initiated by random values, and the bias was chosen to be the same and equal to b = 0.027. 

A supervised training algorithm was used to train the network, and a sequence of input signal values 
was used as the target vector. The absolute network training error is calculated according to (43): 
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    , where Y(n) – output signal of the network, UC(n) – 

neural network input signal values, N – input vector dimension. The relative error of the output signal 
is determined according to the expression: 
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where σ2 = 0.00028 – neural network input signal variance. 
The neural network was trained on a sample of 100 input values of the UC signal, which is 3Tcor. The 

signal was applied to the input of each of 10 neurons with 10 signal values on the segment [0; 100], the 
neural network training rate was chosen as 0.1 (this value was chosen according to the same principles 
as the number of neurons). Training was carried out at different values of training cycles (depending on 
the experiment, values from 1 to 100 were used). In order to establish the representativeness of the 
training and test samples, a cluster analysis [26] of the initial data was carried out (table 1), during 
which eight classes were identified (fig. 6, a). After the randomization procedure, the actual training 
(control) and test samples were selected (in a ratio of 2:1, that is, 67 % and 33 %). The process of 
clustering the training (fig. 6, b) and test samples shows that they, like the original sample, contain eight 
classes each. The distances between the clusters practically coincide in each of the considered samples, 
therefore, the training and test samples are representative. 

 
    a             b 

Figure 6: Clustering results: a – initial experimental sample (I…V – classes); b – training sample 
 



The assessment of the homogeneity of the training and test samples is carried out using the Fisher-
Pearson χ2 criterion [27] with 1r k   degrees of freedom: 
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where θ – maximum likelihood estimate found from the frequencies m1, …, mr; n – number of elements 
in the sample; pi(θ) – probabilities of elementary outcomes up to some indeterminate k-dimensional 
parameter θ. 

The above-mentioned statistics χ2 permits, under the above assumptions, to check the hypothesis 
about the representability of sample variances and covariance of factors contained in the statistical 
model. The field of hypothesis acceptance is 2

,n m    , where α – significance level of the criterion. 

The results of calculations in accordance with (56) are in table 2. 
Table 2 
Part of the training sample during the helicopters TE operation (on the example of TV3‐117 TE) 

Number  P(λ)  P(ω)  P(δ)  P(с) 

1  0.739  0.784  0.798  0.989 
2  0.742  0.783  0.800  0.989 
3  0.740  0.787  0.801  0.989 
4  0.731  0.776  0.796  0.989 
5  0.733  0.779  0.794  0.989 
6  0.729  0.780  0.802  0.989 
7  0.736  0.781  0.798  0.989 
8  0.738  0.784  0.800  0.989 
9  0.744  0.782  0.801  0.989 
…  …  …  …  … 
256  0.739  0.783  0.799  0.989 

 
Calculation of the χ2 value based on the observed frequencies m1, …, mr (summing line by line the 

probabilities of the outcomes of each measured value) and comparing it with the critical values of the 
distribution χ2 with the number of degrees of freedom r – k –1. In this article, with the number of 
degrees of freedom r – k –1 = 13 and α = 0.05, the random variable χ2 = 3.588 did not exceed the critical 
value from table 4 is 22.362, which means that the hypothesis of the normal distribution law can be 
accepted and the samples are homogeneous. 

5. Results 

Table 3 shows the results of the neural network operation for various values of the smoothing 
parameter. The network teacher is the value 0.989, which is the average value of the input sample 
(table 1). 

 
Table 3 
The results of determining the smoothing parameter 

α = 0.1  α = 0.2  α = 0.3  α = 0.4  α = 0.5  α = 0.6  α = 0.7  α = 0.8  α = 0.9  α = 1.0 
0.9951  0.9945  0.9934  0.9926  0.9921  0.9915  0.9912  0.9889  0.9873  0.9862 

 
The results show that at α = 0.8, the predicted value is closest to the teacher by 99.99 %. 
The neural network training error depending on the number of training cycles is illustrated by the 

diagram in fig. 7 (a – diagram corresponds to 5 training cycles, b – diagram corresponds to training 
cycles), which show the input and output signals of the neural network resulting from training, where 
1 – initial signal UC, 2 – neural network output signal. 



 
    a             b 

Figure 7: Diagram of neural network output and signal versus time 
 

Fig. 7, a corresponds to an absolute error of 0.004717 and a neural network training time of 1.5 
seconds. Fig. 7, b corresponds to an absolute error of 0.000000638 and a neural network training time 
of 11.8 seconds. A diagram of the dependence of the neural network training error on the number of 
training cycles is shown in fig. 8, from which it can be seen that the error decreases with an increase in 
the number of training cycles approximately according to a linear law. The training quality of the neural 
network was also assessed using regression analysis of neural network input and output signals. 

 

 
Figure 8: Diagram of neural network training error dependence on the number of cycles 

 

The dependence of neural network training error on the number of neurons is shown in fig. 9, from 
which it can be seen that the training error decreases with an increase in the number of neurons.  

 

 
Figure 9: Neural network training error versus number of neurons diagram 

 



When the number of neurons is more than 15, it decreases to a minimum and ceases to change. At 
the same time, the training time increases from 3 seconds with 3 neurons to 150 seconds with 15 neurons. 
In further experiments, to increase the training rate, the number of neurons was chosen to be 10. 

To check the independence of the residuals, the Durbin-Watson test, the autocorrelation function, 
etc. are usually used. [28, 29]. To check the normality of the distribution of residuals, a plot of the 
normal distribution of residuals was constructed, that is, the correlation field between the target vector 
UC (input signal values at each point) and the output of the neural network Z after 50 training cycles 
(fig. 9). It can be seen that the distribution is normal – almost all observations follow the line, the points 
are grouped near the straight line in fig. 10. A high value of the correlation coefficient R = 0.999 
indicates that the neural network training algorithm was chosen correctly. 

 

 
Figure 10: Normal distribution diagram of residuals (Regression Analysis) 

6. Discussions 

The neural network input signal and neural network simulated output signal after training on a 
sample with a length of 100 reports (3Tcor) are shown in fig. 11, where 1 – initial signal, 2 neural network 
– output signal. Fig. 11, a show the signals immediately after training the neural network, fig. 11, b – 
after a time interval corresponding to 30 input noise correlation times. From fig. 11 it can be seen that, 
despite the increase in the time interval for diagnosing (monitoring) the neural network, the developed 
method makes it possible to determine the helicopters TE pre-surge status. 

 

 
 a         b 

Figure 11: Diagram of research of TV3‐117 TE pre‐surge status 
 

Fig. 12 shows the results of determining the error in diagnostics (monitoring) of helicopters TE pre-
surge status using the developed neural network, where 1 – initial signal UC error, 2 – upper error limit, 
3 – lower error limit, 4 – trend line. 



As can be seen from fig. 12, a, the maximum error in diagnostics (monitoring) of helicopters TE 
pre-surge status does not exceed 0.3 %, which indicates an accuracy of > 99 % of the developed method. 

To reduce the training time, the neural network went through 3 training cycles, and the error was 
measured at a prediction time of 300Tcor, while the diagnostics (monitoring) error remained unchanged. 
From fig. 12, b it can be seen that with an increase in the length of the input vector, the relative network 
training error decreases significantly. The training time increases with the length of the input vector: 
with a length equal to 3Tco, the training time is 3.5 seconds, and with a length of 100 correlation times 
it increases to 60 seconds. 

 

 
a         b 

Figure 12: Diagram for determining the diagnostics (monitoring) error: a – diagram of the dependence 
of the diagnostics  (monitoring) error on time; b – diagram of diagnostics (monitoring) error versus 
input vector length 
 

Fig. 13 shows the results of modeling helicopters TE surge status. 
 

 
a         b 

 
c         d 

Figure 13: The resulting diagram of monitoring (diagnostics) of helicopters TE surge by a neural network 
 



The research results displayed in fig. 13 are based on the physical processes occurring in the engine 
path – using thermogas-dynamic indicators obtained using a universal mathematical model of the 
engine [30, 31], while taking into account that the surge, as a rule, is accompanied by the following 
phenomena: 

– fluctuations in pressure, velocities and gas flow rates along the path with a pronounced pressure 
drop downstream of the compressor relative to the pressure at its inlet (fig. 13, a); 

– gas generator rotor r.p.m. decrease (nTC) (fig. 13, b); 
– free turbine rotor rotation frequency decrease (nFT) (fig. 13, c); 
– gases temperature in front of the compressor turbine increase (TG) (fig. 13, d). 
Fig. 13 corresponds to: a – diagram of pressure changes behind the compressor during surge; b – 

diagram of the dynamics of gas generator rotor r.p.m. during surge; c – diagram of the dynamics of free 
turbine rotor rotation frequency during surge; d – diagram of changes in gases temperature before the 
compressor turbine during surging. 

According to the results of modeling helicopters TE surge status by a neural network (fig. 13), a 
division into classes of statuses was carried out [25, 32] (I (red) – surge is present; II (green) – there is 
no surge; III (blue) – there is a risk of surge), according to the dynamics of changes in the values of 
engine thermogas-dynamic parameters (Fig. 14). 

 

 
a         b 

 
c         d 

Figure 14: The resulting diagram of helicopters TE classification operational status by a neural network 
 

Fig. 14 corresponds to: a – indicator of pressure changes behind the compressor; b – indicator of gas 
generator rotor r.p.m.; c – indicator of free turbine rotor rotation frequency; d – indicator of gases 
temperature before the compressor turbine. 

A comparative analysis of the accuracy of the classical and neural network methods for diagnostics 
(monitoring) of helicopters TE (using the TV3-117 engine as an example) pre-surge status is given in 
table 4 which displays the probabilities of errors of the 1st and 2nd kind [33, 34] when determining the 
dynamics of changes in engine thermogas-dynamic parameters (according to fig. 13). 



Table 4 
Comparative characteristics of methods 

Method of 
determination 

Probability of error in determining  
By parameter 

UC 
By parameter 

nTC 
By parameter 

nFT 
By parameter 

TG 
Type 
1st 
error 

Type 
2nd 
error 

Type 
1st 
error 

Type 
2nd 
error 

Type 
1st 
error 

Type 
2nd 
error 

Type 
1st 
error 

Type 
2nd 
error 

Classic  1.78  1.61  1.81  1.74  2.05  1.86  1.74  1.55 
Neural Network  0.69  0.62  0.70  0.65  0.80  0.72  0.68  0.60 

7. Conclusions 

1. A mathematical model was further developed that describes the time distribution of pressure in 
helicopters aircraft turboshaft engines compressor, which, by obtaining a universal expression for 
determining the distribution of pressure values in the engine compressor, made it possible to develop a 
neural network method for diagnostics (monitoring) helicopters turboshaft engines pre-surge status in 
real time. 

2. For the first time, a neural network method for diagnostics (monitoring) helicopters turboshaft 
engines pre-surge status in real time was developed, based on a linear neural network trained using a 
modified method with direct transmission of information on dynamic neurons, which makes it possible 
to classify helicopters turboshaft engines statuses in the helicopter flight mode for the presence, absence 
or risk of surge. 

3. The method of training neural networks with direct transmission of information on dynamic 
neurons was further developed, which, due to the adjustable smoothing parameter from the range from 
zero to one, made it possible to obtain the predicted output signal value that is closest to the teacher by 
99.99 %. 

4. It is shown that the errors of the 1st and 2nd kind of the method for diagnostics (monitoring) 
helicopters turboshaft engines pre-surge status using a linear neural network did not exceed 0.80 % and 
0.72 %, respectively, while for the classical method they amounted to 2.05 % and 1.86 %, respectively. 
The obtained results prove that the application of the developed neural network method will make it 
38.77 % more accurate to determine helicopters turboshaft engines current status at helicopter flight 
mode for the presence or development of surge. 

5. The prospect for further research is the implementation of the results of the obtained studies, as 
well as the developed method for diagnostics (monitoring) helicopters turboshaft engines pre-surge 
status, into the onboard neural network expert system for integrated monitoring and operation control 
of helicopters turboshaft engines at helicopter flight mode [35]. 

The prospects for further research are the integration of this method into self-organizing Kohonen 
maps, which will improve the method for detecting engine surge using Kohonen self-organizing maps, 
developed by Viktor Dubrovin and Tetiana Kiprych. 
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