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Abstract
We consider a two-player game on 1-safe Petri nets, in which each player controls a subset of transitions.

The players are called ‘user’ and ‘environment’; we assume that the user must guarantee progress on its

transitions, and has a safety goal on the system. A play of this game is a run in the unfolding of the net;

this is a partial order structure describing all the possible executions of the net. In general, we define a

strategy for the user as a map from equivalence classes of markings to subsets of transitions owned by

the user. We propose an algorithm to check whether the user has a winning strategy on a finite prefix

of the unfolding.
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1. Introduction

Several real world situations can be abstractly described as follows: an agent, which we will call

user, interacts with an environment trying to achieve a goal. The goal can consist, for example,

in reaching a given state, or avoiding a set of states, even if the environment is hostile, or non

cooperating. This abstract model can then be seen as a game, and one can investigate whether

the user has a winning strategy assuring him to reach the goal for any possible behaviour of

the environment.

In this paper, we use 1-safe Petri nets as a formal model, on which one can define such a game.

A Petri net represents a system in which global states are explicitly distributed in sets of “local

states” (places), and the occurrence (or firing) of a transition can change a subset of local states.

This allows for a clear representation of concurrency and conflicts between events. Global

states are usually called markings. In 1-safe nets, a marking is a set of places, and transitions

are characterized by their pre- and post-conditions. Places belonging to a marking are said to

be marked in that marking.

Different semantics can be defined for Petri nets. An interleaving semantics associates, to a

given Petri net, a labelled transition system, in which states correspond to reachable markings

of the net, and arcs are labelled by transitions. A ‘true concurrency’ semantics can be defined,

based on the idea of “unfolding” a net, by recording occurrences of local states and of transitions;

in this way, the set of all possible behaviours of the net is described by another net, possibly
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infinite. The unfolding of a finite 1-safe net, although infinite, is built on a finite set of repeated

substructures, made of a transition and its pre- and post-conditions. This allows for constructing

a finite prefix of the whole unfolding, containing enough information to reconstruct, by glueing

pieces, the full unfolding; such a prefix is said to be complete.

The basic definitions on Petri nets and unfoldings are recalled in Sect. 2.

Using 1-safe Petri nets, we study a game in which the user aims at avoiding markings in which

any place in a given subset 𝑆 is marked. We assume that the transitions of the net are partitioned

into controllable transitions (under the control of the user) and uncontrollable transitions. We

further assume that the user has a “progress” obligation: if a controllable transition is enabled,

then it must eventually happen, or be disabled.

A play in the game is an execution of the net, in which user and environment can move

concurrently. Formally, a play is a run in the unfolding of the net, namely the recording of

occurrences of places and transitions, where all conflicts have been solved.

We will assume that the user knows the structure of the system, and has full knowledge

of the current marking, but cannot prevent any uncontrollable transition. A strategy for the

user is then defined as a map from markings to controllable transitions, and guides the user in

choosing which controllable transitions to fire. The game is formally defined in Sect. 3.

A strategy is winning if any play in which the user complies with it satisfies the user’s aim:

in all reached markings in the play, no place in 𝑆 is marked.

The main problem we address is to decide whether the user has a winning strategy. To that

aim, we work on a complete prefix of the unfolding of the net, and give an algorithm which

solves the problem by discovering bad choices that would lead the user to lose a play. Strictly

speaking, the algorithm solves the decision problem; however, by inspecting the set of bad

choices found, one can construct a strategy.

The algorithm is defined and discussed in Sect. 4. Sec. 5 concludes the paper discussing some

related and future works.

2. Petri nets

In this section we recall basic definitions concerning Petri nets, net unfoldings and their prefixes,

that will be useful in the rest of the paper, see also [1, 2, 3]. Among the several classes of nets

defined and studied in the literature, in this paper we use the class of 1-safe Petri nets.

A net is a triple 𝑁 = (𝑃, 𝑇, 𝐹 ), where 𝑃 and 𝑇 are disjoint sets, the elements of 𝑃 are

called places and are represented by circles, the elements of 𝑇 are called transitions and are

represented by squares, 𝐹 ⊆ (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ) is the flow relation, represented by directed

arcs. The pre-set of an element 𝑥 ∈ 𝑃 ∪ 𝑇 is the set
∙𝑥 = {𝑦 ∈ 𝑃 ∪ 𝑇 : (𝑦, 𝑥) ∈ 𝐹}; the

post-set of 𝑥 is the set 𝑥∙ = {𝑦 ∈ 𝑃 ∪ 𝑇 : (𝑥, 𝑦) ∈ 𝐹}. Let 𝑋 ⊆ 𝑃 ∪ 𝑇 be a subset of

elements, its pre-set is defined as
∙𝑋 = {𝑦 ∈ 𝑃 ∪ 𝑇 : ∃𝑥 ∈ 𝑋 : (𝑦, 𝑥) ∈ 𝐹}, and its post-set

as 𝑋∙ = {𝑦 ∈ 𝑃 ∪ 𝑇 : ∃𝑥 ∈ 𝑋 : (𝑥, 𝑦) ∈ 𝐹}. We assume that each transition has non-empty

pre-set and post-set.

Two transitions, 𝑡1 and 𝑡2, are independent if (∙𝑡1 ∪ 𝑡∙1) and (∙𝑡2 ∪ 𝑡∙2) are disjoint. They are

structurally in conflict if
∙𝑡1 ∩ ∙𝑡2 ̸= ∅.

A net is finite if 𝑃 ∪ 𝑇 is finite, and infinite otherwise.
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A net (𝑃, 𝑇, 𝐹 ) is a subnet of another net (𝑃 ′, 𝑇 ′, 𝐹 ′) if 𝑃 ⊆ 𝑃 ′
, 𝑇 ⊆ 𝑇 ′

and 𝐹 is the

restriction of 𝐹 ′
to (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ).

A net (𝑃, 𝑇, 𝐹 ) is the subnet of (𝑃 ′, 𝑇 ′, 𝐹 ′) generated by T if 𝑃 = ∙𝑇 ∪ 𝑇 ∙
, 𝑇 ⊆ 𝑇 ′

and 𝐹
is the restriction of 𝐹 ′

to (𝑃 × 𝑇 ) ∪ (𝑇 × 𝑃 ).
A net system is a quadruple Σ = (𝑃, 𝑇, 𝐹 ;𝑚𝑖𝑛) consisting of a finite net 𝑁 = (𝑃, 𝑇, 𝐹 ) and

an initial marking 𝑚𝑖𝑛 : 𝑃 → N, representing the initial state of the system. A marking is a

map 𝑚 : 𝑃 → N.

A transition 𝑡 is enabled at a marking 𝑚, denoted 𝑚[𝑡⟩, if, for each 𝑝 ∈ ∙𝑡, 𝑚(𝑝) > 0. A

transition 𝑡, enabled at 𝑚, can occur (or fire) producing a new marking 𝑚′
(denoted 𝑚[𝑡⟩𝑚′

),

where

𝑚′(𝑝) =

⎧⎪⎨⎪⎩
𝑚(𝑝) + 1 if 𝑝 ∈ 𝑡∙ ∖ ∙𝑡

𝑚(𝑝)− 1 if 𝑝 ∈ ∙𝑡 ∖ 𝑡∙

𝑚(𝑝) otherwise

A marking 𝑚′
is reachable from another marking 𝑚, if there is a sequence of transitions

𝑡1𝑡2 . . . 𝑡𝑛 such that 𝑚[𝑡1⟩𝑚1[𝑡2⟩ . . .𝑚𝑛−1[𝑡𝑛⟩𝑚′
, this is also denoted with 𝑚[𝑡1𝑡2 . . . 𝑡𝑛⟩𝑚′

;

[𝑚⟩ denotes the set of markings reachable from 𝑚. A marking 𝑚 is reachable if it is reachable

from the initial marking 𝑚𝑖𝑛, i.e.: if 𝑚 ∈ [𝑚𝑖𝑛⟩; [𝑚𝑖𝑛⟩ will be also denoted 𝑀 in the next

sections.

A net system is 1-safe if 𝑚(𝑝) ≤ 1, for each place 𝑝 and for each reachable marking 𝑚.

Markings in 1-safe net systems can, and will, be considered as subsets of places.

In a net system, two transitions, 𝑡1 and 𝑡2, are concurrent at a marking 𝑚 if they are indepen-

dent and both enabled at 𝑚. They are in conflict at a marking 𝑚 if they are both enabled at 𝑚,

however they are not concurrently enabled at 𝑚: the occurrence of one of them disables the

other one, this is possible if they are structurally in conflict, i.e.: they share at least a pre-place.

An example of a 1-safe net system is given on Fig. 1. Transitions structurally in conflict are

for example 𝑎 and 𝑛, as well as 𝑔 and ℎ, or 𝑒 and 𝑓 ; 𝑎 and 𝑛 are also in conflict at the initial

marking {1}. Transitions 𝑐 and 𝑓 are independent, however they are never both enabled at a

reachable marking, hence they are never concurrent; 𝑓 and 𝑔 are independent and both enabled

at the reachable marking {3, 4}, they are concurrent at {3, 4}. We now introduce two technical

relations that will be useful to define the partial order semantics of net systems. The ≺ relation

on the elements of a net 𝑁 is the transitive closure of 𝐹 and ⪯ is the reflexive closure of ≺. Let

𝑥, 𝑦 ∈ 𝑃 ∪ 𝑇 ; then 𝑥#𝑦 iff there exist 𝑡1, 𝑡2 ∈ 𝑇 : 𝑡1 ̸= 𝑡2, 𝑡1 ⪯ 𝑥, 𝑡2 ⪯ 𝑦 and there exists

𝑝 ∈ ∙𝑡1 ∩ ∙𝑡2.

The non sequential behaviour of net systems can be recorded by occurrence nets, which

are used to represent by a single object the set of potential histories of a net system. A net

𝑁 = (𝐵,𝐸, 𝐹 ), possibly infinite, is an occurrence net if the following restrictions hold:

1. ∀𝑥 ∈ 𝐵 ∪ 𝐸 : ¬(𝑥 ≺ 𝑥)

2. ∀𝑥 ∈ 𝐵 ∪ 𝐸 : ¬(𝑥#𝑥)

3. ∀𝑒 ∈ 𝐸 : {𝑥 ∈ 𝐵 ∪ 𝐸 | 𝑥 ⪯ 𝑒} is finite

4. ∀𝑏 ∈ 𝐵 : |∙𝑏| ≤ 1

In an occurrence net, the elements of 𝐵 are called conditions and the elements of 𝐸 are called

events; the transitive and reflexive closure of 𝐹 , ⪯, forms a partial order. The set of minimal
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Figure 1: A 1-safe net system.

elements of an occurrence net 𝑁 with respect to ⪯ will be denoted by min(𝑁). Since we only

consider nets in which every transition has nonempty pre-set and post-set, the elements of

min(𝑁) are conditions.

An occurrence net represents the alternative histories of a system; therefore its underlying

graph is acyclic (cond. 1), and paths branching from a condition, corresponding to a choice

between alternative behaviours, never converge (cond. 2).

An example of occurrence net is given on Fig. 2. It represents possible histories of the net

system given on Fig. 1, where the correspondence with the elements of the system is given by

the labels, and min(𝑁) = {11}.
Given an occurrence net 𝑁 = (𝐵,𝐸, 𝐹 ), we define an event 𝑒 ∈ 𝐸 as terminal if there is no

event 𝑒′ ∈ 𝐸 such that 𝑒 ≺ 𝑒′.
On the elements of an occurrence net the relation of concurrency, co, is defined as follows:

let 𝑥, 𝑦 ∈ 𝑃 ∪ 𝑇 ; then 𝑥 co 𝑦 if ¬(𝑥 ≺ 𝑦) and ¬(𝑦 ≺ 𝑥) and ¬(𝑥#𝑦).
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A B-cut of 𝑁 is a maximal set of pairwise concurrent elements of 𝐵, and can be intuitively

seen as a potential global state through which a process can go in a history of the system.

In Fig. 2 for example: 21#31, 21#𝑏1, ℎ2#𝑒1, 41 co 51, {41, 51} is a B-cut, 𝑔1 co 51.

By analogy with net systems, we will sometimes say that an event 𝑒 of an occurrence net is

enabled at a B-cut 𝛾, denoted 𝛾[𝑒⟩, if
∙𝑒 ⊆ 𝛾; for example {41, 51}[𝑔1⟩.

A configuration of an occurrence net 𝑁 = (𝐵,𝐸, 𝐹 ) is a set of events 𝐶 ⊆ 𝐸 which is

causally closed (for every 𝑒 ∈ 𝐶, 𝑒′ ⪯ 𝑒 ⇒ 𝑒′ ∈ 𝐶) and free of conflicts (∀𝑒1, 𝑒2 ∈ 𝐶 ,

¬(𝑒1#𝑒2)). 𝐶 is maximal if it is maximal with respect to set inclusion. Note that 𝐶 can be an

infinite set. Intuitively, a configuration is a set of events ‘firable’ from min(𝑁), the natural

initial marking of 𝑁 , i.e.: there is a firing sequence from min(𝑁) in which each event of the

configuration occurs exactly once.

The local configuration [𝑒] of an event 𝑒 of an occurrence net is the set of events 𝑒′ such that

𝑒′ ≤ 𝑒. Local configurations are finite; they will play an important role in the following sections.

In Fig. 2: {𝑛1, 𝑏1, 𝑒1, 𝑔3} is a configuration which is not a local one; whereas [𝑖1] = {𝑎1, 𝑐1, 𝑔1, 𝑖1}
and [𝑖2] = {𝑛1, 𝑏1, 𝑒1, 𝑔3, 𝑖2} are examples of local configurations, the last one is also a maximal

configuration.

Finite configurations and B-cuts are tightly related: if 𝐶 ⊆ 𝐸 is a finite configuration of an

occurrence net 𝑁 , then cut(𝐶) = (min(𝑁)∪𝐶∙)∖ ∙𝐶 is a B-cut. Intuitively, cut(𝐶) represents

the ‘marking’ of 𝑁 reachable from min(𝑁) after the firing of the events in 𝐶 . In the following

sections, given a local configuration [𝑒] and its cut, 𝛾 = 𝑐𝑢𝑡([𝑒]), ∘𝑒 will denote the cut obtained

from 𝛾 by ‘backward firing’ the event 𝑒, i.e.: ∘𝑒 = (𝛾 ∖ 𝑒∙) ∪ ∙𝑒; intuitively, ∘𝑒 represents the

‘marking’ of 𝑁 reachable from min(𝑁) after the firing of the events from which the event 𝑒
causally depends.

In the example: cut({𝑛1, 𝑏1, 𝑒1, 𝑔3}) = {52, 73}; cut([𝑖2]) = {112}; ∘𝑖2 = {52, 73}; [𝑒1] =
{𝑛1, 𝑏1, 𝑒1}, cut([𝑒1]) = {52, 43} and ∘𝑒1 = {31, 43}.

A branching process of a 1-safe net system Σ = (𝑃, 𝑇, 𝐹 ;𝑚𝑖𝑛) is an occurrence net 𝑁 =
(𝐵,𝐸, 𝐹 ), together with a labelling function 𝜆 : 𝐵 ∪ 𝐸 → 𝑃 ∪ 𝑇 , such that

• 𝜆(𝐵) ⊆ 𝑃 and 𝜆(𝐸) ⊆ 𝑇 (𝜆 preserves the nature of nodes)

• for all 𝑒 ∈ 𝐸, the restriction of 𝜆 to
∙𝑒 is a bijection between

∙𝑒 and
∙𝜆(𝑒); the same holds

for 𝑒∙ and 𝜆(𝑒)∙ (𝜆 preserves the environments of transitions)

• the restriction of 𝜆 to min(𝑁) is a bijection between min(𝑁) and 𝑚𝑖𝑛 (the process starts

at 𝑚𝑖𝑛)

• for all 𝑒1, 𝑒2 ∈ 𝐸, if
∙𝑒1 =

∙𝑒2 and 𝜆(𝑒1) = 𝜆(𝑒2), then 𝑒1 = 𝑒2 (𝜆 does not duplicate the

transitions of Σ)

The labelled occurrence net on Fig. 2 is a branching process of the system given on Fig. 1.

The labels of the elements specify the correspondence with the elements of the system they

represent.

Given a branching process (𝑁,𝜆) of Σ and a B-cut 𝛾 of 𝑁 , then the set 𝜆(𝛾) = {𝜆(𝑏) | 𝑏 ∈ 𝛾}
is a reachable marking of Σ ([2]), and we refer to it as the marking corresponding to 𝛾. For

example, the B-cut {52, 73} corresponds to the reachable marking {5, 7}.
Let (𝑁1, 𝜆1) and (𝑁2, 𝜆2) be two branching processes of Σ, where 𝑁𝑖 = (𝐵𝑖, 𝐸𝑖, 𝐹𝑖), 𝑖 = 1, 2.

We say that (𝑁1, 𝜆1) is a prefix of (𝑁2, 𝜆2) if 𝑁1 is a subnet of 𝑁2, and 𝜆2|𝐵1∪𝐸1 = 𝜆1. For

57



Federica Adobbati et al. CEUR Workshop Proceedings 53–69

any net system Σ, there exists a unique, up to isomorphism, maximal branching process of Σ.

We will call it the unfolding of Σ, and denote it by Unf(Σ).
A run of Σ describes a particular history of Σ, in which conflicts have been solved, it is a

branching process (𝑁,𝜆) such that there is no pair of elements 𝑥, 𝑦 in 𝑁 such that 𝑥#𝑦. Any

run of Σ is a prefix of the unfolding Unf(Σ); we also say that it is a run on Unf(Σ). A run in

Fig. 2 is for example the labelled subnet whose elements are: {11, 101, 31, 43, 52} as conditions

and {𝑛1, 𝑏1, 𝑒1} as events.

The following is an important property of the unfolding [3], which will be used in the next

sections. Let Σ = (𝑃, 𝑇, 𝐹 ;𝑚𝑖𝑛), and 𝐶 be a finite configuration of Unf(Σ) = (𝑁,𝜆). Let

⇑ 𝐶 = (𝑁𝐶 , 𝜆
′), where 𝑁𝐶 is the unique (up to isomorphism) subnet of 𝑁 whose set of nodes

is {𝑥 | 𝑥 /∈ (𝐶 ∪ ∙𝐶) ∧ ∀𝑦 ∈ 𝐶 : ¬(𝑥#𝑦)} and 𝜆′
is the restriction of 𝜆 to the nodes of 𝑁𝐶 .

Then ⇑ 𝐶 is the unfolding of the net system (𝑃, 𝑇, 𝐹 ;𝜆(cut(𝐶))), up to isomorphism. From

this property it follows that if 𝐶1 and 𝐶2 are finite configurations leading to the same marking,

i.e.: 𝜆(cut(𝐶1)) = 𝜆(cut(𝐶2)) = 𝑚, then ⇑ 𝐶1 and ⇑ 𝐶2 are isomorphic to the unfolding of

(𝑃, 𝑇, 𝐹 ;𝑚), and they are isomorphic to each other. For example the finite configurations [𝑑1]
and [𝑓1] lead to the same marking {4, 6} = 𝜆(cut([𝑑1])) = 𝜆(cut([𝑓1])) and ⇑ [𝑑1] and ⇑ [𝑓1]
are isomorphic to the unfolding of the system Σ′

with the same net of Σ and initial marking

{4, 6}.
The unfolding of a system is usually infinite. In [3] an algorithm is proposed which constructs

a finite complete prefix, a final initial part of the unfolding containing as much information as

the unfolding itself, in the sense that the unfolding can be constructed from its complete prefix.

This notion of prefix was then further studied and generalized in the literature and used for

studying various system properties, see for example [4, 5].

A branching process (𝑁,𝜆) of a net system Σ is complete if for every reachable marking 𝑚
there exists a configuration 𝐶 in 𝑁 such that: 𝜆(cut(𝐶)) = 𝑚 (i.e.: 𝑚 is represented in (𝑁,𝜆)),
and for every transition 𝑡 enabled at 𝑚 (𝑚[𝑡⟩) there exists a configuration 𝐶 ∪ {𝑒} such that

𝑒 /∈ 𝐶 and 𝜆(𝑒) = 𝑡.
The unfolding of a net system is always complete. Since a 1-safe net system has only a finite

number of reachable markings, its unfolding contains at least one complete finite prefix.

In this paper we will use finite complete prefixes of the unfoldings of 1-safe net systems to

study if the user has a strategy to avoid occurrences of a set of places. In particular, the complete

prefixes we will use are obtained by adding to the one produced by the algorithm in [3] a finite

set of events in order to guarantee a certain property as explained in section 4.1.

The branching process given in Fig. 2 is a finite complete prefix of the unfolding. This

branching process is an extension of the one which is obtained by the algorithm presented in

[3], to which events 𝑖2 and 𝑘2, have been added, see also section 4.1 in the following.

The full unfolding of this net system is finite; by adding transitions that reproduce the initial

marking, one easily obtains a net system with an infinite unfolding. The following discussions

(see Ex. 1 and 4), and the working of the algorithm in Sect. 4 would essentially apply to this

cyclic case, but we chose to keep the nets as simple as possible.
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Figure 2: A branching process of the 1-safe net system in Fig.1.

3. The Game

In this section we formally define a two-player game on a 1-safe Petri net. Consider a 1-safe

net system Σ = (𝑃, 𝑇, 𝐹 ;𝑚𝑖𝑛), where 𝑇 is partitioned into two disjoint subsets, 𝑇𝑢 and 𝑇𝑒𝑛𝑣 .

We will say that transitions in 𝑇𝑢 belong to the user, while transitions in 𝑇𝑒𝑛𝑣 belong to the

environment. A transition is controllable if it belongs to 𝑇𝑢, uncontrollable otherwise. Events in

the unfolding Unf(Σ) are partitioned into controllable events, 𝐸𝑢, and uncontrollable events,

𝐸𝑒𝑛𝑣 , according to their labels.

We assume that Σ satisfies the following constraints:

1. the subnet generated by 𝑇𝑢 is extended free-choice; by this we mean that, for each pair of

transitions, 𝑡1 and 𝑡2, in 𝑇𝑢, if
∙𝑡1 ∩ ∙𝑡2 ̸= ∅, then

∙𝑡1 =
∙𝑡2; controllable transitions can

be in conflict with uncontrollable ones without any extended free-choice constraint;

2. the user behaves sequentially; by this we mean that if 𝑡1 and 𝑡2 are in 𝑇𝑢, then, for each

reachable marking 𝑚, if 𝑚[𝑡1⟩ and 𝑚[𝑡2⟩, then
∙𝑡1 ∩ ∙𝑡2 ̸= ∅, so that the two transitions

are in conflict at 𝑚.

In this paper, we consider a game in which the user has the goal to avoid a given subset 𝑆 of
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places; we assume that the user cannot keep any of its transitions indefinitely enabled, whereas

the environment can decide whether to fire or not transitions, when they are enabled; however,

the progress assumption for the user does not guarantee that the solution of conflicts between

a controllable transition and an uncontrollable one is in favour of the user.

A play in this game is then a (possibly infinite) run 𝜌 = (𝐵𝜌, 𝐸𝜌, 𝐹𝜌, 𝜆𝜌) in the unfolding of

Σ, maximal with respect to controllable events. The play is won by the user if, for all 𝑏 ∈ 𝐵𝜌, 𝑏
is not an occurrence of any place in 𝑆: ∀𝑏 ∈ 𝐵𝜌 : 𝜆𝜌(𝑏) ̸∈ 𝑆.

In pursuing its goal, the user can apply a strategy, based on the current state of the net. A

strategy is a map 𝛼 : [𝑚𝑖𝑛⟩ → 2𝑇𝑢
, such that

1. for each 𝑚 ∈ [𝑚𝑖𝑛⟩ and for each 𝑡 ∈ 𝛼(𝑚), 𝑡 is enabled at 𝑚;

2. for each 𝑚 ∈ [𝑚𝑖𝑛⟩ and 𝑚 reachable following 𝛼, if 𝑚[𝑡⟩ for some 𝑡 ∈ 𝑇𝑢, then 𝛼(𝑚) ̸= ∅.
Since the environment can move concurrently with the user, a strategy is well defined if, and

only if, for each pair of markings 𝑚1,𝑚2 ∈ [𝑚𝑖𝑛⟩ such that 𝑚1 and 𝑚2 enable the same set of

controllable transitions, and such that there is a sequence of uncontrollable transitions leading

from 𝑚1 to 𝑚2, 𝛼(𝑚1) ⊆ 𝛼(𝑚2) holds. This is due to the fact that the user in 𝑚1 cannot be

sure that while firing its transition, the system will not move to the marking 𝑚2; therefore, any

choice made in 𝑚1 needs to be acceptable also in 𝑚2. We do not require that 𝛼(𝑚2) = 𝛼(𝑚1),
because in 𝑚2 the system may have evolved so that some uncontrollable alternatives are not

possible anymore, therefore a higher number of transitions may be safe for the user to fire.

Let 𝑒 be a controllable event of a play 𝜌 = (𝐵𝜌, 𝐸𝜌, 𝐹𝜌, 𝜆𝜌), and 𝛼 be a strategy. Then 𝑒
is justified by 𝛼 if there is a cut 𝛾 in 𝜌, containing

∙𝑒 and following (or coinciding with) ∘𝑒,

such that 𝛼 chooses the transition corresponding to 𝑒 in the marking corresponding to 𝛾:

𝜆(𝑒) ∈ 𝛼(𝜆𝜌(𝛾)).
We say that a play 𝜌 = (𝐵𝜌, 𝐸𝜌, 𝐹𝜌, 𝜆𝜌) is consistent with a strategy 𝛼 iff every controllable

event in the play is justified by 𝛼.

A strategy 𝛼 is winning for the user iff there is at least one play consistent with 𝛼, and the

user wins any play consistent with 𝛼.

Example 1. In the net system in Fig. 1 assume that the user controls transitions 𝑎, 𝑛, 𝑔 and ℎ,
and wants to avoid to reach place 13. A winning strategy is the function 𝛼 : [{1}⟩ → 2{𝑎,𝑛,𝑔,ℎ}

defined as follows: 𝛼({1}) = {𝑎}, 𝛼({4, 5}) = {ℎ}, 𝛼({6, 4}) = {𝑔}, and 𝛼(𝑚) = ∅ for all the
other 𝑚 ∈ [{1}⟩.

By following this strategy, the user satisfies the progress constraint and never reaches place 13.
On the prefix (𝑁,𝜆) in Fig. 2, the run whose events are {𝑎1, 𝑑1, 𝑔2} is consistent with the

strategy, since the controllable event 𝑎1 follows the cut {11}, and 𝜆(𝑎1) = 𝑎 ∈ 𝛼(𝜆({11})), and
the controllable event 𝑔2 follows the cut {61, 42}, and 𝑔 is chosen in the marking {4, 6}.

Note that the user cannot win by choosing transition 𝑛, since in the marking {3, 4} it must
satisfy the progress constraint: the user must select between 𝑔 and ℎ before knowing about the
environment decision between 𝑒 and 𝑓 , and this may always lead to reach place 13.

4. Algorithm

The first part of this section recalls some notions used in [3] to construct a finite complete

prefix, and proposes an extension of it. Then, in Sec. 4.2 we present our main contribution: an
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algorithm that checks on the extension of the complete prefix whether the user has a winning

strategy.

4.1. Construction of an extended complete prefix

The structure that we will use to determine the existence of a winning strategy is an extension

of the complete prefix produced by the algorithm in [3]. Other works discuss algorithms to

find finite prefixes of the unfolding ([4, 5]); the construction of the prefix proposed in [3] is

characterized by the definition of an order relation between configurations, and by the definition

of cut-off event.

The order relation, denoted ≺F, is based on three elements: (1) the cardinality of configu-

rations; (2) an arbitrarily defined total order≪ on the elements of 𝑇 , the set of transitions of

the system net; (3) the Foata normal form of a configuration (see [6]). Here we aim to give an

intuitive idea of how to compare two configurations according to ≺F, refer to [3] for details.

Given two configurations 𝐶1 and 𝐶2, if |𝐶1| < |𝐶2|, then 𝐶1≺F𝐶2. If |𝐶1| = |𝐶2|, then we

can order the elements of 𝐶1 and 𝐶2 according to≪ forming two sequences 𝜎(𝐶1) and 𝜎(𝐶2);
if 𝜎(𝐶1) ≪ 𝜎(𝐶2) in the lexicographic order, then 𝐶1≺F𝐶2. Otherwise, if |𝐶1| = |𝐶2| and

𝜎(𝐶1) = 𝜎(𝐶2), we compare the Foata normal form of 𝐶1 and 𝐶2 according to the order≪.

In [3] the authors prove that ≺F is total for 1-safe nets.

For each event 𝑒 of a prefix (𝑁,𝜆) of Unf(Σ), in the following we denote cut(𝑒) = cut([𝑒])
and mark(𝑒) = 𝜆(cut([𝑒])).

Definition 1. Let (𝑁,𝜆) be a prefix of Unf(Σ), and 𝑒 an event. The event 𝑒 is cut-off iff there is
another event 𝑒′ ∈ (𝑁,𝜆) such that the following conditions hold.

• mark(𝑒) = mark(𝑒′);
• [𝑒′]≺F[𝑒].

The prefix in [3] is constructed starting from the initial cut, adding the enabled events to the

prefix; when a cut-off event is reached, no event can be added in its future. The construction

stops when there is no event that can be added to the prefix without being in the future of a

cut-off. Since ≺F is total in 1-safe nets, the number of non cut-off events never exceeds the

number of reachable markings [3].

Example 2. Consider the net system Σ in Fig. 1 and (𝑁,𝜆) in Fig. 2. The net (𝑁,𝜆) is an
extension of the complete prefix of Σ as defined in [3]. The cut-off events are 𝑧1, 𝑒1, and 𝑓1. The
event 𝑧1 is cut-off because of 𝑤1, since mark[𝑧1] = mark[𝑤1] = {9}, and [𝑤1]≺F[𝑧1]. The event
𝑒1 is cut-off because of 𝑐1, and 𝑓1 because of 𝑑1. The events 𝑖2 and 𝑘2 are not part of the prefix
constructed as in [3] because they follow a cut-off event.

As will be shown in Ex. 4, in general, a complete prefix as in [3] is not sufficient for us to

check the existence of a winning strategy. For this reason, we extend it to a prefix (𝑁 ′, 𝜆′) such

that the following conditions (called extention conditions) hold.

1. Each terminal event 𝑒 in the prefix (𝑁 ′, 𝜆′) satisfies one of the following:

a) There is an event 𝑒′ in the prefix such that 𝑒 and 𝑒′ satisfy the conditions in Def. 1.

61



Federica Adobbati et al. CEUR Workshop Proceedings 53–69

b) There is no event 𝑒′ in the unfolding such that 𝑒 ≺ 𝑒′, i.e.: 𝑒 is terminal in the

unfolding.

2. For each 𝑒 ∈ Unf(Σ), if for each 𝑏 ∈ ∙𝑒, there exists 𝑒𝑖 ∈ (𝑁 ′, 𝜆′) such that 𝑏 ∈ 𝑒∙𝑖 and 𝑒𝑖
not terminal in (𝑁 ′, 𝜆′), then 𝑒 ∈ (𝑁 ′, 𝜆′).

Intuitively, all the terminal events in (𝑁 ′, 𝜆′) are either terminal also in Unf(Σ), or cut-off as in

Def. 1 (condition 1). Moreover, any event of Unf(Σ) immediately following only non-terminal

events in the prefix (𝑁 ′, 𝜆′), must also belong to (𝑁 ′, 𝜆′) (condition 2). Since in 1-safe systems

the number of markings and the number of transitions are finite, we cannot continue adding

infinitely often events always producing markings that have not been visited before, hence a

finite prefix satisfying the above conditions exists.

Example 3. The events 𝑔3 and ℎ3 do not satisfy the conditions above, since they are neither cut-
off events as in Def. 1, nor terminal on the unfolding. For this reason, we extended the prefix by
adding 𝑖2 and 𝑘2. In the prefix in Fig. 2 all the events satisfy the extension conditions.

4.2. Algorithm for the winning strategy

Let Σ = (𝑃, 𝑇, 𝐹,𝑚0) be a 1-safe net system, and cp(Σ) = (𝐵,𝐸, 𝐹, 𝜆) an extended complete

prefix of Unf(Σ), constructed as described in Sec. 4.1. We present an algorithm that checks

whether the user has a winning strategy to avoid all the occurrences of bad places. Its pseudocode

is in Algorithm 1. Here we provide an intuitive explanation of how it works. For technical

reasons, we slightly modify the net system Σ in input for the algorithm by adding a unique place

initially marked and a controllable transition 𝜏 with this place as precondition, and the initial

marking of Σ as postconditions. Due to the progress constraint for the user, this event must fire

in the initial marking, and after it, the modified net behaves as Σ, therefore the existence of a

strategy is not affected. The algorithm starts from each occurrence of bad places in the prefix,

and looks for the last controllable event preceding it. If this event is the only occurrence of 𝜏 in

the prefix, then the user cannot prevent the system to reach a bad place, since the environment

alone can reach it. Otherwise, this event is unique, since there is no marking enabling two

concurrent controllable transitions, and the user must prevent its occurrence. Let 𝑒 ∈ 𝐸𝑢 be

such event; it can be avoided either by choosing another controllable event enabled in ∘𝑒, or

by preventing the system to arrive in ∘𝑒. This is how the algorithm proceeds: first, it marks

the event 𝑒 as bad choice (through the set bad_events), then it checks whether ∘𝑒 enables a

potentially good alternative. If not, the user cannot prevent the occurrence of a bad place when

the system reaches ∘𝑒, due to the progress constraint, therefore the user must prevent the

system to reach that cut. Once again, this is checked by looking whether it is possible to change

the last controllable choice preceding ∘𝑒.

In a second round the algorithm checks whether there is any terminal event after which the

user cannot prevent the occurrence of a bad place in the unfolding. This is done by comparing

the marking of the local configuration of each terminal event with the set of bad_markings.

If the algorithm always finds an alternative to avoid all the occurrences of bad places, then it

returns true, and the user has a winning strategy; otherwise it returns false.

62



Federica Adobbati et al. CEUR Workshop Proceedings 53–69

Example 4. Consider the net system in Fig. 1 and the prefix of its unfolding in Fig. 2. This prefix
is extended complete. Assume that the goal of the user is to avoid place 13.

On the prefix there is only one occurrence of 13, namely (131). The last controllable event
preceding 131 is 𝑔1; in ∘𝑔1 = {41, 51}, the event ℎ1 is enabled, and can be an alternative to
𝑔1, therefore the algorithm can stop the exploration of the past of 131. The event 𝑔1 is inserted
in bad_events, all the cuts associated to local configurations following 𝑔1 are put into bad_cuts,
namely {51, 71}, {111}, {92}, {131}, and all the associated markings are put into bad_markings.
Then, the algorithm starts to analyze the terminal event 𝑧1. Since cut(𝑧1) is associated to a bad
marking, the algorithm looks for the last controllable event, namely ℎ2. Since in {42, 61} the
event 𝑔2 is enabled and it is not marked as bad, the algorithm stops the exploration of the past
of {91}. Then, the events 𝑖2 and 𝑘2 are analysed. Since both {112} and {122} are associated to
bad markings, in {31, 43} both 𝑔3 and ℎ3 are put into bad_events. Since there is no alternative to
them, the algorithm must check if the cut {31, 43} can be avoided, through a previous controllable
choice. In this case, in the initial marking the user can avoid to fire 𝑛1, and select its alternative
𝑎1, therefore the user has a winning strategy, that is returned by the algorithm (also described in
Ex. 1).

Note that if 𝑛 had been uncontrollable, we would not have had an alternative to avoid {31, 43},
therefore the user would not have had a winning strategy.

The algorithm would not return the right answer when we look for it in the smaller prefix
defined in [3]: this prefix does not include the events 𝑖2 and 𝑘2, so the terminal events are 𝑒1, 𝑓1,
𝑔3, and ℎ3. cut(𝑒1) = {52, 43} and cut(𝑓1) = {62, 43} are not associated to bad_markings,
and this is correct since from these cuts the user is always able to avoid place 13; however, also
cut(𝑔3) = {31, 73} and cut(ℎ3) = {31, 83} are not associated to bad_markings, although the
user cannot be sure to win by reaching them. This is due to the fact that 𝑔3 and ℎ3 are not cut-off
events as defined in Def. 1, and they are terminal in the prefix only because each event following
them also follows 𝑒1 or 𝑓1, which are cut-off. This is the reason why we needed to extend the prefix
by imposing a stronger condition on terminal events: by running the algorithm on the smaller
prefix the strategy would allow to fire 𝑛 in the initial marking and 𝑔3 and ℎ3 in {31, 43}, possibly
leading the user to lose.

In what follows we will prove that Algorithm 1 returns true if the user has a strategy to avoid

all the occurrences of bad places in 𝑆, false otherwise.

Let 𝐸 be the set of all the events in the prefix, 𝐸𝑢 the set of the controllable ones, and 𝐸𝑏

the set of events in bad_events after the end of the execution of Algorithm 1. We denote with

𝐸𝑔 = 𝐸𝑢 ∖ 𝐸𝑏 the set of controllable events not classified as bad_events.

Lemma 1. At the end of Algorithm 1, from all the cuts in bad_cuts the user cannot prevent the
occurrence of a bad place.

Proof. The first set of calls to find_alternative (line 6) analyse the past of the occurrences of bad

places in the prefix. We show inductively that in each call, from all the cuts in bad_cuts the user

cannot avoid to reach an occurrence of a bad place. In the first call of find_alternative, in the first

execution of the while cycle, the set bad_cuts includes only cuts from which an occurrence of a

bad place can be reached through uncontrollable events, of which the user cannot prevent the

occurrence. The set bad_events includes the last controllable event 𝑒1. By construction, if 𝑒1 is
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Algorithm 1 Algorithm to find the existence of a winning strategy

function exStrategy(Σ, cp(Σ), 𝑆) ◁ cp(Σ) is a complete prefix of Σ, 𝑆 is the set of bad

places

◁ Returns True if there is a winning strategy, False otherwise

global bad_cuts← []; bad_markings← []; bad_events← []

for 𝑏 ∈ 𝐵 with 𝜆(𝑏) ∈ 𝑆 do
5: 𝑒← ∙𝑏

st← find_alternative(cut(𝑒))
if st = False then

return False
end if

10: end for
repeat

old_bad_cuts← bad_cuts

for all terminal event 𝑒 not marked as bad do
if mark(𝑒) ∈ bad_markings then

15: st← find_alternative(cut(𝑒))
if st = False then

return False
end if

end if
20: end for

until old_bad_cuts = bad_cuts

return True
end function

function find_alternative(𝛾𝑓 ) ◁ Looks for a controllable conflict in the past of 𝛾𝑓
alternative← False
while alternative = False do

𝑒𝑐 ← last_contr_event(𝛾𝑓 )

5: if 𝑒𝑐 = 𝑛𝑢𝑙𝑙 then
return False

end if
bad_events.add(𝑒𝑐)
bad_cuts.add(cut(𝑒𝑐))

10: bad_markings.add(mark(𝑒𝑐))
for 𝑒 in the interval [cut(𝑒𝑐), 𝛾𝑓 ] do

bad_cuts.add(cut(𝑒))
bad_markings.add(mark(𝑒))

end for
15: 𝛾 = (cut(𝑒𝑐) ∖ 𝑒∙𝑐) ∪ ∙𝑒𝑐

if contr_enabled(𝜆(𝛾)) ∩ 𝜆(𝐸∖ bad_events) ̸= ∅ then
alternative← True

end if
𝛾𝑓 ← 𝛾

20: end while
return True

end function
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in bad_events, cut(𝑒1) is in bad_cuts. We assume that after 𝑛 iterations the property still holds.

By hypothesis, at the 𝑛+1-th iteration, the property holds in cut(𝑒𝑐) = (𝛾𝑓 ∖ ∙𝑒𝑐)∪𝑒∙𝑐 assigned

during the 𝑛-th iteration. Since the iteration did not stop after 𝑛 steps, all the controllable events

enabled in 𝛾𝑓 have been analysed and put in bad_events.

Since the user’s subnet is free-choice, for each controllable 𝑒𝑖 in conflict with 𝑒𝑐, 𝛾𝑓 =
∘𝑒𝑐 = ∘𝑒𝑖. From 𝛾𝑓 , arriving in cut(𝑒𝑐) or in cut(𝑒𝑖) for some event 𝑒𝑖 in conflict with 𝑒𝑐 is

unavoidable for the user due to the progress constraints, and both cut(𝑒𝑐) and all the cut(𝑒𝑖)
have been included in bad_cuts in the previous steps. From all the cuts included in bad_cuts at

the (𝑛 + 1)-th iteration, we can reach 𝛾𝑓 by firing only uncontrollable event. Therefore the

user cannot prevent the system to arrive in 𝛾𝑓 , and from it the bad occurrence is reachable by

inductive hypothesis.

The second set of calls (line 15) is used to analyse the terminal events in the prefix. From the

previous point, we know that when these calls start, for all the cuts in bad_cuts the property

holds. Let 𝑒 be a terminal event whose local configuration is associated to a bad marking 𝑚.

Since 𝑚 is in bad_markings, there must be a cut 𝛾′ ∈ bad_cuts such that 𝜆(𝛾′) = 𝑚. In the

unfolding, the subnet starting from 𝛾′ and the one starting from 𝛾 are isomorphic, therefore

the user cannot prevent the system to reach an occurrence of a bad place from 𝛾. To prove the

thesis, we can repeat the above reasoning about the iterations inside find_alternative.

A consequence of Lemma 1 is that after firing an event in bad_events, the user cannot prevent

the system to arrive in an occurrence of a bad place, since if 𝑒 ∈ bad_events, then cut(𝑒) ∈
bad_cuts.

Lemma 2. At the end of Algorithm 1, if a marking 𝑚 belongs to the set of bad_markings, then
from any cut 𝛾 of the unfolding such that 𝜆(𝛾) = 𝑚 the user has no winning strategy, i.e.: the
user cannot prevent the occurrence of a bad place.

Proof. Let 𝛾 be a cut such that 𝜆(𝛾) = 𝑚 ∈ bad_markings, we have two cases: either 𝛾 is in

bad_cuts, and then this lemma is true by Lemma1, or 𝛾 is not in bad_cuts, in this case, since 𝑚
is bad, there must be another cut 𝛾′ in bad_cuts corresponding to 𝑚 and such that, always by

Lemma 1, the user cannot prevent the occurrence of a bad place from it.

Since 𝛾 and 𝛾′ correspond to the same marking and then their future in the unfolding are

isomorphic, the user cannot prevent the occurrence of a bad place also from 𝛾.

The set of events not in bad_events can be used to construct a strategy for the user.

Remark 1. It is immediate to note that: at the end of Algorithm 1, if a reachable marking 𝑚 does
not belong to bad_markings, then for any cut 𝛾 such that 𝜆(𝛾) = 𝑚 it holds: 𝛾 /∈ bad_cuts.

Lemma 3. At the end of Algorithm, if a reachable marking 𝑚 does not belong to bad_markings
and 𝑚 = 𝜆(cut(𝑒𝑐)) for some 𝑒𝑐 ∈ 𝐸𝑢, then, starting from any 𝛾 such that 𝜆(𝛾) = 𝑚, the user
is able to prevent the occurrence of a bad place.

Proof. Since 𝑚 is not in bad_markings, by the previous remark, any cut 𝛾 such that 𝜆(𝛾) = 𝑚
does not belong to the set of bad_cuts, moreover we know that the future in the unfolding

from any such 𝛾 are isomorphic. Being 𝑚 not in bad_markings, and then 𝑒𝑐 /∈ bad_events, we
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consider two cases. (1) There is in the prefix a condition 𝑏 such that 𝜆(𝑏) ∈ 𝑆, and such that

𝑒𝑐 ≺ 𝑏; then, the algorithm going backward from 𝑏 found a controllable event 𝑒 leading to b,

𝑒𝑐 ≺ 𝑒 ≺ 𝑏, and in conflict with an other controllable event not belonging to bad_events. The

latter event will be suggested by the strategy. (2) If there is no such condition 𝑏, and there is,

always in the prefix, a terminal event 𝑒′, 𝑒𝑐 ≺ 𝑒′ such that mark(𝑒′) ∈ bad_markings, then

again the algorithm going backward from 𝑐𝑢𝑡(𝑒′) found a controllable event 𝑒′′, 𝑒′′ ≺ 𝑒′, in

conflict with another controllable one not belonging to the set of bad_events. Also this last one

will be suggested by the strategy.

Remark 2. A consequence of Lemma 3 is that if the algorithm returns true, the user has a winning
strategy to avoid all the occurrences of bad places in the prefix, since the initial cut cannot be in
bad_cuts. Furthermore, if the algorithm returns true, the user can avoid reaching all the cuts in
bad_cuts, and to fire all the events in bad_events.

Theorem 1. Algorithm 1 is correct, i.e. there is a winning strategy for the user iff it returns true.

Proof. We first consider the case in which the algorithm returns false. This happens if the

function find_alternative returns false, which means that there is no controllable event (1) in

the past of an occurrence of a bad place, (2) in the past of a cut in bad_cuts, or (3) in the past of

a cut of a local configuration of a terminal event, associated to the same marking of a cut in

bad_cuts.

In case (1), there is no winning strategy on the prefix, and a fortiori on the unfolding, that

extends the prefix; in case (2) the non-existence of a winning strategy is a consequence of

Lemma 1; in case (3) the non-existence of a winning strategy is a consequence of Lemma 2 and

of the isomorphism of the subnets of the unfolding starting from two cuts associated to the

same marking.

Finally, we consider the case in which the algorithm returns true. This happens when any

place 𝑏 in the prefix such that 𝜆(𝑏) ∈ 𝑆 can be avoided by the strategy by choosing a controllable

event in conflict with a controllable one leading to 𝑏 (see Remark 2). Let 𝑒 be any terminal event.

If cut(𝑒) is in bad_cuts, then the user will never fire it by following the strategy. The same

happens if cut(𝑒) ̸∈ bad_cuts, but there is a place 𝑏 such that 𝜆(𝑏) ∈ 𝑆, and 𝑏 ≺ 𝑒, as discussed

in Remark 2. Hence, the only terminal events that we can reach by following the strategy are

those, not belonging to bad_events, such that there is no 𝑏 preeceding them such that 𝜆(𝑏) ∈ 𝑆.

Let 𝑒 be one of such events. Since 𝑒 is terminal, there must be an other event 𝑒′ in the prefix

such that mark(𝑒) = mark(𝑒′). Lemma 3 guarantees that from cut(𝑒′) the user can avoid all

the occurrences of bad places. Since the part of the unfolding starting from cut(𝑒) and from

cut(𝑒′) are isomorphic, we can “past” the part of the unfolding following cut(𝑒′) to cut(𝑒). We

can repeat the pasting operation for all the terminal events 𝑒′′ such that cut(𝑒′′) ̸∈ bad_cuts,

and ∄𝑏 bad place such that 𝑏 ≺ 𝑒′′. In this larger prefix the user has a strategy to avoid all the

occurrences of bad places. We can repeat this pasting operation an arbitrary number of time.

For each of such prefix elongations the user has a winning strategy.

Theorem 2. Algorithm 1 terminates.
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Proof. This is a consequence of the finiteness of the prefix: occurrences of bad places and cut-off

events are finite in the prefix, and so is their past.

Strategy Algorithm 1 does not explicitly provide any strategy. However, for each event

𝑒 ∈ 𝐸𝑢, we can easily define a strategy in 𝜆(∘𝑒) by considering the set 𝐸∘𝑒 of controllable

events enabled in ∘𝑒 belonging to 𝐸𝑔 , namely 𝛼(𝜆(∘𝑒)) = 𝐸𝑔 ∩ ∘𝑒. In general, this strategy

is only partial, and not defined in some markings, but it is sufficient to compute a set of good

choices for every marking that is reached in the system while following the strategy. In particular,

assume that in a certain execution the user observes the general marking 𝑚. If there is no

controllable transition enabled in 𝑚, then the user cannot make any choice; otherwise, we can

look for an occurrence of a cut 𝛾 associated to 𝑚 in the prefix, enabling a set of controllable

events. Such a cut must exist, since the prefix extends the one in [3], where all the markings

are represented. Let 𝑒 ∈ 𝐸𝑢 be an event enabled in 𝛾, and consider ∘𝑒. All the winning choices

in 𝜆(∘𝑒) are also winning in 𝑚, since all the events between ∘𝑒 and 𝛾 are uncontrollable and

concurrent with 𝑒, and the controllable events enabled in ∘𝑒 are also enabled in all the cuts

𝛾 such that 𝜆(𝛾) = 𝑚 since the controllable component of the user is extended free-choice.

Therefore, from 𝜆(∘𝑒), the user cannot be sure that, while executing any of its controllable

transitions, 𝑚 is not reached.

5. Conclusion and related works

In this work we presented a two-player game on the unfolding of a Petri net, where the goal

of the user is to avoid to reach a certain set of places, and we proposed an algorithm to check

whether the user has a winning strategy on a complete prefix of the unfolding. Although we

assume that there is no place inaccessible for the user to observe, the strategy cannot rely on

local states whose value may change due to uncontrollable transitions.

In a previous work [7], we modelled a controlled reachability problem with a game on the

unfolding of 1-safe nets. We considered a progress constraint on the environment, leaving the

user free to decide whether to fire its transitions or not. Although also the algorithm proposed

in [7] was based on a prefix of the unfolding, with the reversed progress constraint, we could

not use local configurations to decide the existence of a winning strategy. Contrary to what

happens in this game, in that context, a good strategy collects as much information as possible

before selecting a controllable choice. Because of this, for many nets the constructed prefix was

larger than the complete prefix considered in this work.

Another notion of game on Petri nets was defined in 2014 by Finkbeiner and Olderog [8].

In these Petri games [9, 10, 11], the players, represented by tokens of the net, are divided into

two teams: the environment and the system. The goal of the system is to avoid a given set of

markings. In their game, the players have a causal memory of their past, and get information

about the history of other players through synchronizations on the same transitions.

Another important line of works considering controlled systems was started by Ramadge

and Wonham on labelled transition systems [12, 13]; starting from their theory, some authors

developed techniques based on regions to implement a controller limiting the behaviours of the

net, so to cut out undesired behaviour [14, 15]. In general, the body of works analysing control
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methods on formal models is quite large, refer to [16, 17] for an overview.

In our approach we do not need to compute the whole set of reachable markings to decide

whether the user has a winning strategy, but we only consider markings associated to local

configurations of the events. It is known that the complete prefix in [3] can reach the dimension

of the marking graph, but in many cases it is smaller [3, 4, 5]. We plan to develop an algorithm

to compute the extension proposed in this paper and to make experiments to check how its

dimension changes.

In addition we plan to consider larger classes of nets, both by considering more general user’s

components, and by considering more than two players. On this line, we plan to relate ourselves

to the works considering the analysis of multi-agent systems, such as [18, 19].

Another extension that we are planning concerns the knowledge of the user on the system.

Since some places may contain private information, the user may not be able to ever observe

their value. In this case, the user should make the same choice in any pair of markings that are

indistinguishable from its point of view. We believe that a strategy satisfying this constraint, if

one exists, can also be found on the prefix, by restricting the choices that the algorithm currently

selects as good.

Finally, we plan to consider different goals for the user, for example analysing formulas

expressed with the temporal logic ATL [20].
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