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Abstract  
The work is devoted to the development of a reconfigured modified closed onboard 

helicopters turboshaft engines automatic control system, which is based on the use of a 

hybrid neuro-fuzzy network, which takes into account the main indicators of the automatic 

control system: overshoot and subsystem regulation time. The trained hybrid neuro-fuzzy 

network allows you to select the parameters of helicopters turboshaft engines automatic 

control system, taking into account the required quality indicators, which makes it possible to 

adjust the automatic control system operation when operating conditions change. A system of 

fuzzy knowledge base rules is proposed, which takes into account the threshold values of the 

main helicopters turboshaft engines thermogas-dynamic parameters and, thereby, allows to 

prevent overshoot. The use of bell-shaped membership functions of linguistic variables is 

proposed to describe the helicopters turboshaft engines thermogas-dynamic parameters 

registered on board helicopters, as well as the linguistic expression "about" in a fuzzy 

knowledge base, which made it possible to correct their values in case of random changes 

(uncertainties) associated due to errors, conditions helicopter flight, helicopter operational 

status etc. The results of training a hybrid neuro-fuzzy network indicate the stability of 

control, that is, the tendency for the training error indicator (residuals) to approach zero and 

does not exceed 0.4 %. Prospects for further research are the development of a software 

product that allows for instant reconfiguration of modified closed onboard helicopters 

turboshaft engines automatic control system in the conditions of on-board implementation for 

continuous monitoring of helicopters turboshaft engines operational status. 
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1. Introduction 

Aircraft gas turbine engine (GTE), including a helicopter turboshaft engine (TE), is a complex 

dynamic system (DS) consisting of many interacting elements and subsystems, progressive strategies. 

The efficiency of helicopter TE operation is mainly associated with an increase in their reliability, an 

increase in service life, and a reduction in maintenance and repair costs [1, 2]. 

At the helicopters TE automatic control system (ACS) operation mode, after solving the problem 

of ensuring stability, the problem arises of ensuring the required indicators of the quality of transient 

processes: overshoot, control time, and others. Often, these requirements are contradictory, which is 
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primarily due to the peculiarities of the functioning of systems [3, 4]. For example, when the 

overshoot decreases, the regulation time increases and vice versa; thus, these two quantities have an 

inverse relationship. It is impossible to represent the indicated dependence for helicopters TE ACS as 

complex systems in mathematical form, which is explained by the peculiarities of each class of 

systems and subsystems included in the system, however, to solve the synthesis problem, it is 

necessary to determine such parameters so that the system meets the specified requirements. 

One of the promising directions for the development of helicopter TE controls is the use of 

artificial intelligence components in their composition: production rules [5], fuzzy logic [6], artificial 

neural networks [7], hybrid neuro-fuzzy architectures [8], genetic algorithms [9]. Therefore, 

increasing the economic efficiency and maintaining a high level of reliability of the operation of 

helicopters TE at the stage of operation in conditions of special operational situations based on the 

development of theoretical foundations, methods and means of intelligent control of its modes is an 

urgent scientific and applied task. 

2. Related Works 

Modern approaches to the implementation of the main strategies for GTE development – operation 

on condition and ensuring system safety – involve the "intellectualization" of GTE all subsystems and 

information integration with the engine control, monitoring and diagnostics system (FADEC) in order 

to reliably assess the state, identify failures and ensure normal operation engine due to FADEC 

reconfiguration [10]. 

It should be noted that hybrid systems for GTE operational status classifying are currently 

widespread, which are used in the structure of fuzzy logic parts and neural networks. Hybrid systems 

compare the actual GTE operational status in terms of vibration velocity and vibration acceleration 

with possible typical operational status that are stored in the "knowledge base" of the system, which 

will make it possible to classify the current GTE operational status and predict its further changes. 

The disadvantage of hybrid systems is the need for a large amount of initial data for training an 

intelligent diagnostic system, as well as the difficulty of monitoring the correctness of the diagnostics 

[11, 12]. 

In [13, 14], the structure of an intelligent automatic system for diagnostics and reconfiguration of 

the GTE control was developed and synthesized, based on a combination of a neural network of radial 

basis functions (RBF) and fuzzy logic elements. The developed system provides the ability to 

configure such systems for diagnostics and reconfiguring the control of GTE different types during 

their operation, which helps to increase the reliability of classification and predicting of the residual 

life, and also prevents the transition of an emergency situation into a catastrophic one with an 

accuracy of 0.92 ... 0.96, which is insufficient. in the conditions of flight operation of an aircraft 

(helicopter, aircraft). The limitation of this system lies in the fact that it classifies the GTE operational 

status only by the vibrational state. 

A modified closed onboard helicopters TE ACS developed by this authors group (fig. 1) [15, 16], 

which is supplemented with plug-in software modules that implement adaptive control methods: 

signal adaptation module; parametric adaptation module; linear model submodule; custom model 

submodule. Also, an important distinguishing feature of the developed modified closed onboard 

helicopters TE ACS from the existing ones is the division into separate links, respectively, turboshaft 

engines and actuating mechanism – fuel metering unit (FMU). This modification of the classic ACS 

of complex dynamic objects is associated with the neglect of dynamic processes in the fuel system – 

in helicopters turboshaft engines, transient processes in the fuel metering unit and the engine itself 

occur almost simultaneously. 

Each block of the developed modified closed onboard helicopters TE ACS is implemented using 

neural network technologies, which have shown high efficiency and stability in the research of 

transient’s processes in the helicopters TE [17, 18]. However, the use of linear neural networks did 

not solve the problem of overshooting the system. 

Therefore, the paper proposes an alternative approach of "intelligent description" of the developed 

modified closed onboard helicopters TE ACS using neuro-fuzzy modeling using hybrid neuro-fuzzy 

networks, on the basis of which fuzzy inference systems are generated. 



B
lo

ck
 o

f 
co

n
tr

o
l 

an
d

 t
ra

in
in

g

N
N

1

N
N

2

..
.

N
N

i

F
M

U

F
M

U

M
o

d
e
l

T
E

T
E

M
o

d
e
l

T
E

M
o

d
e
l

L
B

D
D

M
D

IL

K
e
y

u

u *

G
T

U L

D

Selector

R
e
g
u

la
to

r

(
)

0
0

0
*
0

,
,

T
C

F
T

G
n

n
T

=
Y

E
(

)
*

,
,

T
C

F
T

G
n

n
T

=
Y

ξ m
o

d

ξ F
M

U

ξ T
E

S
ig

n
a
l 

a
d

a
p
ta

ti
o

n
 

m
o

d
u
le

P
a
ra

m
e
tr

ic
 

a
d

a
p
ta

ti
o

n
 

m
o

d
u
le

K
e
y
 3

W
1
(p

)
W

p
(p

)

W
Δ
(p

)

K
e
y
 1

R
e
fe

re
n
c
e
 

m
o

d
e
l 

m
o

d
u

le

C
u

st
o

m
 

li
n

e
a
r 

m
o

d
e
l 

m
o

d
u
le

C
o

n
tr

o
l 

m
o

d
u
le

K
e
y
 2

C
o

n
n

e
c
t 

a
d

a
p
ta

ti
o

n
s 

m
o

d
u

le
s

n    channelFT

T
a
p

p
e
d

 

D
e
la

y

L
in

e

 
Figure 1: Modified closed onboard helicopters turboshaft engines automatic control system [15, 16]  
 



3. Proposed technique 

Fuel regulation is carried out according to the gas generator rotor r.p.m. nTC. The gas generator 

rotor r.p.m. nTC value, which was at the moment when the idle speed was reached, is selected as the 

gas generator rotor speed setting. 

Experts, based on information regarding the operation of gas-generating pumping units over the past 

10 years, have established that their failure is more associated with the following problems [19, 20]: 

device design errors; defects made during the production of the unit and its assembly, as well as 

installation; defective materials. 

The helicopter TE ACS should have three levels, each of which solves its own task. The tasks of 

local control of TE and control of TE as part of a helicopter power plant seem to be the most closely 

related. These tasks should be solved by a decentralized system, at the lower level of which there are 

the same type of local TE ACS, the number of which coincides with the number of TE in the 

helicopter power plant (most helicopters use two engines as part of the power plant). From the point 

of view of mathematical software, the problem of local control of helicopters TE is quite trivial; it is 

solved by classical PI and PID controllers [21]. Nonlinearity and multidimensionality of helicopters 

TE as control objects lead to the need to introduce several feedback loops, sometimes with variable 

(adaptive) gain factors [22]. 

In [23], a description of complex dynamic systems is proposed through the characteristics of 

subsystems and multidimensional elements of communication between them. As an individual 

characteristic of a separate subsystem, its transfer function is considered in the control mode, when 

the subsystem operates in a state isolated from other subsystems. 

When designing ACS, the next task after achieving stable operation is the task of fulfilling the 

specified indicators of the quality of transient processes [24]. The dependence of the quantities under 

consideration on the parameters of the synthesized system can be represented as a system of equations: 

     ( )      ( )
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where q1, …, qi – quality indicators of the transient processes under consideration; {ki}, {τi}, {Ti} – 

variable system parameters sets (gain factors, time constants, etc.); f1(•), …, fi(•) – functions 

expressing the dependence of system quality indicators on the parameters of synthesized controllers. 

Let us consider the overshoot and the time of regulation of subsystems as the main indicators of 

the quality of systems. Then the system of equations (1) will take the form: 

     ( )

     ( )

     ( )

     ( )

1 1 1 1 1

1 1 1 1 1

_

, , ;

, , ;

...

, , ;

, , ;

reg

reg i i i i i

i i i i i

t f k T

g k T

t f k T

g k T



 



 

 =

 =




=


=

       (2) 

where σ1, …, σi – overshoot, treg1, …, treg_i – control time of transient processes of subsystems. 

The performance indicators required for each subsystem may differ depending on the functional 

purpose and mode of operation of the system. When constructing a logical multiply connected 

controller for each mode, the synthesis of parameters is carried out separately for the purpose of 

subsequent merging. 

The constructed mathematical models of helicopters TE are difficult for the analysis and synthesis 

of regulators, in this regard, when designing, methods of data mining are used: methods for 

recognizing and assessing the technical condition of an object [25], intelligent control methods [26], 

nonlinear control methods [27], methods of the theory of multiply connected ACS [28], the theory of 

artificial intelligence systems [29]. 



It is very difficult to represent the dependence of the quality indicators of system functioning on 

the subsystems parameters and the relationships between them in mathematical form, which is 

explained by the peculiarities of each class of systems and subsystems included in a complex system. 

The indicators of overshoot and regulation time have an inverse relation, and the mutual influence of 

subsystems on each other also affects. However, there are various methods to solve the task. 

Data analysis tools such as neural networks, fuzzy logic, machine learning, evolutionary 

calculations, genetic algorithms, etc. can be used as tools for synthesizing ACS parameters by 

complex objects. According to the goal of the work, it is proposed to use the method of synthesis of 

ACS using hybrid neuro-fuzzy networks (HNFN). 

The quality of training of the developed HNFN directly depends on the number of examples – the 

size of the training sample, and how fully the examples describe this task. All information used by a 

HNFN to build a fuzzy inference system is contained in a set of training samples. At the same time, 

the membership functions of the synthesized systems are tuned (trained) in such a way as to minimize 

deviations between the results of fuzzy modeling and experimental data [30]. 

HNFN combine the advantages of fuzzy inference systems and neural networks. On the one hand, 

they allow developing and presenting system models in the form of fuzzy production rules, which are 

visual and easy to interpret, and on the other hand, neural network methods are used to build fuzzy 

production rules, which is a more convenient and less time-consuming process for designers. The 

algorithm described in [31, 32] is used when constructing a HNFN that implements decision-making 

on the choice of system parameters in order to satisfy the given overshoot indicators. The choice is 

made according to several criteria: gain factors and time constants in nonholonomic cross-couplings. 

Fig. 2 shows the structure of the fuzzy inference system under consideration. 
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Figure 2: Fuzzy inference system structure (author's development) 
 



To build a HNFN, the application of the MatLab software package, the ANFIS editor, is used in 

the work, with the help of which a neuro-fuzzy network is automatically synthesized. The sequence of 

the HNFN model development process is as follows: 

1) preparation of a training sample; 

2) loading training data; 

3) building the structure of the fuzzy inference system; 

4) visualization of the hybrid network structure. 

The results of HNFN training are exported to the MatLab workspace and then applied in the 

Simulink package by loading into the Fuzzy Logic Controller block, which acts as the coordinating 

part of the neuro-fuzzy controller [33]. The location of the coordinating part in the block diagram of 

the multiply connected helicopters TE ACS is shown in fig. 3. 
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Figure 3: The coordinating part of the neuro-fuzzy controller in the block diagram of helicopters 
turboshaft engine multi-connected automatic control system (author's development) 

 

The trained HNFN allows you to select the helicopters TE ACS parameters, taking into account 

the required quality indicators, which makes it possible to adjust the operation of the system when the 

operating conditions change. 

In HNFN, logical conclusions are made using the fuzzy logic apparatus, and the corresponding 

membership functions (MF) are tuned using the neural network training algorithm – backpropagation 

error (BPE) [34, 35], that is, the description of the research object is performed by fuzzy logic 

methods, and the tuning this model – by artificial neural network methods, to obtain a more accurate 

correspondence to the considered model of the helicopter TE. The main subsystem is a fuzzy 

inference system with an output variable of a discrete type (fig. 4). 
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Figure 4: Fuzzy inference system (author's development, based on [36]) 

 



Fuzzy inference is an approximation of the "inputs – output" dependence based on linguistic 

statements "IF–THEN" and logical operations on fuzzy sets [36], that is, a variation of neuro-fuzzy 

inference with a discrete output. 

The input signals vector X = {x1, x2, ..., xn} defines a set of engine’s input thermogas-dynamic 

parameters that objectively describes the engine, and the discrete output variable values y – dj 

represent the class of the output variable, one of the possible values – dj of which is associated with a 

reference sample known in the fuzzy knowledge base. 

The main condition for helicopters TE ACS is that the fuzzy knowledge base should contain a 

complete set of reference samples for possible values of input signals (engine’s thermogasdynamic 

parameters). At the same time, the structure of the fuzzy inference system for helicopters TE ACS 

contains modules common to the fuzzy logic apparatus. 

To build a fuzzy knowledge base, the work uses the zero-order Takagi-Sugeno-Kang (TSK) 

algorithm [37], the output variable of which is a linear combination of input parameter values, that is: 

Rule № 1: IF x1 = 1

1

etalonx  and x2 = 1

2

etalonx  and … and xn = 1etalon

nx  , THEN y = y1; 

(3) 
Rule № 2: IF x1 = 2

1

etalonx  and x2 = 2

2

etalonx  and … and xn = 2etalon

nx  , THEN y = y2; 

… 

Rule № m: IF x1 = 1
metalon

x  and x2 = 2
metalon

x  and … and xn = metalon

nx  , THEN y = ym. 

For the j-th rule in the TSK algorithm, the value is the i-th output variable and is determined 

according to the expression: 

1

.j

n
etalonj

j i i

i

y y a x
=

= +         (4) 

The use of the zero-order TSK algorithm according to [37, 38], which coincides with the modified 

Mamdami algorithm when building a knowledge base, significantly simplifies the procedure for 

choosing the parameters of a fuzzy inference system, since there is no need to calculate the 

coefficients j

ia  in expression (4). Since the fuzzy inference machine (fig. 4) for solving the 

classification problem is implemented as the ratio of input parameters to the value of the reference 

sample from the knowledge base, this fuzzy knowledge base is defined as: 

1

;j

n
etalon

i i j

i

x x y y
=

 
= → = 

 
       (5) 

where ∩ – operation; t – norms (realization of logical "AND"). 

Then the classified engine’s thermogas-dynamic parameter belonging degree to the reference 

sample is determined as: 

( ) ( );
n

j ji i

i

x x =        (6) 

where μji(xi) – belonging degree of the i-th parameter of the classified object to the j-th parameter of 

the reference object. 

As a solution to helicopters turboshaft engine control task, a solution with the maximum degree of 

the membership function is chosen [39, 40]: 

( ) ( ) ( )( )
1 2

* * * *

, ,..., 1 2arg max , ,..., .
ky y y ky x x x  =      (7) 

The fuzzy inference system aggregates with the neural network. As a result, an HNFN of the 

ANFIS type [36, 41] is obtained, the adjustable parameters of which are the MF parameters – μji(xi) 

(HNFN block diagram is shown in fig. 5). 
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Figure 5: ANFIS type hybrid neuro-fuzzy network structural diagram (author's development, based 
on [36]) 

 

Unit’s functions (analogues of neurons in a conventional neural network) of the HNFN block 

diagram shown in fig. 5 are reflected in table 1 according to [36]. 

 

Table 1 
Hybrid neuro-fuzzy network unit’s functions [36] 

Unit Name Functions 
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As can be seen from fig. 5 ANFIS type HNFN contains 5 layers: 

1) 1st layer – inputs of the studied nonlinear object; 

2) 2nd layer – layer of fuzzy terms that are used in helicopters TE fuzzy knowledge base; 

3) 3rd layer – fuzzy knowledge base conjunction lines (fuzzy rules); 

4) 4th layer – classes of the output variable dj; 

5) 5th layer – defuzzification layer, i.e., converting a fuzzy output to a crisp number. 

The number of units (neurons) in each HNFN layer is determined as follows [41, 42]: 

1) in the 1st layer by the number of object inputs; 

2) in the 2nd layer by the number of fuzzy terms of the input variables of the fuzzy knowledge base; 



3) in the 3rd layer by the number of conjunction lines in the fuzzy knowledge base; 

4) in the 4th layer by the number of classes of the output variable dj. 

Thus, the resulting model is a fuzzy knowledge base about the object under study (helicopters TE), 

built by an expert, which corresponds to the "rough" tuning of the model, and also has a "fine" tuning 

apparatus, which consists in training the HNFN using a method similar to backpropagation algorithm 

for neural networks [41, 42]. 

So, with the direct passage of signals in the network, expressions appear to determine the input 

signals values belonging degree to the linguistic terms of the fuzzy knowledge base of the description 

of the modeled object (helicopters TE) [36]: 

( ) 2

1
;

1

jp

i
jp

i i

jp

i

x
x b

c

 =
 −
+ 

 

       (8) 

where b and c – parameters of the bell-shaped membership function, the form of which is shown in fig. 6. 

 

 
Figure 6: Diagrams of the bell-shaped membership function depending on the parameter values [36] 
 

The analytical expression of the bell-shaped membership function according to [36] has the form: 

( ) 2

1
.

1

T x
x b

c

 =
− 

+  
 

        (9) 

The output signal belonging degree to the corresponding classes of the output variable is 

determined according to the expression [36]: 

( ) ( )( ) max min .dj jp

jp iy w x =     (10) 

The model value, which corresponds to the mathematical expectation operation in the random 

process’s theory, the output variable y is calculated by defuzzification according to the expression: 
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1 2

1 2

0 1 1...
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m

m

dd d
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y y y y y y
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−+ + +
=

+ + +
    (11) 

Then the HNFN error value is determined according to the expression [36]: 

( )
2

;
2

tm t

t

y y
E

−
=      (12) 

where уtm – HNFN output model value at the i-th training step; уt – experimental output value of the 

engine thermogas-dynamic parameter. 

By analogy with the error backpropagation algorithm for neural networks in a neuro-fuzzy 

network, backtracking procedures are performed in HNFN each segment to estimate the error. 

Determination of the rate of change of the network error when the value of the output variable changes: 

1 .t
tm t

E
y y

y



= = −


     (13) 

At the last stage of the neural fuzzy network training algorithm, the HNFN parameters are 

modified, similar to the error backpropagation method for neural networks [36]: 
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     (16) 

4. Experiment 

The analysis and preliminary processing of the input data was carried out by this authors group 

and described in detail in [16, 18]. The input parameters of helicopters TE mathematical model are the 

values of atmospheric parameters (h – flight altitude, TN – temperature, PN – pressure, ρ – air density). 

The parameters recorded on board of the helicopter (nTC – gas generator rotor r.p.m., nFT – free turbine 

rotor speed, TG – gas temperature in front of the compressor turbine) reduced to absolute values 

according to the theory of gas-dynamic similarity developed by Professor Valery Avgustinovich 

(table 2). We assume in the work that the atmospheric parameters are constant (h – flight altitude, TN 

– temperature, PN – pressure, ρ – air density) [16, 18]. 

 

Table 2 
Part of training set (in absolute units) (author's development, described in [16, 18]) 

Number TG nTC nFT 

1 0.932 0.929 0.943 

2 0.964 0.933 0.982 

3 0.917 0.952 0.962 

4 0.908 0.988 0.987 

5 0.899 0.991 0.972 

6 0.915 0.997 0.963 

7 0.922 0.968 0.962 

8 0.989 0.962 0.969 

9 0.954 0.954 0.947 

10 0.977 0.961 0.953 

… … … … 

256 0.953 0.973 0.981 

 

Valuation is an important issue of the homogeneity of the training and test samples. To do this, we 

use the Fisher-Pearson criterion χ2 [43] with r – k –1 degrees of freedom [16, 18]: 

( )

( )
2

1

min ;
r

i i

i i

m np

np




=

 −
=   

 
                 (17) 

where θ – maximum likelihood estimate found from the frequencies m1, …, mr; n – number of 

elements in the sample; pi(θ) – probabilities of elementary outcomes up to some indeterminate k-

dimensional parameter θ. 

The final phase of statistical data processing is their normalization, which can be executed 

according to the expression: 
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i
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y y
y

y y

−
=

−
      (18) 

where 
i

y  – dimensionless quantity in the range [0; 1]; yimin and yimax – minimum and maximum values 

of the yi variable. 



 

The above-mentioned statistics χ2 permits, under the above assumptions, to check the hypothesis 

about the representability of sample variances and covariance of factors contained in the statistical 

model. The field of hypothesis acceptance is 2

,n m   − , where α – significance level of the 

criterion. The results of calculations in accordance with (17) are in table 3 [16, 18]. 
 

Table 3 
Part of the training sample during the operation of helicopters TE (on the example of TV3-117 TE) 
(author's development, described in [16, 18]) 

Number P(TG) P(nTC) P(nFT) 

1 0.561 0.109 0.652 
2 0.588 0.155 0.574 
3 0.542 0.128 0.515 
4 0.612 0.147 0.655 
5 0.644 0.121 0.612 
… … … … 

256 0.537 0.098 0.651 

 

For the purpose of establishing representativeness of the training and test samples, a cluster 

analysis of the initial data was performed (table 2), during which eight classes have been identified 

(fig. 7, a). Following the randomization procedure, the actual training (control) and test samples were 

selected (in a ratio of 2:1, that is, 67 % and 33 %). The process of clustering the training (fig. 7, b) and 

test samples shows that they, like the original sample, contain eight classes each. The distances 

between the clusters practically coincide in each of the considered samples, therefore, the training and 

test samples are representative [16, 18]. 
 

 
    a             b 

Figure 7: Clustering results: a – initial experimental sample (I…VIII – classes); b – training sample 
(author's development, described in [16, 18]) 
 

As an example of the development of helicopters TE thermogas-dynamic parameters ACS 

recorded on board a helicopter, which are key in modified closed onboard helicopters TE ACS [15, 

16], let us consider the applied algorithm using HNFN. Carrying out the process of helicopters TE 

monitoring at flight mode, it is required to describe it using the input parameters of the fuzzy 

knowledge base – x1, x2, ..., xn and possible classes of the output variable – y1, y2, ..., ym, which are 

defined in the knowledge base as helicopters TE thermogas-dynamic parameters reference values. For 

this example of the use of HNFN, the input variables (in the terminology of the fuzzy logic apparatus 

are called linguistic terms) are nTC – gas generator rotor r.p.m., nFT – free turbine rotor speed, TG – gas 

temperature in front of the compressor turbine. As a result of the experiments on the development of 

the HNFN structure, the HNFN diagram was obtained, shown in fig. 8, where: 

1) layer 1 – three input variables, the parameters of which uniquely determine the helicopters TE 

thermogas-dynamic parameters values; 



2) layer 2 – three terms for each ACS input; 

3) layer 3 – three rules of fuzzy knowledge base; 

4) layer 4 – three classes of the output variable; 

5) layer 5 – the result is defuzzified. 
 

nTC

TG

nFT

ym

1
st
 layer 2nd layer 3rd layer 4th layer 5th layer

 
Figure 8: ANFIS type hybrid neuro-fuzzy network diagram (author's development, based on [36]) 

 

The fuzzy knowledge base is defined by three rules: 

Rule № 1: If nTC near 0.905 and TG near 0.900 and nFT near 0.900 then y = y1; 

Rule № 2: If nTC near 0.950 and TG near 0.995 and nFT near 0.900 then y = y2; 

Rule № 3: If nTC near 0.900 and TG near 0.900 and nFT near 0.995 then y = y3; 

where the class of the output variable y is represented by the following values: y1 – parameter nTC 

override; y2 – parameter TG override; y3 – parameter nFT override. 

The linguistic expressions "about" selected by the expert method in the fuzzy knowledge base 

most fully reflect the essence of helicopters TE thermogas-dynamic parameters recorded on board the 

helicopter. On the one hand, at each moment of time, the values of the terms nTC – gas generator rotor 

r.p.m., nFT – free turbine rotor speed, TG – gas temperature in front of the compressor turbine are certain 

numbers, but at other times the values of these terms change randomly (indefinitely) due to errors, 

flight conditions, helicopter’s operational status etc. 

The essence of the linguistic expression “about” most fully reflects the bell-shaped membership 

functions, which are also selected by the expert method from among the most popular membership 

functions: triangular, trapezoidal and bell-shaped [44]. The bell-shaped membership functions for the 

fuzzy knowledge base specified by the specified rules, chosen for our example of the work of the 

HNFN (before training the ANFIS network), are shown in fig. 9. 

 

Figure 9: Diagram of the bell-shaped membership function before HNFN training (author's 
development, based on [36]) 
 



The developed model, corresponding to the considered example of creating a reconfigured 

modified closed onboard helicopters TE ACS, is shown in fig. 10, where the designations of the units 

of the developed model and the terms of the HNFN theory are shown in fig. 5 and in table 1. For the 

exact solution of this problem, the methods of training HNFN (13) – (16), similar to artificial neural 

networks, are applied, similarly to [36]. As a result of training the developed HNFN network 

according to the algorithms described above, an object model was obtained with parameters b and c of 

membership functions and weights of fuzzy rules, which are given in table 4 and 5. 

 

Table 4 
The values of the parameters of the bell-shaped membership function before and after HNFN training 
(author's research based on [36]) 

Parameters Values 

Before HNFN training    
b 0.10 0.10 0.10 
c 0.25 0.50 0.75 

After HNFN training    
b 0.12 0.11 0.13 
c 0.29 0.53 0.76 

 

Table 5 
Rule weights before and after HNFN training (author's research based on [36]) 

Parameters Values 

Before HNFN training    
w 1.0 1.0 1.0 

After HNFN training    
w 0.999 0.997 0.998 
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Figure 10: The developed model corresponding to the considered example of reconfigured modified 
closed onboard helicopters TE ACS development (author's development, based on [36]) 
 



Diagrams of membership functions and parameters of bell-shaped membership functions after 

HNFN training are shown in fig. 10 and table 4, where c – bell-shaped membership functions 

contraction coefficient, b – bell-shaped membership functions maximum coordinates. Similarly [36], 

as a result of training the HNFN network, new values of the parameters of the bell-shaped 

membership functions were obtained (table 4, fig. 11) and the weights of the rules of the fuzzy 

knowledge base were changed (table 5), which corresponds to the stage of "fine" tuning of the fuzzy 

model of the research object – reconfigured modified closed onboard helicopters TE ACS. 

 

 

Figure 11: Diagrams of the resulting bell-shaped membership function after HNFN training (author's 
development, based on [36]) 

5. Results 

Let us consider the problem of ensuring the specified quality indicators in one of the modes of 

operation of helicopters TE (for example, in the nominal mode). For the considered mode, the 

requirements for the indicators of transient processes are set in the following form: {treg} = {1.5; 1.5}, 

{σreg} = {0.1; 0.1}. 

As a result of modeling the dynamics of changes in helicopters TE thermogas-dynamic parameters 

according to the training sample (table 2), depending on the model time, the obtained results 

presented in fig. 12, where a – parameter nTC change, b – parameter TG change, c – parameter nFT 

change, while curve 1 corresponds to the experimental values of helicopters TE thermogas-dynamic 

parameters recorded on board the helicopter, curve 2 corresponds to the model (corrected using the 

reconfigured modified closed onboard helicopters TE ACS) values of helicopters TE thermogas-

dynamic parameters. 

 

 
Figure 12: The results of modeling the dynamics of changes in helicopters turboshaft engines 
thermogas-dynamic parameters (author's development) 
 

The value of the change in residuals after control ε(t) = x1(t) + x2(t) + x3(t) – y(t) does not exceed 

the allowable deviation of helicopters TE thermogas-dynamic parameters, which is 0.004. The 

dynamics of changes in helicopters TE thermogas-dynamic parameters values after control ε(t), 



shown in fig. 13, indicates the stability of control, that is, the tendency for the indicator ε(t) to 

approach zero [45]. 

 

 
Figure 13: Diagram for determining residuals: 1 – by parameter nTC (black line), 2 – by parameter TG 

(blue line), 3 – by parameter nFT (red line) (author's development) 
 

Fig. 14–16 shows the calculation results of the fuel consumption parameter GT (in absolute units) 

for precise (modified closed onboard helicopters TE ACS [15, 16]), fuzzy and neuro-fuzzy control 

(reconfigured modified closed onboard helicopters TE ACS developed in this work), respectively, for 

given values of helicopters TE thermogas-dynamic parameters according to table 2 and a step change 

in the required fuel consumption GT. On fig. 14–16 marked: 1 – reference fuel consumption value GT 

(step action), 2 – real fuel consumption value GT. 

 

 
Figure 14: Diagram for the precise control transient process (author's development) 

 

 
Figure 15: Diagram for the fuzzy control transient process (author's development) 

 



 
Figure 16: Diagram for the neuro-fuzzy control transient process (author's development) 

 

To compare the quality of control in all three control modes (clear, fuzzy and neuro-fuzzy control), 

transient diagrams were superimposed for these control modes, shown in fig. 17. 

 

 
Figure 17: Diagram for the precise, fuzzy and neuro-fuzzy control transient process: 1 – reference 
value, 2 – precise control, 3 – fuzzy control, 4 – neuro-fuzzy control (author's development) 
 

As can be seen from the presented diagrams of transient processes control, the quality of control 

(the duration of the transient process and the maximum deviation of the controlled variable) for the 

considered types of control (clear, fuzzy and neuro-fuzzy) is approximately the same. 

As can be seen from fig. 11–16, the synthesized system has the specified quality indicators treg, σreg 

that is, the overshoot and control time satisfy the requirements. 

Thus, the use of the reconfigured modified closed onboard helicopters TE ACS makes it possible 

to increase the operational reliability of helicopters TE. 

It should be noted that automatic control systems can also be implemented both on the basis of 

traditional clear-cut approaches, for example, on the basis of PID controllers, and on the basis of 

fuzzy logic and artificial neural networks, and neural networks can be used both for setting the 

parameters of precise control systems (for example, PID controllers), and as control systems based on 

fuzzy neural networks, combining the methods of artificial neural networks and systems based on 

fuzzy logic. 

6. Discussions 

The results of a comparative analysis of helicopters TE control task solution (on the example of 

determining fuel consumption) using various of neural networks architectures are presented in table 6. 

The results of determining errors of the 1st and 2nd kind according to the main helicopters TE 

thermogas-dynamic parameters are presented in table 7. 

 



Table 6 
The results of a comparative analysis of helicopters TE control task solution (author's research) 

Number Neural networks architectures Training sample Test sample 
Error 

number 
Error 

percentage 
Error 

number 
Error 

percentage 

1 Multilayer perceptron 10 2.05 45 9.23 
2 Hopfield neural network 10 2.05 38 7.79 
3 Hamming neural network 10 2.05 30 6.15 
4 Hybrid intelligent system [13, 14] 10 2.05 18 3.69 
5 Reconfigured modified closed 

onboard helicopters TE ACS 
10 2.05 11 2.23 

 

Table 7 
The results of determining errors of the 1st and 2nd kind (in percentages) (author's research) 

Neural networks 
architectures 

Error probability in determining the optimal parameters nTC, TG, nFT and 
GT % 

Parameter nTC Parameter TG Parameter nFT Parameter GT 
Type 
1st 

error 

Type 
2nd 

error 

Type 
1st 

error 

Type 
2nd 

error 

Type 
1st 

error 

Type 
2nd 

error 

Type 
1st 

error 

Type 
2nd 

error 

Multilayer perceptron 1.13 1.08 1.14 1.06 1.10 1.05 1.17 1.12 
Hopfield neural network 1.02 0.98 1.00 0.87 1.01 0.88 1.03 0.99 

Hamming neural network 0.97 0.86 0.94 0.83 0.96 0.85 0.94 0.82 
Hybrid intelligent system 

[13, 14] 
0.75 0.64 0.76 0.65 0.74 0.63 0.74 0.65 

Reconfigured modified 
closed onboard 

helicopters TE ACS 
0.38 0.18 0.35 0.16 0.36 0.17 0.35 0.15 

 
A comparative analysis of the obtained results (table 6 and table 7) confirms that the developed 

reconfigured modified closed onboard helicopters TE ACS provides the minimum error in solving 

helicopters TE control task during operation. 

7. Conclusion 

The method of constructing helicopters turboshaft engines automatic control systems gained 

further importance, which, due to the reconfiguration of automatic control systems by using hybrid 

neuro-fuzzy networks of the ANFIS type with a zero-order Takagi-Sugeno-Kang training algorithm, 

made it possible to provide the specified stability indicators (overshoot, control time of transient 

processes of subsystems) at a given specific mode. 

The method of adapting the apparatus of hybrid neuro-fuzzy networks has gained further 

importance, which, by taking into account the main indicators of automatic control systems quality, 

namely, the overshoot and the time of regulation of automatic control systems subsystems, allows 

solving the helicopters turboshaft engines control task at the helicopter flight mode with a minimum 

control error, which is not exceeds 0.004 (0.4 %). 

For the first time, the use of bell-shaped membership functions of linguistic variables was 

proposed to describe the helicopters turboshaft engines thermogas-dynamic parameters recorded on 

board helicopters, as well as the linguistic expression "about" in a fuzzy knowledge base, which made 

it possible to correct their values in case of random changes (uncertainties) associated due to errors, 

helicopter flight conditions, helicopter operational status, and so on, with an accuracy of 99.6 % (the 

maximum control error does not exceed 0.4 %). 



It is shown that the errors of the 1st and 2nd implementations of the adaptation method of hybrid 

neuro-fuzzy networks apparatus in the reconfigured modified closed onboard helicopters turboshaft 

engines automatic control system did not exceed 0.38 % and 0.18 %, respectively, while for other 

neural networks architectures they amounted to 0.74 % and 0.63 % minimum respectively. The 

obtained results prove that the application of the developed neural network method will allow solving 

the problem of helicopters turboshaft engines control at the helicopter flight mode 2.5 times more 

accurately. 

8. References 

[1] S. Kim, A new performance adaptation method for aero gas turbine engines based on large 
amounts of measured data, Energy, vol. 221 (2021) 119863. doi: 10.1016/j.energy.2021.119863 

[2] H. Aygun, H. Caliskan, Evaluating and modelling of thermodynamic and environmental 
parameters of a gas turbine engine and its components, Journal of Cleaner Production, vol. 365 
(2022) 132762. doi: 10.1016/j.jclepro.2022.132762 

[3] J. Zeng, Y. Cheng, An Ensemble Learning-Based Remaining Useful Life Prediction Method for 
Aircraft Turbine Engine, IFAC-PapersOnLine, vol. 53, issue 3 (2020) 48–53. 
doi: 10.1016/j.ifacol.2020.11.009 

[4] S. M. Hosseinimaab, A. M. Tousi, A new approach to off-design performance analysis of gas 
turbine engines and its application, Energy Conversion and Management, vol. 243 (2021) 
114411. doi: 10.1016/j.enconman.2021.114411 

[5] F. Pohlmeyer, R. Kins, F. Cloppenburg, T. Gries, Advances in Industrial and Manufacturing 
Engineering, vol. 5 (2022) 100095. doi: 10.1016/j.aime.2022.100095 

[6] J. Rabcan, V. Levashenko, E. Zaitseva, M. Kvassay, S. Subbotin, Non-destructive diagnostic of 
aircraft engine blades by Fuzzy Decision Tree, Engineering Structures, vol. 197 (2019) 109396. 
doi: 10.1016/j.engstruct.2019.109396 

[7] M. Lungu, R. Lungu, Automatic control of aircraft lateral-directional motion during landing 
using neural networks and radio-technical subsystems, Neurocomputing, vol. 171 (2016) 471–
481 doi: 10.1016/j.neucom.2015.06.084 

[8] H. Hanachi, J. Liu, C. Mechefske, Multi-mode diagnosis of a gas turbine engine using an 
adaptive neuro-fuzzy system, Chinese Journal of Aeronautics, vol. 31, issue 1 (2018) 1–9. 
doi: 10.1016/j.cja.2017.11.017 

[9] H. Aygun, O. Turan, Application of genetic algorithm in exergy and sustainability: A case of 
aero-gas turbine engine at cruise phase, Energy, vol. 238, part A (2022) 121644. 
doi: 10.1016/j.energy.2021.121644 

[10] Z. Wei, S. Zhang, S. Jafari, T. Nikolaidis, Gas turbine aero-engines real time on-board 
modelling: A review, research challenges, and exploring the future, Progress in Aerospace 
Sciences, vol. 121 (2020) 100693. doi: 10.1016/j.paerosci.2020.100693 

[11] Z. Wei, S. Jafari, S. Zhang, T. Nikolaidis, Hybrid Wiener model: An on-board approach using 
post-flight data for gas turbine aero-engines modelling, Applied Thermal Engineering, vol. 184 
(2021) 116350. doi: 10.1016/j.applthermaleng.2020.116350 

[12] M. Xu, J. Wang, J. Liu, M. Li, J. Geng, Y. Wu, Z. Song, An improved hybrid modeling method 
based on extreme learning machine for gas turbine engine, Aerospace Science and Technology, 
vol. 107 (2020) 106333. doi: 10.1016/j.ast.2020.106333 

[13] N. Kravchuk, Investigation of intelligent classification of current technical condition of the gas 
turbine engine, Technology audit and production reserves, no. 1/3(21) (2015) 53–57. 
doi: 10.15587/2312-8372.2015.38073 

[14] N. Kravchuk, Development of intelligent system of automatic diagnostics of gas-turbine engine 
modes, Eastern-European Journal of Enterprise Technologies, no. 1/3(73) (2015) 57–64. 
doi: 10.15587/1729-4061.2015.38088 

[15] S. Vladov, Y. Shmelov, R. Yakovliev, Helicopters Aircraft Engines Self-Organizing Neural 
Network Automatic Control System. The Fifth International Workshop on Computer Modeling 
and Intelligent Systems (CMIS-2022), May, 12, 2022, Zaporizhzhia, Ukraine, CEUR Workshop 
Proceedings, vol. 3137 (2022) 28–47. doi: 10.32782/cmis/3137-3 



[16] S. Vladov, Y. Shmelov, R. Yakovliev, Modified Neural Network Fault-Tolerant Closed Onboard 

Helicopters Turboshaft Engines Automatic Control System. COLINS-2023: 7th International 

Conference on Computational Linguistics and Intelligent Systems, Volume I: Machine Learning 

Workshop, April, 20–21, 2023, Kharkiv, Ukraine. CEUR Workshop Proceedings (ISSN 1613-

0073), vol. 3387 (2023) 160–179. 

[17] S. Vladov, Y. Shmelov, R. Yakovliev, M. Petchenko, Modified Searchless Method for 

Identification of Helicopters Turboshaft Engines at Flight Modes Using Neural Networks, in: 

Proceedings of the 2022 IEEE 3rd KhPI Week on Advanced Technology, Kharkiv, Ukraine, 

October 03–07, 2022 (2022) 57–262. doi: 10.1109/KhPIWeek57572.2022.9916422 

[18] S. Vladov, Y. Shmelov, R. Yakovliev, Modified Helicopters Turboshaft Engines Neural Network 

On-board Automatic Control System Using the Adaptive Control Method. ITTAP’2022: 2nd 

International Workshop on Information Technologies: Theoretical and Applied Problems, 

November 22–24, 2022, Ternopil, Ukraine. CEUR Workshop Proceedings (ISSN 1613-0073), 

vol. 3309 (2022) 205–229. 
[19] E. Tsoutsanis, N. Meskin, Performance assessment of classical and fractional controllers for 

transient operation of gas turbine engines, IFAC-PapersOnLine, vol. 51, issue 4 (2018) 687–692. 
doi: 0.1016/j.ifacol.2018.06.182 

[20] F. Hartl, J. Brueckner, C. Ament, J. Provost, Rail Pressure Estimation for Fault Diagnosis in 
High Pressure Fuel Supply and Injection System, IFAC-PapersOnLine, vol. 52, issue 15 (2019) 
193–198. doi: 10.1016/j.ifacol.2019.11.673 

[21] R. Yang, Y. Liu, Y. Yu, X. He, H. Li, Hybrid improved particle swarm optimization-cuckoo 
search optimized fuzzy PID controller for micro gas turbine, Energy Reports, vol. 7 (2021) 
5446–5454. doi: 10.1016/j.egyr.2021.08.120 

[22] A. Imani, M. Montazeri-Gh, Stability analysis of override logic system containing state feedback 
regulators and its application to gas turbine engines, European Journal of Control, vol. 52 (2020) 
97–107. doi: 10.1016/j.ejcon.2019.09.003 

[23] F. Bocklisch, G. Paczkowski, S. Zimmermann, T. Lampke, Integrating human cognition in 
cyber-physical systems: A multidimensional fuzzy pattern model with application to thermal 
spraying, Journal of Manufacturing Systems, vol. 63 (2022) 162–176. 
doi: 10.1016/j.jmsy.2022.03.005 

[24] Y. Wang, Z. Wang, Model free adaptive fault-tolerant tracking control for a class of discrete-

time systems, Neurocomputing, vol. 412 (2020) 143–151. doi: 10.1016/j.neucom.2020.06.027 
[25] P. Grigorovskiy, O. Terentyev, R. Mikautadze, Development of the technique of expert 

assessment in the diagnosis of the technical condition of buildings, Technology audit and 
production reserves, vol. 2, no. 2(40) (2018) 10–15. doi: 10.15587/2312-8372.2018.128548 

[26] N. Alsadi, S. A. Gadsden, J. Yawney, Intelligent estimation: A review of theory, applications, 
and recent advances, Digital Signal Processing, vol. 135 (2023) 103966. 
doi: 10.1016/j.dsp.2023.103966 

[27] J. Iqbal, M. Ullah, S. G. Khan, B. Khelifa, Sasa Cukovic, Nonlinear control systems – A brief 
overview of historical and recent advances, Nonlinear Engineering, vol. 6, issue 4 (2017). 
doi: 10.1515/nleng-2016-0077 

[28] B. Ilyasov, G. Saitova, A. Elizarova, Stability study of digital multi-connected automatic control 
system, Journal of Physics: Conference Series, vol. 1864 (2021) 012039. doi: 10.1088/1742-
6596/1864/1/012039 

[29] E. Zarei, F. Khan, R. Abbassi, How to account artificial intelligence in human factor analysis of 
complex systems? Process Safety and Environmental Protection, vol. 171 (2023) 736–750. 
doi: 10.1016/j.psep.2023.01.067 

[30] Y. Shen, K. Khorasani, Hybrid multi-mode machine learning-based fault diagnosis strategies 

with application to aircraft gas turbine engines, Neural Networks, vol. 130 (2020) 126–142. 

doi: 10.1016/j.neunet.2020.07.001 
[31] Z. Didekova, S. Kozak, S. Kajan, A. Kozakova, Intelligent Hybrid Control Based on Adaptive 

Switching, IFAC-PapersOnLine, vol. 50, issue 1 (2017) 11221–11226. 
doi: 10.1016/j.ifacol.2017.08.2107 



[32] E. Kamal, L. Adouane, R. Abdrakhmanov, N. Ouddah, Hierarchical and Adaptive Neuro-Fuzzy 
Control for Intelligent Energy Management in Hybrid Electric Vehicles, IFAC-PapersOnLine, 
vol. 50, issue 1 (2017) 3014–3021. doi: 10.1016/j.ifacol.2017.08.669 

[33] P. V. de Campos Souza, Fuzzy neural networks and neuro-fuzzy networks: A review the main 
techniques and applications used in the literature, Applied Soft Computing, vol. 92 (2020) 
106275. doi: 10.1016/j.asoc.2020.106275 

[34] R. Vang-Mata, Multilayer Perceptrons: Theory and Applications, Nova Science Publishers, New 
York, 2020. 

[35] F. M. Salem, Recurrent Neural Networks: From Simple to Gated Architectures, Springer Nature 
Switzerland AG, Switzerland, 2022. doi: 10.1007/978-3-030-89929-5 

[36] S. Slinin, V. Rubinov, Adaptation of hybrid neuro-fuzzy networks for classification of ground 
targets in the onboard computer system of military robotic systems, Aerospace forces. Theory 
and practice, no. 16 (2020) 125–135. 

[37] J. Mohammadi, S. Jafari, Fuzzy Controller Structures Investigation for Future Gas Turbine Aero-
Engines, International Journal of Turbomachinery Propulsion and Power, vol. 6, no. (1):2 (2021). 
doi: International Journal of Turbomachinery Propulsion and Power 6(1):2 

[38] N. Fuchedzhi, E. Baryshnikova, V. Ivashchenko, D. Vasiliev, Model for maintaining stability of 
continuous production based on neuro-fuzzy system, IFAC-PapersOnLine, vol. 54, issue 13 
(2021) 119–122. doi: 10.1016/j.ifacol.2021.10.430 

[39] M. Krysmann, Takagi-Sugeno-Kanga Fuzzy Fusion In Dynamic Multi-Classifier System, in: 
Proceedings of the The 2nd World Congress on Electrical Engineering and Computer Systems 
and Science, Budapest, Hungary, August 16–17, 2016. doi: 10.11159/mvml16.108 

[40] S. Terenchuka, Y. Riabchuna, N. Poltorachenkoa, I. Aznauriana, V. Levashenkob, D. Mezzanec, 
Identification of Entrant's Abilities on the Basis Fuzzy Inference Systems. ITTAP’2021: 1st 
International Workshop on Information Technologies: Theoretical and Applied Problems, 
November 16–18, 2021, Ternopil, Ukraine. CEUR Workshop Proceedings (ISSN 1613-0073), 
vol. 3039 (2021) 73–81. 

[41] A. Benyounes, A. Hafaifa, A. Kouzou, M. Guemana, Gas turbine modeling using adaptive fuzzy 
neural network approach based on measured data classification, Mathematics-in-Industry Case 
Studies, vol. 7, no. 4 (2016) 1–14. doi: 10.1186/s40929-016-0006-3 

[42] S. Vladov, Y. Shmelov, M. Petchenko, A Neuro-Fuzzy Expert System for the Control and 
Diagnostics of Helicopters Aircraft Engines Technical State. ICTERI 2021: ICT in Education, 
Research, and Industrial Applications, Kherson, Ukraine, September 28 –October 02, 2021. 
CEUR Workshop Proceedings (ISSN 1613-0073), vol. 3013. (2021) 40–52. 

[43] H.-Y. Kim, Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test, 
Restor Dent Endod, vol. 42, no. 2 (2017) 152–155. doi: 10.5395/rde.2017.42.2.152 

[44] V. S. Jigajinni, V. Upendranath, ANFIS-Based Fault Diagnosis Tool for a Typical Small Aircraft 
Fuel System, in: Proceedings of the International Conference on Intelligent Communication, 
Control and Devices, Dehradun, India, April 2–3, 2016, Advances in Intelligent Systems and 
Computing, vol. 479 (2017) 391–405. doi: 10.1007/978-981-10-1708-7_45 

[45] L. Morales, J. Aguilar, A. Rosales, D. Chavez, P. Leica, Modeling and control of nonlinear 
systems using an Adaptive LAMDA approach, Applied Soft Computing, vol. 95 (2020) 106571 
doi: 10.1016/j.asoc.2020.106571 


