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Abstract
Knowledge Graphs are commonly characterized by two challenges: massive scale and sparsity. The former leads to slow
response times for complex queries with random data accesses, especially when they require deep graph traversals. The latter,
which is caused by missing connections and characteristics in graphs modeling real information, implies that any analysis
based solely on explicitly stored data is bound to yield incomplete results. This work aims to develop a novel graph database
architecture that leverages the power of Graph Machine Learning to equip graph queries with prediction capabilities while
offering approximate but timely results to complex queries. We discuss challenges, design decisions, and research avenues
required in materializing this prototype alongside the outline of the actively-pursued research plan.
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1. Introduction
For years, the data management community has been in-
vestigating systems that can store, process, query, and an-
alyze Knowledge Graphs (KGs) to enable critical decision-
making or accelerate discoveries. One of the prevalent
challenges refers to query complexity. Due to the require-
ment for random accesses, above-linear algorithms are
difficult to execute, especially on natural graphs, which
tend to converge to skewed power-law degree distribu-
tions [1]. However, the need for fast complex computa-
tions is evident in the industry [2, 3]. Yet, answering com-
plex queries requiring deep traversals of heterogeneous
data or employing computationally expensive algorithms
lacks support in common data management tools [4, 2].

As current systems attempt to address issues like dis-
tribution skew or evolution, most architectures neglect
one of the major difficulties of KGs: data incompleteness.
Interconnected data modeling natural domains are often
missing connections and properties [1]. Modern graph
management tools such as graph databases, graph pro-
cessing systems, or graph streaming frameworks can only
consult or compute properties of data that is explicitly
stored but are usually unable to draw any conclusion
that is not explicitly stated [5, 4]. Furthermore, systems
that natively support reasoning capabilities, such as RDF
stores, usually offer deductive inference based on exist-
ing data and rely heavily on ontology definitions, which
can grow complex and resource-intensive to maintain,
especially for massive, intricate dynamic graph datasets.
Such systems cannot be used to harness the potential
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of incomplete data, where observations might enclose
latent patterns and valuable correlations [6].

At the other end of the spectrum, Graph Machine
Learning and, particularly, Graph Representation Learn-
ing show tremendous potential in tackling incomplete-
ness through inductive reasoning. Modern methods
construct node, edge, or even subgraph Euclidean rep-
resentations, in the form of embeddings that encode
both intrinsic information and topological information
through message-passing-like mechanisms. The em-
beddings have been used in literature successfully for
downstream tasks, showcasing notable inference abilities.
Moreover, Graph ML can accurately approximate com-
plex graph tasks and alleviate computational costs, with
recent works hinting at equivalence with dynamic pro-
gramming [7]. However, learned methods are currently
not integrated into production-level graph data manage-
ment systems for reasons amongst which we highlight a
general mistrust in black-box models.

This work targets the design of a graph database sys-
tem equipped with inference capabilities to tackle data
incompleteness and query complexity. To increase the
trustworthiness of the predicted outcomes, we investi-
gate the feasibility of user-defined uncertainty bounds for
complex graph queries. We aim to tackle these challenges
through the following contributions.
1. We design a hybrid query optimizer that considers opera-
tors with dual execution strategies: one operating using raw
data accesses and one operating as ML inferences directly
in learned latent spaces.
2. We consider methods for error estimation in ML-powered
query plans, which can grant end-users control over the
inferred outcomes.
3. We explore techniques for continuous training and infer-
ence to strike a balance between ensuring low query latency
and offering predicted query results.
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2. Research Goal
The proposed architecture moves query computation
from raw data accesses and expensive pointer-chasing for
traversals to querying learned latent spaces. Specifically,
we leverage the power of graph representation learn-
ing to approximate complex graph queries by using la-
tent representations (i.e., embeddings). In this attempted
design, certain database operators have two operating
modes, which we define as follows: (1) DB operators,
which refer to traditional database operations executed
on explicitly stored data, and (2) ML operators, where
raw data accesses are replaced with Machine Learning
inference calls. The latter does not require graph data
accesses to finalize a computation, as it is carried out as
matrix multiplications using a given query input and a
trained model.

To exemplify this concept, we briefly describe
Query2Box [8], a graphMLmethod that solves multi-hop
queries of arbitrary length and type. The results are ap-
proximated by traversing a learned latent space using pro-
jections and intersections of hyper-rectangles. This sem-
inal work achieves noteworthy accuracy results, proving
its capabilities for approximation and completing the re-
sults sets with meaningful inferred results. Furthermore,
attesting to its acceleration benefits, Query2Box’s theoret-
ical response time grows linearly in the number of hops.
In contrast, multi-hop traversals of heterogeneous graphs
with raw data accesses are known to have exponential
time complexity [8]. Query2Box can serve as anML oper-
ator in our envisioned database to approximate traversals.

However, deep learning models’ decision-making pro-
cess is opaque to the user, who can only observe the input
and output, thus causing a lack of credibility in the pre-
dictions obtained. For this reason, despite the impressive
advances and breakthroughs of ML methods, their adop-
tion remains limited. For a graph database, particularly,
offering predicted query results with no control over the
desired error or uncertainty bound is counter-productive.
This research aims to tackle the trustworthiness chal-
lenge by investigating methods to allow for statistically
sound uncertainty bounds per query. To illustrate, the
following two-hop Cypher query, which identifies the
item bought by customers related to a customer named
Anna, restricts the tolerated error at 5%, thus allowing
for ML predictions to be employed:

MATCH (:Customer {name: 'Anna'})-[:RELATED_TO]->
(:Customer)-[:BOUGHT]->(r:Item)

RETURN r
WITH MAXIMUM UNCERTAINTY 0.05;

The user-defined uncertainty bounds can potentially
assist the database query optimizer in identifying the best
physical plan. For example, to satisfy the error threshold,

the system can decide to execute the first hop using an
ML operator backed, for instance, by Query2Box, while
choosing to traverse the explicitly stored data for the sec-
ond hop. Therefore, a novel query optimization process
is paramount to bringing this vision to fruition.

Lastly, we highlight the potential prospect of the pro-
posed design for graph processing on GPUs. ML oper-
ators can naturally benefit from modern hardware ac-
celeration techniques since the computation is reduced
to tensor operations. In contrast, conventional graph
queries suffer from random data accesses, which are not
trivial to accelerate [9].

3. Challenges
With this work, we argue that executing time-consuming
queries on incomplete Knowledge Graphs is counter-
productive since the processing will, nonetheless, yield
incomplete results sets. Instead, we relax the require-
ment for exact answers and discuss potential research
directions to equip the capabilities of current database
management systems with predictive powers.

3.1. Hybrid Query Optimizer
When employing both DB and ML operators, conven-
tional cost-based query optimizers are insufficient since
they are solely based on cardinality estimation and ex-
ecution time, whereas the envisioned architecture also
features uncertainty constraints. To materialize the pro-
posed predictive graph database, where the predictions
are guided and controlled by uncertainty bounds, we will
explore a novel optimization process that complements
traditional query optimizers in databasemanagement sys-
tems. The query optimization can potentially be framed
as a multi-objective cost function that minimizes IOwhile
ensuring the uncertainty threshold is met. We will re-
fer to the two cost models as performance-based and
uncertainty-based, respectively.
Performance-based Optimization. The performance-
based cost model estimates the IO costs on a given phys-
ical plan. It assigns a score for each valid physical query
plan based on the expected processing cost and cardi-
nality estimations. In the context of ML-enabled graph
databases, a performance-based cost function operates
using conventional database methods for cost estimation
for DB operators. Estimating the cost of ML operators
should follow a different approach: since the results of
one ML operator are obtained, regardless of query, using
the same input type and model as a predefined number
of matrix multiplications, the cost can always be accu-
rately computed. The cardinality estimates are, however,
noteworthy. Traditional databases consider cardinality
estimation to decide on the order of operators in the re-



MATCH (    )-[r]->(    )-[r]->(p:    )
RETURN p;

MATCH (    )-[r]->(    )-[r]->(p:    )
RETURN p;
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(a) Examples of queries for a heterogeneous, dynamic
graph, where nodes 1 to 5 were used to train the
model of an ML operator.
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(b) Relation between inference capabilities and query latency
with respect to the ingestion timestamp of the queried data.
Adapted from [4].

Figure 1: Latency-completeness trade-off introduced by ML operators in graph database querying.

sulting physical plan. Predictive databases require an
additional layer of complexity: choosing between oper-
ator execution modes (i.e., DB or ML) will potentially
result in different cardinalities for the result set since ML
operators include plausible outcomes.
Bounding the Query Error. Similar to prior work [10],
we extend graph query languages with support for user-
defined error threshold, as shown in Section 2. Hence, the
database user can choose if the system can maximize in-
ferred results, obtain a mix of grounded and predicted an-
swers, or restrict the inference capabilities, depending on
application requirements. To the best of our knowledge,
no general-purpose method currently exists to quantify
the error of ML inference for embedding-based methods.
1. Estimating Uncertainty. Promising directions for black-
box models, such as Conformal Prediction and Venn Pre-
dictors, rely on calibration sets to provide sound uncer-
tainty bounds at the expense of producing multiple pre-
dictions or probabilities of a label, guaranteeing that the
ground truth is among the outputs [11]. Such light in-
strumentation is desirable for the query optimization pro-
cess; quantifying the uncertainty should not dominate the
query latency time. This work investigates whether and
how such methods can be utilized for hybrid query plans.
2. Optimization Based on Uncertainty. Given that an
oracle exists to ensure accurate uncertainty estimate for
one ML operator or query sub-plan, we also explore how
to obtain a precise estimate for a whole physical plan that
uses a mix ML and traditional DB operators. Intuitively,
the uncertainty estimation can be regarded as error
probability. Assuming that the error of DB operators is
0, estimating a physical plan’s uncertainty can perhaps
be computed as a chain of prior probabilities.

3.2. Continuous Training and Inference
Knowledge graphs are highly dynamic, both in terms
of newly ingested data, but also in terms of schema

changes [4, 5]. Relying on ML models for querying ca-
pabilities cannot overlook the overhead introduced by
training and evaluating the deployed models. Whether
training happens as a background or periodic mechanism
triggered by concept drift monitors, querying a DBMS
should always consult the freshest data with low latency.
Newly ingested data may not have been used to train the
current models backing the ML operators. However, due
to the non-euclidean nature of graphs, our system could
continue to offer predicted outcomes even for new data
points up to a certain extent and with a caveat.

We exemplify this trade-off using the heterogeneous
graph depicted in Figure 1a. We assume a transductive
link prediction model that assists the traversal ML opera-
tor was trained using nodes 1 to 5. In contrast, nodes 6,
7, and 8 were ingested after training. Query 1 traverses a
two-hop neighborhood (i.e., nodes 2, 1, 4) in the graph
that was covered during training; therefore, the link pre-
diction model can cater to this query. However, query 2
reaches nodes and connections that the model has not
seen (e.g., node 7). Here, the system can offer predictions
only for a sub-plan of the query while being forced to
follow explicit links for the rest.

Figure 1b showcases the trade-off between complete-
ness and latency. Querying new data cannot use
inference-based methods, denoted as ML operators, un-
til the models are updated and, therefore, need to rely
on expensive traversals (i.e., DB operators) that result in
incomplete results. Transductive graph ML models are
especially affected by this compromise, as they need to
build embeddings for all the entities at training time. On
the other hand, inductive approaches such as GraphSage
can mitigate the gap by building embeddings on-the-
fly for new data but still suffer from concept drift that
requires re-training [12]. This work will review low-
latency training paradigms and investigate the trade-off
introduced by combining DB and ML operators.



4. Related Work
Closely related to this PhD project, a recent report
introduced the definition of Neural Graph Databases,
which tackle the incompleteness assumption of large
KGs through ML inference powered by Graph Represen-
tation Learning [13]. Our work builds on this concept by
considering error-guided query optimization techniques.
Furthermore, vector databases such as Milvus [14] are de-
signed and optimized tomaintain domain-agnostic vector
representations of complex data. They offer fast access
to the embeddings and efficient similarity searches in
learned latent space. Our design requires generating and
maintaining embeddings, potentially benefiting from vec-
tor databases for fast retrieval and distance-based queries
in latent spaces. Moreover, our work is closely inter-
twined with approximate query processing (AQP) [10]
Recent research enabled by learned models shows poten-
tial in overcoming the performance of sample-based AQP
and achieves fast, accurate approximations using a small
memory footprint [15]. Similar to AQP methods, this
work aims to approximate graph queries while providing
mechanisms to estimate the approximation error. Finally,
our goals are akin to systems that offer logical reason-
ing capabilities over knowledge graphs, such as Vada-
log [16]. However, this work features reasoning capabil-
ities through ML models with bounded state size instead
of computationally expensive rule-based approaches.

5. Conclusion
This paper described research directions and challenges
of empowering graph databases with inference capabili-
ties. We presented a potential query optimization strat-
egy guided by user-defined error bounds and delved into
the trade-offs to achieve highly accurate and complete
results while minimizing query latency. Lastly, we dis-
cussed the proposed PhD project in the context of ex-
isting literature. As a next step, we plan to develop a
prototype of the hybrid query optimizer and integrate it
into open-source graph database efforts.
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