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Abstract
Prediction-based decision-making systems are increasingly used in various domains, but they are vulner-
able to feedback loops that exacerbate existing biases over time. While researchers started proposing
longer-term solutions to prevent adverse outcomes (such as bias towards certain groups), these inter-
ventions largely depend on ad hoc modeling assumptions and a rigorous theoretical understanding of
the feedback dynamics in ML-based decision-making systems is currently missing. We use dynamical
systems theory to analyze the ML-based decision-making pipeline, classify feedback loops, and show
which specific types of ML biases are affected by each type of feedback loop. We encourage readers to
consult the more complete manuscript [1].
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Motivation Automated decision-making processes that use machine learning algorithms
have become widespread, but researchers have found that these systems often perpetuate or
even introduce biases. Efforts have been made to understand and mitigate these biases using
fairness criteria [2]. However, these solutions are designed for stationary systems [3, 4]. Even
though researchers recently started studying the long-term effects of sequential decision-making
algorithms (e.g., [5–7], see [8] for a recent survey), the proposed simulation-based solutions are
drawn on ad hoc models which prevent a comparison of their underlying assumptions and a deep
interpretation of the driving factors, i.e., what causes the feedback loops and which components
of the system are involved. As a result, to date, we lack a comprehensive classification and
theoretical understanding of these feedback loops, and how they relate to the amplification of
different types of bias.
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Contributions We rigorously analyze the ML-based decision-making pipeline and establish
a classification of distinct types of feedback loops. We represent the typical ML-based decision-
making pipeline as a block diagram (as is usual in dynamical systems theory), which is composed
of different sub-systems: the individuals’ sampling process 𝑠, the individual 𝑖’s unobservable
characteristics representing the decision-relevant construct 𝜃, the observed features 𝑥 and
outcomes 𝑦, the ML model 𝑓 (producing a prediction ̂𝑦 for 𝑖), and the final decision 𝑑. The
final decision can feed back into any of the other sub-systems, thus forming different types of
feedback loops (see Fig. 1): A sampling feedback loop comprises the effects of the decision on
the probability certain types of individuals enter the decision-making pipeline (e.g., apply for a
loan). An individual feedback loop is present if the decision acts directly on the individual’s
characteristics. In contrast to the individual feedback loop, in a feature feedback loop the
decision affects the observable characteristics of the individual (e.g., the credit score) rather than
the actual ones (likelihood of repaying a loan). In an ML model feedback loop, the decision
affects the ML model by modifying the training data set that will be used for future predictions
(the outcome is realized and added to the training data set only for positive decisions). Finally, in
an outcome feedback loop, the decision affects the outcome before it is realized and ultimately
observed (e.g., a loan given at a higher interest rate increases the probability of defaulting). To
validate this terminology, we reviewed and classified 24 recent relevant papers (see Table 1) –
where some feedback loops can be classified as adversarial whenever the decision feeds back
into the system involving some strategic action of the affected individual(s).

Furthermore, we associate the different types of feedback loops with the biases they affect (see
Table 1). Sampling and ML model feedback loops can change the representation of the training
or evaluation sample dataset compared to the target population, thus leading to representation
bias. An individual feedback loop can cause historical bias by changing an individual’s decision-
relevant (though, often unobservable) attributes. In contrast, feature and outcome feedback
loops act on the extraction and realization of those attributes, which can affect the measurement
bias of the observable attributes. In general, we find that the existence of feedback loops in the
ML-based decision-making pipeline can perpetuate, reinforce, or even reduce ML biases.

Table 1
Feedback loops in the algorithmic fairness literature and their relation to biases.

Feedback loop Literature ML biases
non-adversarial adversarial

Sampling Feedback Loop [9–11] – Representation bias
Individual Feedback Loop [12, 13] [5, 7, 14–17] Historical bias
Feature Feedback Loop [5, 6, 11, 18–21] [5, 14–16, 22–25] Measurement bias
ML Model Feedback Loop [21, 26–29] – Representation bias
Outcome Feedback Loop [25] – Measurement bias

Potential impact By rigorously analyzing the ML pipeline, we believe that our framework
is a necessary preliminary step towards (i) understanding the exact role of the feedback loops
and (ii) shifting the research focus from short-sighted solutions that aim to identify and correct
existing biases to a more forward-looking approach that seeks to anticipate and prevent biases



Figure 1: The ML-based decision-making pipeline as a closed-loop system in which different feedback
loops can emerge. The pipeline is described in more detail in Appendix A along with the notation used.

in the long term. First, providing a rigorous classification of feedback loops will pave the way for
a systematic review of existing works in the ML literature and it will allow putting their results
into the perspective of their assumptions (e.g., which types of feedback loops are considered and
which are not). Second, with the help of additional tools, e.g., dynamical systems and control
theory, it will be possible to fully exploit the potential of our framework in the purposeful
design of feedback loops, and for the development of effective long-term unfairness mitigation
techniques.
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A. Notation for the ML-based decision-making pipeline in Fig. 1

At the beginning of the pipeline, an individual 𝑖 is sampled from the world (i.e., the environment)
ℐ, which represents a signal entering in the sampling function block 𝑠 ∶ ℐ → 𝑖. Let 𝑖 be the
individual’s identity – i.e., its index in the population – and let 𝑔 ∶ 𝑖 → 𝜃 be a function that
returns the individual’s attributes. More precisely, 𝜃 denotes the construct that is relevant for
the prediction. The features 𝑥, extracted through the function 𝑟 ∶ 𝜃 → 𝑥, 𝑎, and the outcome 𝑦
(also called label or target), realized through the function 𝑡 ∶ 𝜃 → 𝑦, are imperfect proxies that
can be measured. For instance, 𝑦 can represent whether or not an individual repays a granted
loan and 𝑥 is a set of features (for example, the credit score, as widely used in the US) that are
used by the decision-maker to predict the repayment probability ̂𝑦 in order to decide whether
to grant the loan or not. For each sampled individual, the final decision 𝑑 is informed by the
prediction ̂𝑦, which is produced based on the observed features 𝑥 to approximate 𝑦 using a
learned function 𝑓 ∶ 𝑥 → ̂𝑦. Once the outcome is observed, i.e., after one time-unit of delay,
the past time’s feature label pair (�̃� , ̃𝑦) can end up as a sample in the dataset (𝑋 , 𝑌 ) that is
used to (re)train and (re)evaluate an ML model. In fully-automated decision-making systems,
the decision rule ℎ is solely based on the prediction (ℎ ∶ ̂𝑦 → 𝑑), usually taking the form of
a simple threshold rule, e.g., 𝑑 = 1 if and only if ̂𝑦 ≥ ̄𝑦. The symbol 𝑎 indicates the sensitive
attribute of the individual (e.g., race or gender) and can possibly also be incorporated in the
features 𝑥. More precisely, the training, evaluation, prediction, or decision-making can use the
information on the individual group memberships. Notice that 𝑑 does not always directly follow
from ̂𝑦. Efforts to ensure group fairness usually take the group membership 𝑎 into account,
e.g., to avoid disparate impact. Similarly, in non-automated decision-making systems, human
decision-makers might consider any external, environmental information 𝑧, resulting in a more
complex decision rule ℎ ∶ 𝑓 , 𝑥, 𝑎, ̂𝑦 , 𝑧 → 𝑑.
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