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A Custom Learning Algorithm for Disease Prediction
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Abstract

This article is a summary of our work, which goal was to predict diseases based on given symptoms using different machine
learning classifiers from sklearn library as well as to compare their accuracy to algorithms developed by us from scratch.
Based on the characteristics of the learning set, the tree model uses a set of predefined questions to identify the sample

classes.
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1. Introduction

In recent years, a wide range of applications of artificial
intelligence methods can be observed in various infor-
mation systems [1, 2, 3]. We can observe a number of
applications of methods based on fuzzy logic in combina-
tion with the Internet of Things [4, 5, 6]. Increasing the
computing power of modern computers has allowed for a
wide application of optimization methods. In the last two
decades, a number of new and more and more effective
heuristic methods inspired by observations of the real
world have appeared. In this place it is worth mention-
ing the very effective biologically inspired algorithms
[7, 8, 9]. A very important application of optimization
algorithms is their use to reduce energy consumption
or increase the energy generation [10, 11], as well as to
create a smarter and greener environment [12, 13]. Of
course, we cannot forget about the most recently used
neural network algorithms [14, 15, 16]. Very interesting
applications of neural networks can be found in almost
every area of life [17], from the detection of certain fea-
tures in the examined objects [18, 19, 20, 21], through
the care of the elderly [22, 23] to applications in machine
learning [24, 25, 26].

Our program aims to predict diseases on the basis
of symptoms. Three different classifiers were used for
this manner: naive Bayes classifier, decision trees and
random forest. We have used both ,sklearn” algorithms
as well as classifiers written from scratch by us. An
additional premise is the verification of accuracy of all
of those algorithms. Often when the data are noisy they
are filtered in order to reduce the noise [27, 28].

The program takes into account 132 symptoms marked
with either a ,0” or a ,,1”. There are 42 different diseases
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that can be classified based on that data. It is possible to
enter the symptoms manually (for the presentation we
assumed that the numbers will be randomly selected by
a computer). The output will be the name of the disease
to which these symptoms are related.

2. Classifiers

2.1. Naive Bayes classifier

The Naive Bayes classifier is a simple probabilistic
classifier. Its activity is based on the assumption of the
mutual independence of the predictors. They often have
no relation to reality and are therefore called naive. The
Bayessian analysis uses a priori probabilities derived
from previous observations. A priori probabilities allow
you to classify a new object based on those probabilities.
The formula for the Bayes probability:

P(A)P(B|A)

P(AB) = L)

1)

The naive Bayes method provides the user with several
modeling approaches for a given theme. The probability
distribution can be Gaussian, lognormal, gamma
or Poisson. For our project we used the Gaussian
distribution, which formula looks as follows, where o is
a standard deviation and p is the expected value:

L 2
P(z; |y) = ﬁexp (—%) ()

Y

The naive Bayes classifier is very often used in spam
filtering. These classifiers are relatively easy to imple-
ment, computationally effective and are ideal for rela-
tively small amounts of data compared to other algo-
rithms.
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Figure 1: An example of a decision trees (source: S. Raschke,
Python. Uczenie maszynowe)

2.2. Decision tree

The decision tree model is attractive if we interpret the
data correctly. As the name suggests, this model can be
viewed as a classification of data by Decision-making
based on a set of responses

Based on the characteristics of the learning set, the tree
model uses a set of predefined questions to identify
the sample classes. The drawing (fig. 1) represents an
intuitively understandable case, but one can scale such a
model to larger problems and also take numerical data
into account. The algorithm generates a tree root and
separates the data based on the information growth.
Through repeated iteration, we can repeat this step
in each child node until we get the leaves themselves,
which means that all the leaves of a node belong to a
specific class. This approach leads to large multi-node
trees, which can lead to an overtraining of the model.
To avoid this, you should cut the trees by setting their
maximum height.

If you want to separate nodes with the most in-
formative features, you need to define a target function
that is optimized with the tree learning algorithm. In
our case, the function of the target is to maximize the
information gain in each branch, which can be written
with an equation:

G 1) =10) =3 D). @
The parameter f is the property on which branching is
performed, D, and D; are records of the parent node and
the j-th child node, I is the degree of contamination, N,
defines the total number of samples in the parent node
and N; in the j-th child node. In binary trees, three mea-
surements of impurity are most commonly used: the Gini
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Figure 2: Disease prediction based on user’s input

index (I¢), entropy (/) and classification error (Ig).
Definition of entropy for non-empty classes p(i|t) # 0:

In(t) = T =) p(ilt)log, p(ilt),

i=1

©

The expression p(i|t) is the ratio between the samples
of the class and the node ¢. It follows that the entropy
is 0 if all the samples of the node belong to the same
class, while the maximum value is reached if there is a
homogeneous class distribution. Example: In a binary
class configuration, the entropy is 0, if p(i = 1|t) = 1
or p(i = 0|t) = 0. For homogeneous distribution of
the classes p(¢ = 1|t) = 0,5 and p(¢ = 0|t) = 0, 5 the
entropy value is 1. So we can say that with the entropy
criterion we are trying to maximize the mutual informa-
tion in the tree. The Gini index can be interpreted as a
criterion that minimises the probability of misclassifica-
tion:

= Zp(ilt)(l —p(ilt) =1 - Zp(iltﬂ ®)

As with entropy, the highest value is used for perfectly
mixed classes, e. g. for a binary configuration of (¢ = 2):

t)y=1- zc:of)2 =
i=1

(6)

Often, the Gini index and entropy produce similar results,
and it is not worth evaluating the tree according to differ-
ent criteria, but to experiment with the cut-off. The third
measure of contamination is the classification error:

Ig(t) = 1 — max{p(ilt)}, 7)

2.3. Random forest

The random forest method is characterized by good clas-
sification performance, scalability and user-friendliness.
Random Forest can be intuitively interpreted as an en-
semble of decision trees. The concept is to combine weak
learners to build a more robust model, a strong learner,
that has a better generalization error and is less suscepti-
ble to overfitting. The random forest algorithm can be
summarized in four simple steps:

1. Draw a random bootstrap sample of size n (ran-
domly choose n samples from the training set
with replacement).
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Figure 3: Frequency of appearance for each symptom

Grow a decision tree from the bootstrap sample.
At each node:

a) Randomly select d features without re-
placement.

b) Split the node using the feature that pro-
vides the best split according to the objec-
tive function, for instance, by maximizing
the information gain.

Repeat the steps 1 to 2 k times.
. Aggregate the prediction by each tree to assign
the class label by majority vote.

There is a slight modification in step 2 when we are train-
ing the individual decision trees: instead of evaluating all
features to determine the best split at each node, we only
consider a random subset of those. Although Random
Forest can’t interpret the results as strongly as individual
decision trees, the big advantage is that it’s less impor-
tant to choose the right hyperparameters. Normally, it is
not necessary to prune a random forest, as the model is
quite insensitive to tree sounds. The only parameter that
interests us is £ — number of trees. In most cases, the
accuracy of the classifier increases as the number of trees
increases, but this also increases the computing power
required for the classification.

3. Database

The database is called “Disease Prediction Using Machine
Learning” and was downloaded from ,kaggle.com”. The
base consists of 133 columns, each of which is responsi-
ble for a symptom, and the last is the predicted disease
resulting from those symptoms. The database has 4692
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entries, which are examples of the occurrence of symp-
toms of a specific disease. There are 42 unique diseases.
The database can be visualized as a matrix:

11 X1,2 Ti,m Y1
T21 X222 T2,M Y2

D=1| . ,
IN,1 TN,2 IN,M YN

where M is the number of symptoms and N is the num-
ber of samples. Based on the symptom x, the program
predicts the disease y.

4. Tests

In order to visualize the data, we have created a diagram
showing the frequency of appearance of each symptom
(fig. 2). As predicted, fatigue was the most common
symptom that occurred in almost half of the diseases.
The second most common symptom was vomiting, and
the third most common symptom was high fever. The
occurrence of these symptoms may indicate that they
do not have a significant impact on the classification
of the disease. However, most symptoms did not occur
in up to 10% of cases. Symptoms such as weight gain
or pus filled pimples, which are the least common, are
almost immediately suggestive of a certain disease, or
of a narrow spectrum of diseases. To check if there is a
correlation between the symptoms, we have created a
heatmap of the symptom correlations.

The heatmap (fig. 3) is in dark tones, indicating a weak
and low correlation, but between some symptoms there
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Figure 4: Symptom correlations heatmap

is a very high and in some cases almost complete corre-
lation, e. g. between cold and sinus pressure symptoms.

5. Experiments

All the classifiers described above worked with the same
data, so comparing the results gives a good overview of
their effectiveness for our database. Both handwritten
classifiers and classifiers from the library are analysed.
Their accuracy is compared to see how our classifiers
perform compared to ,Sklearn” algorithms.

5.1. Sklearn classifiers comparison

The worst of the three disease prediction algorithms was
the Decision Tree classifier with 62,3%. The improved
version — the Random Forest was the best and predicted

the disease in every case, resulting in accuracy of 100%.

The naive Bayes classifier had an effectiveness of 98,37%
which was a satisfactory result (fig. 4).

5.2. Handwritten classifiers comparison

The worst result was achieved by the decision tree with
97,4%. The Random Forest successfully predicted the
disease in 99,9% of cases, and the naive Bayes classifier
with 100% was error-free (fig. 5).

5.3. Comparison of the effectiveness of
Sklearn classifiers with algorithms
written from scratch

When we started this project, we aimed to get our ac-
curacy close to Sklearn classifiers. However, the results
show that we have exceeded initial expectations. The
biggest difference is in the classifier decision tree, where
our algorithm was 35,1% more effective. In the random
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Accuracy of Skleam classifiers for predicting a disease

0
Gaussian Naive Bayes lib Random Forest lib Decision Tree lib
Method

Figure 5: Sklearn classifiers comparison

forest method, the difference was less than 0,0001% in
favour of Sklearn, with both classifiers having very good
accuracy of disease prediction and were almost error-free.
In the naive Bayes classifier, the accuracy was again bet-
ter in our implementation, where the algorithm proved
to be error-free, resulting in a score 1,63% higher than
Sklearn (fig. 6).

5.4. Disease prediction based on user’s
input

The occurrence of symptoms was entered randomly by a
computer as either a “0” or a “1”. The new samples were
then classified using the same three classifiers from the
Sklearn library. The first two diseases were classified in
the same way by all classifiers, but for the subsequent
ones the algorithms are no longer compatible. Such re-
sults may be may be due to the fact that the occurrence
of symptoms was entered randomly by the computer, so
they may not have made sense from a medical point of
view, because they have created combinations of symp-
toms that never occur together in real life, resulting in
samples with strange data, not similar to those given in
the training set.

6. Conclusions

The accuracy of classifiers at the level of 100%, at first
glance pleasing, makes us wonder whether the algo-
rithm really did so well, or maybe it is caused by the
data on which it worked. In our case it seems to be
the second thing. Two conclusions come to mind when
thinking about this: there were too few samples (4692);
there is a pattern and not enough combinations between
the different symptoms. Having 132 symptoms gives us
2132 = 5 4 % 10% possible combinations. With such
a limited number we can be almost sure that there are
some patterns and relations in the base which cause such
a high efficiency.
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Figure 6: Handwritten classifiers comparison

Figure 7: Comparison of the effectiveness of Sklearn classi-
fiers with algorithms written from scratch
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