'JSTU 4UFQT 5PXBSET B 4USVDUVSFE '"*3JGJDBUJPO 8PSLGMPX GPS UIF %;% $03& %"5"4&5 BU UIF (FSNBO $FOUFS GPS %JBCFUFT 3FTFBSDI &TUIFS 5IFB *OBV ࠭ "OHFMB %FEJF *WPOB "OBTUBTPWB "OESFBT #JSLFOGFME #SJHJUUF 'S¶IMJDI .BSUJO )SBCÛ EF "OHFMJT .JDIBFM 3PEFO 3FOBUF 4DIJDL :BSPTMBW ;ESBWPNZTMPW "UJOLVU "MBNJSSFX ;FMFLF %BHNBS 8BMUFNBUI BOE .BSUJO 1SFVTTF  %FQBSUNFOU PG .FEJDBM *OGPSNBUJDT 6OJWFSTJUZ .FEJDJOF (SFJGTXBME (SFJGTXBME (FSNBOZ  (FSNBO $FOUFS GPS %JBCFUFT 3FTFBSDI %;% (FSNBOZ  *OUSPEVDUJPO 5IF (FSNBO $FOUFS GPS %JBCFUFT 3FTFBSDI %;% DPOEVDUT MBSHF DMJOJDBM NVMUJDFOUFS TUVEJFT JO UIF GJFME PG EJBCFUFT BOE NFUBCPMJD SFTFBSDI <> *U IBT FTUBCMJTIFE UIF %;% $03& %"5"4&5 $%4 XIJDI MJTUT UIF DMJOJDBM QBSBNFUFST SFMFWBOU GPS EJBCFUFT SFTFBSDI JO SFMBUFE DMJOJDBM TUVEJFT 7BSJPVT JOJUJBUJWFT DPODFQUT BOE QSBDUJDFT IBWF CFFO JOJUJBUFE UP JNQMFNFOU UIF QSJODJQMFT PG GJOEBCJMJUZ BDDFTTJCJMJUZ JOUFSPQFSBCJMJUZ BOE SFVTBCJMJUZ '"*3 JO EBUB TUFXBSETIJQ <> *O UIJT WFJO XF IZQPUIFTJTF UIBU UIF JNQMFNFOUBUJPO PG B GPSNBMJTFE QSPWFOBODFFOBCMFE BOE TFNBOUJDBMMZ FOSJDIFE SFQSFTFOUBUJPO PG NFUB EBUB XJMM BEE WBMVF UP UIJT EBUBTFU BOE GVSUIFS TBWF UJNF TQFOU PO EBUB FYQMPSBUJPO EBUB TFMFDUJPO BOE EBUB QSPDFTTJOH 5IF PCKFDUJWFT PG UIJT XPSL BSF UP DPOEVDU B CBTFMJOF FWBMVBUJPO PG UIF '"*3OFTT PG UIF %;% $%4 BOE UP GPSNVMBUF GJSTU TUFQT JO JUT '"*3JGJDBUJPO  .FUIPET BOE 3FTVMUT 8F JODPSQPSBUFE UIF '"*3 $PPLCPPL <> UIF (0 '"*3 XFCTJUF BOE UIF 4"5*':% UPPM <> JO B CBTFMJOF FWBMVBUJPO PG UIF '"*3OFTT PG UIF %;% $%4 BOE UIFO GPSNVMBUFE QSBDUJDBM SFDPN NFOEBUJPOT PO IPX UP JNQSPWF JUT '"*3OFTT 8F UIFO XFOU PO UP JNQMFNFOU TPNF NFBTVSFT UI*OUFSOBUJPOBM48"5)$-4$POGFSFODF 'FCSVBSZۙ  #BTFM 4XJU[FSMBOE $PSSFTQPOEJOHBVUIPS d JOBVF!VOJHSFJGTXBMEEF &5*OBV Lj  &5*OBV  "%FEJF 9 *"OBTUBTPWB   "#JSLFOGFME  .)E"OHFMJT  .3PEFO   "";FMFLF  %8BMUFNBUI  .1SFVTTF i$PQZSJHIUGPSUIJTQBQFSCZJUTBVUIPST6TFQFSNJUUFEVOEFS$SFBUJWF$PNNPOT-JDFOTF"UUSJCVUJPO*OUFSOBUJPOBM $$#:  CEUR Workshop $&63 8PSLTIPQ 1SPDFFEJOHT $&6384PSH Proceedings http://ceur-ws.org ISSN 1613-0073  IUUQTNFEJDBMEBUBNPEFMTPSH  IUUQTXXXHPGBJSPSHGBJSQSJODJQMFT  IUUQTTBUJGZEEBOTLOBXOM that we suppose will lead to a better FAIRification score. A higher FAIRification score is the benchmark for success of this work. At the time of conducting this work the CDS was only available as an MS Excel file on the DZD website. A substantial part of it was not available in any structured form nor did it have an accompanying data dictionary. To improve its FAIRness score, we converted the CDS into the recommended format for spreadsheets, annotated the parameters therein with LOINC [5], licensed the dataset, indexed the metadata in a searchable resource and enriched the dataset with metadata. These steps resulted in an overall increase in the FAIRness score by 47%. 3. Discussion and Conclusion The DZD strives to set standards for good scientific management of clinical studies. The development of a common DZD CDS increased the interoperability of clinical studies under the DZD umbrella. The next step towards reusability and comparibility of studies is the adherence to the FAIR principles. The data owners therefore agreed to direct their efforts into structuring the data and mapping the local codes to standard terminologies in order to provide understandable, valuable and fit-for-purpose data. The mapping task is not trivial and requires domain knowledge as well as understanding of the used standard terminology terms to make sure that the semantic meaning is correctly translated from the local codes to the applied standards. Data validation remains a critical step to ensure that the data generated and codes used are valid. According to the SATIFYD, a dataset containing an open license is FAIRer than one containing a restricted, embargo or any other license. The FAIR Cookbook however indicates that the type of license chosen does not cause differences in the FAIRness. This is a common misconception about licensing in matters FAIR [6]. The implementation of a machine actionable format will come with the cost of time and immense effort because the DZD CDS is not encoded in any structured format. The return on this investment is increased certainty of the future data readability. We postulate that the results of this evaluation will help formulate the first steps towards a FAIRification workflow for related DZD datasets, facilitate the planning for the resources that the FAIRification journey will require and motivate the stakeholders to engage in this journey. References [1] B. Niesing, Deutsches Zentrum für Diabetesforschung, Diabetes aktuell 19 (2021) 55–56. [2] E. T. Inau, et al., Initiatives, concepts, and implementation practices of FAIR (findable, accessible, interoperable, and reusable) data principles in health data stewardship practice: protocol for a scoping review, JMIR research protocols 10 (2021) e22505. [3] P. Rocca-Serra, et al., D2.1 FAIR Cookbook, 2022. doi:1 0 . 5 2 8 1 / z e n o d o . 6 7 8 3 5 6 4. [4] D. Slamkov, V. Stojanov, B. Koteska, A. Mishev, A Comparison of Data FAIRness Evaluation Tools, Proceedings http://ceur-ws. org ISSN 1613 (2022) 0073. [5] C. J. McDonald, et al., LOINC, a universal standard for identifying laboratory observations: a 5-year update, Clinical chemistry 49 (2003) 624–633. [6] B. Mons, The VODAN IN: support of a FAIR-based infrastructure for COVID-19, European Journal of Human Genetics 28 (2020) 724–727.