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Abstract
Large language models have shown unprecedented abilities in generating linguistically coherent and syntactically correct
natural language output. However, they often return incorrect and inconsistent answers to input questions. Due to the
complexity and uninterpretability of the internal learned representations, it is challenging to modify language models such
that they provide correct and consistent results. The data management community has developed various methods and
tools for repairing inconsistent datasets. In these methods, users specify the desired properties of data in a domain in the
form of high-level declarative constraints. This approach has provided usable and scalable methods to delivering consistent
information from inconsistent datasets. We propose to build upon this success and leverage these methods to modify language
models such that they deliver consistent and accurate results. We investigate the challenges of using these ideas to obtain
consistent and accurate language models.
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1. Introduction
Large language models (LLMs) have shown unprece-
dented abilities in processing natural languages [1, 2].
They effectively generalize to perform various tasks with
few or no training examples. Thus, there is a rapidly
growing interest in using them to solve data-driven prob-
lems, such as, interactive question answering.

Nonetheless, LLMs often provide incorrect answers to
input queries and perform inaccurate inferences [3, 2].
Some studies indicate the recent LLMs provide up to
40% erroneous answers to factual questions [2]. These
erroneous results are important obstacle for wide-spread
use of LLMs in real-world applications.

To address the problem of inaccurate answers returned
by LLMs, we should recognize that LLMs are not knowl-
edge bases, but rather probabilistic or approximate
models of factual information. LLMs may over-
generalize patterns and relationships observed in the
sub-sequences of pretraining documents, which might
lead to returning spurious relationships and inaccurate
results. The uninterpretable mixture of linguistic pat-
terns and factual information has made it challenging to
eliminate incorrect information. It is in sharp contrast to
traditional approaches to database querying in which the
user interface, e.g., query language, is clearly separated
from the source of the information, e.g., databases.
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One approach is to fine-tune the LLM on a set of
domain-specific data sources to improve the quality of
its answers for questions in a given domain [4]. Nonethe-
less, it has shown that these methods may also lead to
many inaccurate answers [5]. This is, in part, due to the
fact that fine-tuning is inherently under-specified and
may not sufficiently modify the model to eliminate its
already learned spurious information. Another approach
is to augment LLMs with additional and potentially rel-
evant information from external data sources [6, 7, 8].
These methods often add extra information to the con-
text considered during pretraining. This line of research
have improved the accuracy of LLMs to a limited degree
as it does not address the core issue of having spuri-
ous and incorrect information in LLMs. It is not clear
whether adding more relevant information eliminate in-
accurate information stored in the model. Moreover, it is
often challenging to find sufficiently many relevant data
sources, particularly for long-tail entities.

It is challenging to ensure that an LLM learns accurate
generalizations and returns correct answers as it may
require perfect knowledge of unobserved data. Nonethe-
less, we may be able to restrict its pretrained representa-
tion to adhere to semantic constraints in the domain
to avoid generating incorrect results.

This is akin to the problem of cleaning databases
to satisfy a set of declarative semantic constraints [9].
Databases often contain data that does not comply with
the semantic constraints in their domains. For example,
a person might not have any social security number or
have more than one in a human resource database. The
usual query processing methods might return inaccurate
results over incomplete or inconsistent databases. The
data management community has developed a unified,
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usable, and scalable approach to repairing inconsistent
data to comply with declarative semantic constraints [9].
Instead of writing long and complex imperative programs
to check inconsistencies and repair the data, users spec-
ify the properties of the consistent dataset succinctly
in a high-level declarative language. There are several
types of constraints based on the model of the data, e.g.,
functional dependencies for relational data or description
logic rules for RDF data. They are usually subsets of first
order logic that are sufficiently expressive to capture im-
portant knowledge in the domain yet not too expressive
to make reasoning intractable. Hence, data systems may
check incompatibilities or redundancies in constraints
efficiently. These constraints may also be learned from
high-quality datasets in the domain.

In this paper, we propose a novel approach to reduce
inconsistencies in LLMs using high-level declarative con-
straints. We believe that the success of using declarative
constraints to provide reliable information in data man-
agement indicates that our proposed approach has the
potential to deliver a usable and scalable method for creat-
ing and maintaining reliable and consistent LLMs. This,
in turn, enables users to leverage LLMs in real-world
applications with high confidence and accuracy.

We also discuss challenges of using high-level declara-
tive constraints to reduce inconsistencies in LLMs. Spe-
cially, it is not clear how to enforce declarative constraints
in an LLM efficiently. It might be challenging to find
correspondence between the symbolic declarative con-
straints and information in the continuous representa-
tion learned by LLMs. We investigate how to leverage
existing ideas in data cleaning and management [9] and
current methods to embedding structured information
[10, 11, 12] to address this problem. Since pretraining and
fine-tuning are often time-consuming and computation-
ally expensive, we also investigate methods of updating
a pretrained LLM that ensures it follows a set of con-
straints.

2. Creating Consistent Models
Using Pretraining & Fine-tuning

Since LLMs are created using pretraining, it is natural to
consider methods that incorporate semantic constraints
during pretraining to create consistent LLMs. Nonethe-
less, pretraining usually takes long time and substantial
computational resources. Researchers often use a rel-
atively fast process called fine-tuning to modify a pre-
trained LLM [8]. During fine-tuning, the LLM is trained
with additional information using its pretrained weights
as initial values. In this section, we explore methods for
creating or modifying an LLM so that complies with a
set of constraints using pretraining and fine-tuning.

2.1. Constraints
The semantic properties and constraints in a domain are
often represented in form of ontologies [13]. In a nutshell,
an ontology consists of a set of facts, where each fact is a
triple in the form of (subject, relationship, object), and a
set of constraints on these facts. The triples in an ontol-
ogy introduce concepts, e.g., Person, and their instances,
e.g., Obama. They also represent relationship between
different concepts in the domain, e.g., President is-a Per-
son. Constraints in an ontology lay out the conditions
that concepts and relationships must follow, e.g., is-a has
the transitive property. Constraints are usually expressed
in a subset of first order logic, e.g., description logic. Gen-
erally speaking, each constraint establishes that if some
concepts satisfy certain conditions, i.e., premise, they
must satisfy other conditions, i.e., conclusion. For in-
stance, for is-a relation, we have for all concepts 𝑥, 𝑦, 𝑧,
if (𝑥, 𝑖𝑠− 𝑎, 𝑦) and (𝑦, 𝑖𝑠− 𝑎, 𝑧), then (𝑥, 𝑖𝑠− 𝑎, 𝑧).

It is important for an LLM to encapsulate both the facts
and the constraints on those facts in a domain to provide
consistent results. An LLM might not learn the facts from
the textual data over which it is pretrained. It could be
because some facts are not in the text or do not appear
in closely related text spans and contexts. Constraints in
an ontology represent semantic meaning of concepts and
relationships in the domain. This information does not
often appear explicitly in the data used to pretrain LLMs,
therefore, LLMs might not learn them during pretraining.

Thus, our goal is to create LLMs that contain and fol-
low both facts and constraints in a given ontology. To
simplify our exposition and because each fact can also
be represented as a special type of constraint, unless oth-
erwise noted, we refer to both facts and constraints in an
ontology as constraint.

2.2. Mixing Constraints with Training
Data

Incorporating this structured information into LLMs
poses challenges since LLMs are trained on unstructured
data. One may supplement the training data with textual
ontology information, e.g., Obama is a President. How-
ever, translating facts and constraints into text introduces
two problems. First, in domains containing numerous se-
mantic constraints, the augmented training data may ex-
ceed maximum sequence lengths (commonly restricted to
512 in most models). Second, converting structured data
into unstructured text may cause the model to view this
information merely as additional context, without pre-
serving higher-order constraints vital for comprehending
semantics of concepts in the domain.

To overcome these issues, constraint reduction tech-
niques can be applied. One method involves reasoning
over the constraints to find a minimal set [14], but does



not guarantee that the augmented input will conform
to the maximum sequence length. Another approach
is to encode the ontology information into an embed-
ded representation using an LSTM [6], integrated via a
gating function. This allows the LLM to control what
information augments the input, successfully limiting
the sequence length. However, it may not be optimal for
incorporating constraints, as it may cause information
loss and is more apt for enhancing input with extra facts,
rather than filtering incorrect information.

These methods fall short of incorporating the ontol-
ogy in a way that preserves its semantic information,
highlighting the difficulty of integrating high order con-
straints into LLMs.

2.3. Retaining Constraint Information
Constraint Embedding. Ideally, the representation
learned by a LLM should capture the structural infor-
mation present in the semantic constraints of an on-
tology. Geometric embeddings (e.g. box, circle, cone)
have been widely explored for learning representations
of graph structures such as ontologies and knowledge
bases [15, 11, 16, 10, 12]. For instance, if an ontology
has the constraint that President is-a Person, the geomet-
ric embedding for Person should contain the geometric
embedding for President, reflecting the transitive prop-
erty is-a and that President is a subset of Person. These
embeddings preserve the structural properties and rela-
tionships in an embedded space, ensuring that the output
representations maintain the specified constraints.

When training an LLM, one can incorporate geometric
or constraint embeddings for unstructured text data in
order to retain information from ontologies. If the on-
tology data is consistent and the model learns a perfect
constraint embedding, it should respect the facts and
constraints within the domain. However, since this is
unlikely, it may be necessary to apply optimization tech-
niques to the objective function. Such techniques can
help facilitate LLMs to learn representations that effec-
tively capture higher order relationships and constraints
that extend beyond the training domain.

Constraint Objective Task. Since the ontology is a
source of knowledge, then it can also be used to train the
LLM directly. External knowledge can be created from
the ontology by extracting triples in the form of rich text
spans, thereby providing more information about con-
straints to the model. Using this data, one may construct a
word prediction or masking objective that aligns with the
external knowledge of semantic constraints. One strat-
egy is type modeling [17], where entities are replaced
with their type, and the model predicts the entity type for
the next word or word span. This idea can be extended
to a masking objective, where the model predicts masked
types in the output.

Alongside traditional LLM objectives, e.g., masked ob-
jective tasks, one can integrate constraint objective tasks
and constraint embeddings during pretraining. These
methods capture the ontology’s structural information,
resulting in a model that is consistent with domain-
specific constraints. Given an ontology and text doc-
uments, constraint objective tasks and constraint embed-
dings can also be used for fine-tuning. However, these
techniques may prove more effective if implemented dur-
ing the pretraining process.

3. Model Repair
To ensure that a database complies with a constraint, we
often find the information in the database that do not
follow the constraint and update them so the database
satisfies the constraint. One may adopt this approach
to repair a pretrained model so it satisfies a set of given
constraints. In other words, one may find the portion
of the model responsible for representing a constraint
or lack thereof and update them if necessary so that the
resulting model satisfies the constraint. As opposed to
representing information in a database, factual informa-
tion is stored in an LLM implicitly and through some
pretrained weights in a model. Hence, it is difficult to
find and revise the factual data that violates a set of given
constraints in an LLM. In this section, we describe two
approach to repairing pretrained models and discuss their
challenges.

3.1. Fact-based Repair
There has been some recent success in updating facts rep-
resented in an LLM [18]. Each update aims at changing
the object in a given triple in form of (subject (𝑠), relation
(𝑟), object (𝑜)) to a new object 𝑜′. These methods first
find the weights responsible for representing 𝑜 and its
relationship to 𝑠 in the model. They then modify these
weights so that the model represents the new object 𝑜′

in the fact with high probability.
Building upon this line of work, one may ensure that

an LLM satisfies a set of constraints by finding and modi-
fying the pretrained weights that represent the facts that
violate the constraints. An algorithm to check whether
an LLM satisfies a given constraint could be as follows.
First, the algorithm samples a set of facts that follow the
constraint from the ontology. For each instance of a con-
straint, it will prompt/query the LLM to check whether
and how the LLM represents the facts in the instance.
If the LLM’s representations of the facts in the instance
violate the constraint, the algorithm modifies the rep-
resentations so they follow the constraint. The larger
the set of samples is, the more likely the repaired model
satisfies the constraint. Users can change the size of the



sample based on their available time and resources as
well as desired confidence for satisfying constraints.

This algorithm might require a large number of up-
dates to the model, which could be time-consuming.
Moreover, since facts are represented implicitly in the
model, the aforementioned methods might not always
find the updates that modify a fact to its desired form.
To address these challenges, one may find a minimal set
of facts and their corresponding update operations such
that modifying their representations in the model will
most likely create a model that follows the constraint.
The repair algorithm, then, will update the weights in
the model for facts in this minimal set.

It is known that there are often many possible mod-
ifications of an inconsistent dataset to satisfy a set of
constraints. It is challenging to maintain and query all
these repairs of databases. Hence, researchers have pro-
posed heuristics to choose a few of these repairs, e.g., the
ones that differ the least from the original database. The
same problem might also happen in repairing models.
One may use similar approaches to reduce the number
of repaired models.

3.2. Constraint-based Repair
It may take a long time to update a large number of facts
in a model [18]. Thus, the approach of fact-based repair
may efficiently modify the model to satisfy constraints
with a relatively few instances, e.g., facts in the ontology,
but it might be computationally challenging to do for
constraints with many instances. Also, if a constraint
has many instances, this approach might deliver many
possible model repairs even after applying the aforemen-
tioned heuristics to reduce the space of possible repairs.
Therefore, it will be challenging to query or train these
models for a given task.

LLMs generalize input data during pretraining. They
have also been successfully used to generate data that
closely resembles real-world data and train accurate mod-
els using a relatively few training examples for various
tasks. Hence, we hypothesize that they might represent
some constraints in the domain in whole or in part. If
this hypothesis is true, an LLM does not satisfy some
constraints because the LLM might represent them in-
completely or erroneously.

Hence, to ensure that the model satisfies a constraint,
instead of repairing all facts that violate the constraint,
one might change directly the portion of the model that
represents a constraint. This portion might be signifi-
cantly smaller than the parts that represent the violating
facts. Thus, it might be substantially faster and easier to
find the weights in the model responsible for incomplete
or erroneous representation of the constraint than doing
the same for all facts that violate that constraint.

4. Related Works
Lexical Constraints for Language Models. There has
been recent effort on limiting the output of LLMs so they
follow given syntactical patterns, e.g., not contain certain
keywords [5, 19, 20]. In these systems, users write (imper-
ative) programs that detect some invalid patterns in the
output of LLMs. These systems, then, use constrained op-
timization or probabilistic inference over the sequences
generated by the LLM to reduce the probability of the
outputs with invalid patterns. These efforts are steps in
the right direction but fall short of providing a usable
and scalable method to deliver consistent information
over LLMs. First, they do not generally support semantic
constraints. Second, users may have to write multiple
and possibly long programs to clean up the output of the
model. As some domain may have numerous constraints,
it is challenging to develop and maintain these programs.
Users must check manually whether these programs are
consistent with each other and there is no redundancy
across different programs. Third, they are usually applied
only during the decoding stage, therefore, the LLM may
still learn and represent spurious relationships. As it is
challenging to interpret learned representations in LLMs,
it is difficult to control all the implications of their learned
imprecise information. For instance, the learned spurious
relationship about one entity might impact how an LLM
answers a question about a different but related entity. As
opposed to this line of work, we propose an end-to-end
approach that uses declarative semantic constraints to
reduce inconsistent information in LLMs.

Self-Consistency of Language Models. It is known
that language models produce contradictory answers to
the questions that seek the same information but phrased
differently. Researchers have proposed methods to ad-
dress this issue by prompting the language model to
critique and refine its own output during inference [21].
This method prompts the language model with differ-
ently phrased questions and builds a (weighted) model
over answers to infer the most likely result. We, how-
ever, mainly focus on ensuring that the language model
follows semantic constraints.

ExtractingKnowledge fromLanguageModels. Re-
searchers have proposed methods to extract generic state-
ments or factual knowledge from language models using
prompt engineering and human supervision [22]. The
prompts are constructed in a way that encourages suc-
cinct factual statements. They use human labeled data
to detect inaccurate outputs and fine-tune the language
model. However, it might be challenging to collect a
sufficient amount of training data to extract accurate
statements.
Querying Language Models. There has been some

recent effort to design programming languages for
prompting large language models, i.e., language model



programming [23, 24, 25]. There are generally domain-
specific programming languages to extract information
from and control the output of a large language model to
satisfy the users’ input hard constraints, akin to where
conditions in SQL queries. Some of these languages re-
semble database query languages, e.g., SQL [24]. These
languages aim at making it easier to query and prompt
and optimize the number of calls to large language mod-
els. However, these languages do not generate consistent
results conditioned on domain constraints. Thus, they
may return answers that violate semantic constraints in
the domain.
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