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Abstract  
The condition of the constituent elements of telecommunications and radio-electronic 

complexes is largely determined by the trends of changes in parameters of electro-radio 

components, properties of mechanical structures, and parameters of antenna and guidance 

systems. And one of the indicators that must be taken into account is thermoelectric elasticity. 

Information on models of thermo-electro elasticity of multi-layered structures, which form 

various basic elements of telecommunication and radio-electronic complexes, is necessary for 

determining the dynamics of changes in the technical condition of equipment under certain 

operating conditions. These cases can be described with the help of boundary problems of 

thermo-electro elasticity. A class of static boundary value problems is effectively solved for 

bodies bounded by coordinate surfaces of generalized cylindrical coordinates ρ,α,z ( ρ,α  

orthogonal curved coordinates on the plane, and z  linear coordinates). The body is affected by 

a stationary temperature and electric field, surface disturbances (given voltages, displacements, 

or a combination of them) 0z =  and 1
z = z homogeneous conditions of a special type are set 

on the remaining part of the surface. An elastic body is assumed to be transtropic (transversally 

isotropic), with an isotropy plane z = const . The transtropic layers of a multilayer body contact 

along the plane z = const . In the work with the method of separation of variables, exact 

solutions to several boundary problems about the thermo-electro elastic equilibrium of single 

and multilayer bodies are constructed. 
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1. Introduction 

The condition of the constituent elements of 

telecommunications and radio-electronic 

complexes is largely determined by the trends 

of changes in parameters of electro-radio 

components, properties of mechanical 

structures, and parameters of antenna and 

guidance systems. Monitoring and control of the 

specified parameters are carried out by special 

measuring equipment, in particular using non-

destructive, including radio wave control. Since 

the equipment is operated in certain external 

conditions, it is important to study the changes 

in the determining parameters of the basic 

components depending on the characteristics of 
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the environment, in particular the temperature. 

At the same time, one of the indicators that must 

be taken into account is thermoelectric 

elasticity. Information on models of thermo-

electro elasticity of multi-layered structures, 

which form various basic elements of 

telecommunication and radio-electronic 

complexes, is necessary for determining the 

dynamics of changes in the technical condition 

of equipment under certain operating 

conditions. These conditions can be described 

with the help of boundary problems of thermo-

electro elasticity [1–4]. 

The boundary value problem of elastic 

equilibrium of a homogeneous layer (related to 

the problems considered in this article) was first 

considered by Lamet and Clapeyron. In 
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subsequent studies, the solutions of these 

authors were simplified and generalized. A 

fairly complete list of works devoted to this 

issue is given in the bibliography [5–12]. 

In all these works, the solution was based on 

the formulas of the double integral 

transformation, in most cases for a 

homogeneous layer in the absence of 

temperature and electrical disturbances. In this 

article, using the method of separation of 

variables and double series, solutions of static 

boundary and boundary-contact problems of 

thermo-electro elastic are constructed [5, 6] for 

a curvilinear coordinate parallelepiped

(CCP) ( ) 1 0 1 1, , : , ,0        =       oz R z z  

where ρ,α,z  are generalized cylindrical 

coordinates ( ρ,α  orthogonal curved 

coordinates on the plane, and z  linear 

coordinate). At 0z =  and 1
z = z  together 

with a temperature and electric field, gives 

either voltages, displacements, or a combination 

of them. Homogeneous boundary conditions of 

a special kind are set on the side surfaces 

(  

0 1 0 1
   ρ = ρ , ρ = ρ , = , =  ). If a 

multilayer body is considered, then its layers 

contact along the planes z = соnst . An elastic 

body or layers of a multilayer body can be both 

transtropic and homogeneous ( z = соnst
isotropy plane), and isotropic and 

homogeneous. 

According to the above-mentioned 

information, the problem of elastic equilibrium 

of an infinite layer is generalized while 

simplifying the method of its solution. 

Simplification is achieved by: a) converting the 

electro-temperature problem and constructing a 

general solution for the class of thermo-electro 

elasticity problems under study; b) replacing the 

classical conditions set on the boundary and 

contact surfaces with equivalent conditions; c) 

using double series instead of a double integral 

transformation. At the end of the article, the 

notes provide solutions to some problems of 

thermo-electro elasticity. 

The following can be said about the 

effectiveness of solutions. If, using the method 

of separation of variables in the domain

( ) 1, , : ,     =   oz R 0 1 1, 0     z z , 

it is effectively possible to construct solutions 

of the main boundary problems for the 

Laplacian equation, with zero conditions at 

0 1 0 1
   ρ = ρ , ρ = ρ , = , = , then, with the 

same efficiency, in the same domain   and by the 

same method, a thermo-electro elastic equilibrium 

can be found for the bodies under consideration. 

In conclusion of the introduction, we’ll indicate 

that the coefficients of the lamellar system ρ,α,z  

[7]
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where, ,x y  are cartesian coordinates. 

 

2. Equations of State, Boundary 
Conditions, General Solution, 
Uniqueness of the Solution 

Let the temperature field be independent of 

time, and the mass forces are neglected, then the 

system of differential equations of thermo-electro 

elasticity describing the state of a transtropic 

homogeneous body in generalized cylindrical 

coordinates has the following form [6, 8]: 
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Equations (1) are the usual elastic equilibrium 

equations accepted in the theory of elasticity. 

Equations (2) are the equations of the electric 

field and are called the equation of electrostatics. 

The following designations are used in these 

equations: 
z  ,,  are normal stresses; 

, ,            = = =z z z z
 are 

tangential stresses. , ,  zD D D  are components 

of the electric induction vector along tangents to 

coordinate lines ρ,α,z . 

In the case of axial polarization, the equations 

of state of the transtopic medium are represented 

by the equalities:
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where v, wu,  are components of the 

displacement vector U  along tangents to 

coordinate lines ρ,α,z , ,,, zz 

,  =  ,  zz =  zz   =  is 

deformations;
E  , 

zE , 
zE , E  is components of 

the electric tension vector E  along tangents to 

coordinate lines ρ,α,z , and = −E grad ;   is 

electrostatic potential. 
ic ( 1,5)=i  is elastic 

modulus measured at a constant electric field; 
je

( 1,3)=j  is piezoelectric constants; 1 , 2 —

dielectric permittivity at constant deformations; 

( ) ]2[ 3315110  ccc +−= ]2[ 221302  cc +=

21 ,   are coefficients of linear thermal 

expansion in the plane of isotropy and along z . T 

is the temperature of the medium obeying the 

equation 
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and the corresponding boundary conditions. 

1 2,   are thermal conductivity coefficients in the 

isotropy plane and along z  [5]. 

Using (3) and (4), the following system can be 

obtained concerning , , ,  z zK B , u, v, w [10, 11]
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Next, the thermo-electro elastic equilibrium 

of a Curvilinear Coordinate Parallelepiped 

(CCP) occupying a region. 

 < < , < < ,
0 1 0 1

 = ρ ρ ρ α α α  1
0 < < ,z z   

will be considered. The boundary conditions that 

will appear in the formulation of boundary 

problems have the following form: 
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at 
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where j = 0,1 at that z0 = 0 is specified constants. 

The conditions imposed on the functions jkf  

( )1,3k =  jlF ( )1,8l =  will be discussed below, 

we will only indicate that these functions are such 

that the coordination conditions are met on the 

edges of the CCP. Now we give a technical 

interpretation of the boundary conditions: 

( )8a , ( )9a , ( )11c  at j1( , ) f  = 0 and 

6 ( , ) jF  = 0 condition III0. 

( )8b , ( )9b , ( )11d  at j1( , ) f  = 0 and 

6 ( , ) jF  = 0- condition IV0. 

In the case of conditions III0, we assume that 

the cylindrical or flat boundary S of the CCP is 

connected, respectively, with a smooth cylindrical 

or plane boundary surface S of a rigid body, which 

is a thermo-electric insulator. 

Due to the absolute rigidity of the body, the

component of the displacement vector normal to 

S vanishes, and due to the absolute smoothness of 

S 0, 0=
zρ

B = τ , either 0, 0

=

z
B = τ  or 

0, 0


= =
zρ z
τ τ . 

In the case of condition VI0, we will assume 

that an absolutely flexible, but inextensible and 

incompressible thin plate is glued to the 

cylindrical or flat boundary surface S of the CCP 

(naturally, the plate takes the form of a surface S). 

Due to the absolute inextensibility and 

incompressibility of the plate v 0, w = 0=  or 

u 0, w = 0=  or u 0, v = 0= , and due to 

absolute flexibility K 0=  (the conditions 

T 0, D = 0=  at =
j

ρ ρ  and =
j

α α are achieved 

by other technical means). 

Note. The smaller the curvature of the 

boundary cylindrical surface =
j

ρ ρ , the less the 

conditions differ ( )7a  and, ( )7b  accordingly, 

from the conditions

) 0, 0, 0, 0, 0,

) 0, 0, v 0, w 0,  0
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at =
j

ρ ρ . The conditions ( )7a  and ( )7b  are 

equivalent to the conditions ( )12a  and ( )12b  

when =
j

ρ ρ is a plane. Everything is the same for 

surface =
j

α α  and conditions (8). 

According to operation [10] in a thermally 

homogeneous medium, when 1
 = сonst  and, 

2
 = сonst  the thermal conductivity equation (5) 

takes the form 

2

2 0 2
0


 + =



T
T

z
 (13) 

where 0 1 2  =  In this case, using the method of 

separating variables, the function Т  in the domain 

 < < , < < ,
0 1 0 1

 = ρ ρ ρ α α α 1
0 < < ,z z  

can be represented as follows:
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permanent; ( )mn
ψ ρ,α  is a nontrivial solution to

the following Sturm-Liouville problem [9]. 
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Conditions (16) and (17) follow from 

conditions (7) and (8). Note that in a Cartesian 

coordinate system, x, y,z  the function mn
ψ  is the 

product of a trigonometric function; in the case of 

circular cylindrical coordinates r,α,z , the 

function mn
ψ  is the product of a trigonometric 

function and a Bessel function; for a cylindrical-

elliptic system mn
ψ , the product of the Mathieu 

function, and for a cylindrical-parabolic 

coordinate system, the product of the Weber 

function. 

Further, in a thermally homogeneous medium, 

we will assume 

2

2
,


=


T
T

z
 (18) 

where 

( )( ) ( )1

2 2 3 20 0 0

0 1

2

3

2 2 6 2

1
.

1
 

 
−

   
− + − +   

   

+ + TT
p z-zp z

Tmn Tmn mn

n=0 m=0 T

t t
T = T +T = z r z zr

A e B e ψ ρ,α
p

 (19) 

The function T satisfies the same equation T. 

In the expression for T , 
0

T  is the polynomial part 

T  (terms with coefficients t0, t1), and 
1

T  the 

remaining part T . For the convenience of 

constructing boundary value problems, conditions 

(11) are replaced, respectively, by the following 

conditions 

at =
j

z z   

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )
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2 3
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zr z i
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h h F or

d F r h h f
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
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(20) 

where 

( ) ( )1 2 2 1
1 1 2 2 2 12 2

1 1
, , , ,

   

      
 = +  = −   

      

g g g g
g g g g

h h

 
at that  zhg =1 or  

where  
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( ) ( )1 2 2 1
1 1 2 2 2 12 2

1 1
, , , ,

   

      
 = +  = −   

      

g g g g
g g g g

h h  

at that  zhg =1 or 1 =g hu , 2 = zg h  or 

2 v=g h . We assume that the functions ( )2 ,iF r

and ( )3 ,iF r itself function ( )1 ,iF r together

 
with their first and second derivatives, they 

decompose the problems (15–17). 

The decomposition by functions mn
ψ  can be 

considered valid, at least formally, and in the case 

when in equation (15) the variables are not 

separated, for example, cylindrical-bipolar 

coordinates. Now taking into account the 

matching conditions on the edges of the CCP, it 

can be argued that the boundary conditions (11) 

and (20) will be equivalent if in the domain 

 0 01 1
 = ρ < ρ < ρ ,α < α < α  

the following boundary terms have only a trivial 

(zero) solution  

1 2 0
 

 
+ =

 

g g
,  2 1 0,

 

 
− =

 

g g
 (21) 

at =
j

ρ ρ : 1 2
2 1) 0, 0 ) 0, 0;

 
= = = =

 

g g
a g or or b g or

ρ ρ
 (22) 

 

at =
j

α α : 2 1
1 2) 0, 0 ) 0, 0.

 
= = = =

 

g g
a g or or b g or

ρ ρ
 (23) 

According to the Keldysh-Sedov theorem [9], 

the boundary value problem (21–23), except 

problems (21, 22a, 23b) and (21), (22b, 23a), has 

a solution 

1 20, 0= =g g  

The boundary problem (21), (22a), (23b) has a 

solution 

1 10 2, 0,= = =g g const g  (24) 

a boundary problem (21), (22b), (23a) solution 

1 2 200, .= = =g g g const  (25) 

As we can see, boundary problems (21, 22a, 

23b) and (21, 22b, 23a) have non-zero solutions. 

To overcome the problem that has arisen, to solve 

the boundary value problems (5, 6, 7a, 8b, 9, 10, 

20) a solution is being added [13–16] 

1 20, w 0, v .= = = + zhu h b b l  (26) 

to boundary problems (5, 6, 7b, 8a, 9, 10, 20) there 

is a solution: 

3 4v 0, w 0, v .= = = + zh h b b l  

where 
1

4

−=zl с z 1 2 3 4, , ,b b b b  is permanent. 

Let us now use equations (6) and (6’). From (6 

b, c, d) follows: 

0
2

2

5

4
2 =




+

z

B

c

c
B  (27) 

Before going further, it is necessary to make 

the following remark of material significance 

regarding the boundary conditions (7–8). From 

these conditions, it follows that on the side 

surfaces =
j

ρ ρ  and =
j

α α  t CCP, the function 

B  itself or its normal derivative equals to zero. As 

for surfaces, it follows from (10) 

( ) 4
2 ,  


 =


zr z

с B
h h

с z
, 

( )1

5

1
v, =h h u B

c
 

Thus, to determine the function B , we get 

the classical problem of mathematical physics. 

It is necessary to determine the function B  from 

equation (27), when either on boundary surfaces 

are given the function B  itself or its normal 

derivative, or the function itself is specified on 

the partial boundary surfaces and its normal 

derivative is specified on the remaining part 

[17–20]. 

Using the method of separating variables, we 

present the functions B  as 

( ) ( )10 12

1 1

, .  
 

= =

= + +z mn mn

n m

B b b l B z  (28) 

where 10 12,b b  constants mnB ( )z  are solving the 

equation 

2

4

2
0,2

1
− =mn

mn

5

d Bc
p B

c dz
 

where ( )1 1
.=p p m,n  ( ),  mn —solving the 

problem (15–17). From the condition 
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0
1 1

0 0

2

 

 

=  Bh dρdα  

it follows that 10 120, 0= =b b  and final  for the 

considered class of boundary problems 

( ) ( )
1 1

, .  
 

= =

= mn mn

n m

B B z  (29) 

Without limiting the generality, we present the 

function B  in the following form: 

2

0

2

5

4

zc

c
B




=  (30) 

where 

2

04
2 0 2

5

0





 + =


c

c z
 (31) 

and taking into account (29) 

( ) ( )0 0

1 1

, ,    
 

= =

= mn mn

n m

z  (32) 

where 0 mn  is solving the equation 

2

4

2
0.2

1
− =0mn

0mn

5

d ψc
p ψ

c dz
 

Theorem. For the considered class of boundary 

problems of thermo-electro elasticity, the general 

solution in the class of regular functions is 

represented a 

.
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(33) 

 

Here 
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where 
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Note. We do not give a proof of the theorem. 

The obtained general solutions will be used to 

solve boundary-contact problems for multilayer 

bodies. 

3. Conclusions 

Was shown that the condition of the 

constituent elements of telecommunications and 

radio-electronic complexes is largely determined 

by the trends of changes in the parameters of 

electro-radio components. During the monitoring 

and control of the specified parameters of radio-

electronic equipment, one of the indicators that 

must be taken into account is thermoelectric 

elasticity. Information on models of thermo-

electro elasticity of multi-layered structures, 

which form various basic elements of 

telecommunication and radio-electronic 

complexes, is necessary for determining the 

dynamics of changes in the technical condition of 

equipment under certain operating conditions. 

Thus, this paper presents a new very effective 

solution to boundary problems of thermo-electro 

elasticity in the generalized cylindrical 

coordinates, which can be used for determining 
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the electromagnetic parameters of radio-

electronic equipment of modern 

telecommunication systems [21–27].  
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