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Abstract
The encoding and exploitation of semantics has been gaining popularity, as exemplified by the uptake
of digital ontologies and knowledge graphs. However, the semantics of domain objects usually do not
reflect how they evolved over time, i.e., which events their dynamic transitions are based on. While a
number of methods have been proposed to trace events and their impacts on a domain, there is a paucity
of approaches to effectively join them. Thus, we combine event calculus as an analytical approach for
modeling causal relationships between events and effects with semantic drifts as an empirical approach
for quantifying the impact of domain updates. We demonstrate how their respective weaknesses can be
addressed and how their interaction can improve the representation of semantic transitions.
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1. Introduction

Semantics, often referred to as the study of meaning and truth, represent the foundation of
human cognitive abilities and thus most research fields [1]. After all, without semantics it is
impossible to put things into context and draw conclusions about them. Semantics are thus
examined in various real-world domains, e.g., biomedicine [2], manufacturing [3], or finance [4].

Within a domain, objects are assigned meaning based on their interactions with each other.
Thus, knowledge graphs (KGs) structure knowledge based on ontological conceptualizations so
that the semantics of an object can be inferred from its graph neighborhood [5]. Accordingly,
given a respective KG G, the corresponding domain axioms can be applied for logical inferences.
However, regarding an ordered time set T and some dynamic KG (G𝑡)𝑡∈T , they lack the ability
to incorporate individual semantic events as enablers of domain updates. For 𝑡𝑖, 𝑡𝑘 ∈ T with
𝑡𝑖 < 𝑡𝑘, domain axioms can only be applied to the already updated KG G𝑡𝑘 . The causes of these
updates are thus neglected, i.e., semantic events are not included in the logical inferences.
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2. Related Work

To incorporate semantic events within logical inferences, some works already exist, which
can be divided into analytical and empirical approaches. Analytical approaches, such as event
calculus [6], extend first-order logic (FOL) rules for temporal reasoning [7, 8]. Domain updates
between two timestamps 𝑡𝑖 and 𝑡𝑘 are initiated by events 𝑒𝑡 with 𝑡 ∈ [𝑡𝑖, 𝑡𝑘], and relationships
between domain objects are regarded as fluent states that can be either true or false. Accordingly,
effects are defined that take into account the semantics at time 𝑡𝑖 and the events that have taken
place inbetween 𝑡𝑖 and 𝑡𝑘 to conclude the fluent states within the updated domain image. As
prior domain knowledge about events is directly incorporated, temporal reasoning is a proactive
approach that can also be applied to temporal knowledge graph extensions [9, 10].

Contrarily, empirical approaches assume two self-contained semantic representations of
the domain knowledge. Besides knowledge graphs, external representation types, such as
word or text annotations, are explicitly allowed as well. Based on the representations for both
timestamps 𝑡𝑖 and 𝑡𝑘, an attempt is made to identify so-called semantic drifts [11], i.e., to identify
domain objects whose semantics have drifted from 𝑡𝑖 to 𝑡𝑘, and to quantify these drifts [12, 13].
In conclusion, semantic drifts represent a reactive approach to the subsequent identification of
semantic transitions and thus also events and their effects as enablers of these transitions.

In the following, both approaches are discussed in more detail and summarized in a compact
manner. Thereby, we focus on their advantages and in particular their disadvantages with
respect to their real-world applications. Based on these findings, we elaborate to what extent
the combination of event calculus and semantic drifts can counteract their respective drawbacks
and thus faciliate the incorporation of semantic events and transitions in dynamic domains.

3. Event Calculus

As an extension of FOL, event calculus is based on propositions that can be either true or false.
A proposition 𝑝 (𝜔1, .., 𝜔𝑛) is composed of some predicate 𝑝 that asserts a logical relationship
among non-logical objects 𝜔1, .., 𝜔𝑛 ∈ Ω, such as entities or concepts of a domain. Here, Ω
represents the set of all available domain objects and 𝑛 ∈ ℕ denotes the arity of a property, i.e.,
the number of objects within its logical expression. Accordingly, KGs G = (V , E) with vertices
V = Ω and edges E can be interpreted as sets of binary propositions, i.e., 𝑝 (𝜔1, 𝜔2) = 𝑇 𝑟𝑢𝑒
implies the directed edge (𝜔1, 𝑝, 𝜔2) ∈ E . For example, 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡(𝜔1, 𝜔2) is binary (i.e., 𝑛 = 2)
and true if a person 𝜔1 is the president of a country 𝜔2. Moreover, domain rules and composite
propositions can be constructed via the connectives ∧, ∨, =, ¬,⇒,⇐ and the quantifiers ∀, ∃.

Accordingly, event calculus is based on the consideration of propositions as fluents, namely
conditions that can change over time. These fluents are reified, i.e., they are formalized as
non-logical objects so that they can serve as inputs for functions with range T . For example,

𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 (𝜔𝐷𝑇, 𝜔𝑈 𝑆) = [𝑡17, 𝑡21] ⊆ T

describes the presidency term of 𝜔𝐷𝑇 = Donald Trump in the 𝜔𝑈 𝑆 = United States inbetween
the timestamps 𝑡17 ∶= January 20th, 2017 and 𝑡21 ∶= January 20th, 2021. Even though different
interpretations of event calculus can be found in the literature [14], most of them introduce the



additional functional predicates ℎ𝑜𝑙𝑑𝑠𝐴𝑡, ℎ𝑎𝑝𝑝𝑒𝑛𝑠, 𝑖𝑛𝑖𝑡 𝑖𝑎𝑡𝑒𝑠, and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠. The predicate ℎ𝑜𝑙𝑑𝑠𝐴𝑡
is used to determine whether a proposition holds at a timestamp 𝑡 ∈ T , e.g.,

ℎ𝑜𝑙𝑑𝑠𝐴𝑡 (𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 (𝜔𝐷𝑇, 𝜔𝑈 𝑆) , 𝑡) = 𝑇 𝑟𝑢𝑒
holds for all 𝑡 ∈ [𝑡17, 𝑡21]. While ℎ𝑎𝑝𝑝𝑒𝑛𝑠 indicates whether a semantic event 𝑒 takes place at time
𝑡 ∈ T , the predicates 𝑖𝑛𝑖𝑡 𝑖𝑡𝑎𝑡𝑒𝑠 and 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 define its effects, i.e., how fluent states are affected
by this event [15]. Events are encoded as non-logical objects and thus build the foundation for
controlling dynamics in event calculus. In our example, the change in office (cio) in the US at
time 𝑡21 represents the event 𝑒𝑐𝑖𝑜 that effectively terminated Donald Trump’s presidency and
initiated the tenure of 𝜔𝐽𝐵 = Joe Biden, i.e., the fluent states are updated due to

ℎ𝑎𝑝𝑝𝑒𝑛𝑠 (𝑒𝑐𝑖𝑜, 𝑡21) ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒𝑠 (𝑒𝑐𝑖𝑜, 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 (𝜔𝐷𝑇, 𝜔𝑈 𝑆)) ∧ 𝑖𝑛𝑖𝑡 𝑖𝑎𝑡𝑒𝑠 (𝑒𝑐𝑖𝑜, 𝑝𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡 (𝜔𝐽𝐵, 𝜔𝑈 𝑆)) .

These events can be implicit as above, but also explicit, i.e., an event can explicitly characterize
changes in fluent states, e.g., by considering the inauguration of Joe Biden on January 20th, 2021
as a single event. Such explicit events are commonly referred to as actions as they actively
affect the structure of the domain knowledge. Accordingly, event calculus analyzes which
actions need to be performed as effects of semantic events. Each effect is thus to be interpreted
as an action. An overview of the dynamic transitions in event calculus can be found in Figure 1.

Figure 1: The main components of event calculus: Each effect is an action and each action is an event.

3.1. The Problem of Event Calculus

Since event calculus requires prior knowledge about a domain, it represents an analytical
approach for modeling semantic events and their effects on fluent states. During the definition
phase of the respective calculus, future events and effects must already be considered, which
constitutes its major drawback. For example, the impacts of events may vary over time or they
might even be unknown at the time of definition. Thus, for a dynamic domain, we want to
trace the consistency and completeness of a given calculus. Empirical approaches are required
for measuring the impact of events so that actions can be verified and missing effects can be
indicated. For this purpose, we adopt approaches for determining so-called semantic drifts.

4. Semantic Drifts

For two (not necessarily consecutive) timestamps 𝑡𝑖, 𝑡𝑘 ∈ T , semantic drifts are introduced to
measure the impact of semantic updates inbetween both timestamps [16, 17, 18]. Analogous to
Section 3, entities and concepts of a domain are considered as non-logical objects 𝜔 ∈ Ω𝑡 with
semantic representations 𝜋𝑡(𝜔) ∈ Π𝑡 for some 𝑡 ∈ T . The representation set Π𝑡 may include sets
of propositions (cf. Section 3), but also external representations, such as textual annotations.



Accordingly, a semantic drift measure 𝜙𝑡𝑖≻𝑡𝑘 ∶ Ω𝑡𝑖 ∩ Ω𝑡𝑘 → ℝ≥0 is derived from some distance
measure 𝜓 ∶ Π𝑡𝑖≻𝑡𝑘 × Π𝑡𝑖≻𝑡𝑘 → ℝ≥0 by means of 𝜙𝑡𝑖≻𝑡𝑘(𝜔) ∶= 𝜓(𝜋𝑡𝑖(𝜔), 𝜋𝑡𝑘(𝜔)). Here, Π𝑡𝑖≻𝑡𝑘
represents a shared representation space. Thus, for objects 𝜔, 𝜔′ ∈ Ω𝑡𝑖 ∩ Ω𝑡𝑘 , the inequality
𝜙𝑡𝑖≻𝑡𝑘(𝜔

′) > 𝜙𝑡𝑖≻𝑡𝑘(𝜔) indicates a larger semantic drift in 𝜔′. However, it must be assumed that
Π𝑡𝑖≻𝑡𝑘 is a space with some well-defined distance measure 𝜓, which is generally not the case.

4.1. Semantic Drifts in Numerical Embedding Spaces

To solve this problem, embedding mappings 𝛾𝑡 ∶ Π𝑡 → Π⋆
𝑡 can be used to embed the given

semantic representationswithin a numerical representation spaceΠ⋆
𝑡 equippedwithwell-defined

distancemeasures. For example, KG embeddingmethods like TransE [19] or RDF2Vec [20] assign
numerical representations to the nodes of a KG [21]. Similarly, Natural Language Processing
(NLP) introduces language models like Word2Vec [22], BERT [23], or T5 [24] to convert text
into numerical embeddings [25]. Typically, Π⋆

𝑡 is chosen to be a real-valued embedding space,
e.g., Π⋆

𝑡 = ℝ𝑑𝑡 with 𝑑𝑡 ∈ ℕ. To merge the numerical representations of both timestamps 𝑡𝑖, 𝑡𝑘 ∈ T
within a joint embedding space Π⋆

𝑡𝑖≻𝑡𝑘 , embedding alignments can be performed via

𝛼𝑡𝑖 ∶ ℝ𝑑𝑡𝑖 → ℝ𝑑𝑡𝑖≻𝑡𝑘 and 𝛼𝑡𝑘 ∶ ℝ𝑑𝑡𝑘 → ℝ𝑑𝑡𝑖≻𝑡𝑘

with Π𝑡𝑖≻𝑡𝑘 = ℝ𝑑𝑡𝑖≻𝑡𝑘 and 𝑑𝑡𝑖≻𝑡𝑘 ∈ ℕ, to approximate different representations of identical objects.
Considering the alternative representations 𝜋⋆𝑡 (𝜔) ∶= 𝛼𝑡(𝛾𝑡(𝜋𝑡(𝜔))), these are adjusted through

𝜋𝑡𝑖(𝜔) ≈ 𝜋𝑡𝑘(𝜔) ⟺ 𝜓(𝜋⋆𝑡𝑖 (𝜔), 𝜋
⋆
𝑡𝑘 (𝜔)) ≈ 0

for some predefined distance measure 𝜓 ∶ ℝ𝑑𝑡𝑖≻𝑡𝑘 × ℝ𝑑𝑡𝑖≻𝑡𝑘 → ℝ≥0 like the cosine or the euclidean
distance, so that outliers are defined as semantic drifts. For the sake of completeness, it should be
mentioned that only one or even no alignment may be performed. For example, embeddings can
be aligned in an existing embedding space ℝ𝑑𝑡𝑖 or ℝ𝑑𝑡𝑘 via 𝛼𝑡𝑖 = 𝑖𝑑 or 𝛼𝑡𝑘 = 𝑖𝑑. For some dynamic
embedding methods, such as [26, 27], it is even possible to a priori assume 𝛾𝑡𝑖(𝜋𝑡𝑖(𝜔)) ≈ 𝛾𝑡𝑘(𝜋𝑡𝑘(𝜔))
for 𝜋𝑡𝑖(𝜔) ≈ 𝜋𝑡𝑘(𝜔) and thus also 𝛼𝑡𝑖 = 𝛼𝑡𝑘 = 𝑖𝑑. In conclusion, distance measures can be applied
to quantify the semantic drift of an object 𝜔 ∈ Ω𝑡𝑖 ∩ Ω𝑡𝑘 via 𝜙𝑡𝑖≻𝑡𝑘(𝜔) ∶= 𝜓(𝜋∗𝑡𝑖 (𝜔), 𝜋

∗
𝑡𝑘(𝜔)).

4.2. Semantic Drifts based on Representation-based Distance Measures

In contrast to embedding-based methods for determining semantic drifts, other approaches exist
which omit the prior embedding of the domain objects and instead consider representation-
based distance measures 𝜓 ∶ Π𝑡𝑖≻𝑡𝑘 × Π𝑡𝑖≻𝑡𝑘 → ℝ≥0, where Π𝑡𝑖 = Π𝑡𝑘 = Π𝑡𝑖≻𝑡𝑘 is always assumed.
For example, Π𝑡𝑖≻𝑡𝑘 could represent all valid graph neighborhoods of some node representation
within a KG, or it could represent the set of all english text fragments. Such formalisms can
be found in [28, 29], among others, which consider compositions of semantic representations
and corresponding distance measures. These distance measures are typically derived from
similarity measures 𝜎 ∶ Π𝑡𝑖≻𝑡𝑘 ×Π𝑡𝑖≻𝑡𝑘 → [0, 1], i.e., 𝑥, 𝑦 ∈ Π𝑡𝑖≻𝑡𝑘 are semantically indistinguishable
if 𝜎(𝑥, 𝑦) = 1 holds and unequal for 𝜎(𝑥, 𝑦) = 0. Accordingly, semantic drifts can be defined via

𝜙𝑡𝑖≻𝑡𝑘(𝜔) = 𝜓 (𝜋𝑡𝑖(𝜔), 𝜋𝑡𝑘(𝜔)) = 1 − 𝜎 (𝜋𝑡𝑖(𝜔), 𝜋𝑡𝑘(𝜔)) ∈ [0, 1].



Since arbitrary ℝ-valued distances measures can be derived almost analogously, we restrict
ourselves to such [0, 1]-valued distance measures in the following without loss of generality.

For example, textual object annotations 𝜋 𝑙𝑎𝑏𝑒𝑙𝑡𝑖 (𝜔) and 𝜋 𝑙𝑎𝑏𝑒𝑙𝑡𝑘 (𝜔) for some 𝜔 ∈ Ω𝑡𝑖 ∩ Ω𝑡𝑘 can be
compared via text comparison methods like the Monge-Elkan similarity [30]. Analogously,
KG-based representations can be considered, e.g., the number of adjacent nodes or the sets of
common edges can be determined for both timestamps 𝑡𝑖 and 𝑡𝑘 to define the semantic drift as
their difference or by applying set similarity measures like the Jaccard index [31], respectively.

Representation-based distance measures are also applied in [32], where additional KG-based
aspects like URIs, superclasses and subclasses, and equivalent classes are incorporated. Overall,
such approaches are always based on heuristics that can be directly applied to some graph
structure or external representation (e.g., text) to measure the semantic drifts of domain objects.

4.3. The Problem of Semantic Drifts

Compared to the analytical approach of analyzing semantic transitions in event calculus, se-
mantic drifts represent an empirical method for quantifying the impact of semantic transitions
on domain objects. Order statistics of the drift scores {𝜙𝑡𝑖≻𝑡𝑘(𝜔) ∶ 𝜔 ∈ Ω𝑡𝑖 ∩ Ω𝑡𝑘} can be defined
and compared, e.g., the 𝑚 < |Ω𝑡𝑖 ∩ Ω𝑡𝑘 | domain objects can be determined that drifted the most.
However, the selection of some well-defined threshold 𝜏 ∈ ℝ≥0 with

𝜔 drifted significantly inbetween 𝑡𝑖, 𝑡𝑘 ∈ T ∶ ⟺ 𝜙𝑡𝑖≻𝑡𝑘(𝜔) ≥ 𝜏 (1)

is not trivial at all and solutions need to be elaborated for this problem.

5. Combining Event Calculus and Semantic Drifts

In this chapter, we discuss how event calculus and semantic drifts can be combined for the
modeling and analysis of semantic transitions in dynamic domains. According to Section 3,
transitions between two timestamps 𝑡𝑖, 𝑡𝑘 ∈ T are always based on events 𝑒𝑡 with 𝑡 ∈ [𝑡𝑖, 𝑡𝑘]
that implicitly or explicitly update the domain knowledge. In the following, we first reveal
to what extent prior knowledge from an existing event calculus can improve the quality of
semantic drifts. Subsequently, we show to what extent semantic drift measures can be applied
to counteract the drawbacks of formalisms based on event calculus.

5.1. Improving Semantic Drifts via Event Calculus

As mentioned in Section 4.3, one major drawback of semantic drifts is that conclusions regarding
the significance of a semantic drift 𝜙𝑡𝑖≻𝑡𝑘(𝜔) can only be drawn in relation to those of other
objects in Ω𝑡𝑖 ∩ Ω𝑡𝑘 ⧵ {𝜔}. While the determination of a globally valid threshold 𝜏 ∈ ℝ≥0 from
Equation 1 seems impossible, an event calculus can be applied to derive a transition-specific
threshold 𝜏𝑡𝑖≻𝑡𝑘 that only examines the updates between 𝑡𝑖, 𝑡𝑘 ∈ T . Considering the example from
Section 3, the inauguration of a person could be defined as a significant event with respect to
his or her semantics (if not otherwise impacted). Thus, by specifying 𝑡𝑖 = 𝑡17 and 𝑡𝑘 = 𝑡21,

𝜔 drifted significantly inbetween 𝑡𝑖, 𝑡𝑘 ∈ T ∶ ⟺ 𝜙𝑡𝑖≻𝑡𝑘(𝜔) ≥ 𝜏𝑡𝑖≻𝑡𝑘 ∶= 𝜙𝑡𝑖≻𝑡𝑘(𝜔𝐽𝐵)



can be defined so that all domain objects that drifted at least as much as Joe Biden are determined
as objects whose semantics changed significantly. For this, knowledge is required about the
semantic events underlying the dynamic transitions, which is made possible by event calculus.

5.2. Improving Event Calculus via Semantic Drifts

In Section 3.1, two major drawbacks of formalisms based on event calculus are identified.

I Events are descriptive, i.e., their semantic impacts can be encoded in their effects, but
their significance can not be measured in a quantitative manner.

II Events and their effects are defined prior to deployment. Thus, the calculus could be
incomplete and might need to be updated in the future.

As the outcome of an event is encoded within its effects, i.e., their actions on a collection of
domain properties (e.g., edges in a KG), we can identify objects whose semantics were updated
as the cause of an event. Thus, the introduction of semantic drifts provides a possible solution
to the first drawback since the drifts of affected objects can be measured and aggregated so that
the impacts of different events can be compared, as exemplified in the following.

Example. We assume the example from Section 3 regarding the change in office in the United
States on 𝑡𝑘 ∶= 𝑡21 = January 20th 2021 that is defined as the semantic event 𝑒𝑐𝑖𝑜. Further, we
assume that 𝑡𝑖 ∶= January 19th 2021 and 𝑡𝑘 are consecutive. To analyze the impact of this event
in more detail, we split up 𝑒𝑐𝑖𝑜 into two subevents that represent Donald Trump’s resignation
and Joe Biden’s inauguration, respectively. We achieve this by means of

𝑒𝑐𝑖𝑜,𝛼 =̂ Donald Trump’s resignation and 𝑒𝑐𝑖𝑜,𝛽 =̂ Joe Biden’s inauguration.

Finally, we define an additional timestamp 𝑡𝑗 with 𝑡𝑖 < 𝑡𝑗 < 𝑡𝑘, so that 𝑒𝑐𝑖𝑜,𝛼 happens at 𝑡𝑗 and 𝑒𝑐𝑖𝑜,𝛽
happens at 𝑡𝑘. Since 𝜔𝑈 𝑆 is directly affected by both subevents, we want to quantify their impacts
on it. Semantic drift scores 𝜙𝑡𝑖≻𝑡𝑗(𝜔𝑈 𝑆) and 𝜙𝑡𝑗≻𝑡𝑘(𝜔𝑈 𝑆) can be utilized to answer this question.
In this context, it is important to note that, in the case of embedding-based semantic drifts,
alignments should be performed within the shared embedding space Π⋆

𝑡𝑗 , i.e., by considering
𝛼𝑡𝑗(⋅) = 𝑖𝑑, to ensure comparability of the drift scores. △

Similarly, semantic drifts can counteract the second drawback mentioned above. Since they
are based on empirical observations of semantic representations within the domain, we can
identify how much domain objects have drifted semantically, to determine whether the calculus
is capable of describing the dynamic transitions and the corresponding domain updates.

Example. Analogous to the previous example, we assume the event 𝑒𝑐𝑖𝑜 and the timestamps
𝑡𝑖, 𝑡𝑘. Further, we consider some semantic drift measure 𝜙𝑡𝑖≻𝑡𝑘 ∶ Ω𝑡𝑖 ∩ Ω𝑡𝑘 → ℝ≥0. Since the
above-mentioned event calculus is rather restricted, it may disregard some semantic effects.
Thus, semantic drifts can be applied to determine the order statistic of the objects’ drifts or some
threshold 𝜏 ∈ ℝ≥0 as in Equation 1 to determine if an object 𝜔 ∈ Ω𝑡𝑖 ∩ Ω𝑡𝑘 drifted significantly. In
our example, embedding-based approaches could implicitly or explicitly state that the semantics
of the democratic and/or republican party were affected by this event, even though their semantic
representations were not actively updated. Thus, semantic drifts can serve as indicators of the
quality of an event calculus, so that it can be subsequently adjusted if necessary. △



6. Conclusion

In this work, we reviewed and analyzed event calculus and semantic drifts as approaches for
identifying and understanding semantic transitions in dynamic domains. While event calculus
is a proactive approach to the modeling of causal relationships between events and their effects,
semantic drifts assume two self-contained images of a dynamic domain to reactively identify
domain objects whose semantics have changed as an effect of a transition.

In this context, drawbacks are pointed out that impair or prevent their real-world applications.
To counteract these drawbacks, we propose to conduct both approaches in a complementary
manner, to combine the benefits of analytical modeling and empirical observations. On the
one hand, semantic drifts are enriched by prior knowledge about the events underlying the
transitions, so that it is made possible to assess whether drifts need to be regarded as significant
or not. On the other hand, quantitative statements about impacts of events and their effects on
domain objects enable the qualitative verification of temporal reasoning formalisms like event
calculus. The proposed approach to combine both methods is exemplified and serves as a basis
for future works to facilitate the modeling of dynamic knowledge based on semantic events.
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