
Information System for Adsorption Parameters Identification in 
NanoPorous Media 
 

Mykhaylo Petryka, Dmytro Mykhalyka, Jacques Fraisardb, Oksana Petryka

 
a Ternopil Ivan Puluj National Technical University, 56 Ruska str., Ternopil 46001, Ukraine 
b Sorbonne University, Faculty of Science and Engineering, ESPCI, Rue Vauquelin, 75005 Paris, 

France  

Abstract  
This paper presents the information system based on a mathematical model of complex 

adsorption prosses in a heterogeneous media of microporous particles, which allows for the 

identification of the diffusion coefficients in intraparticle space. The algorithm of 

identification is based on the gradient method, which was implemented and tested for 

efficiency on experimental data obtained using the nuclear magnetic resonance method. The 

obtained results were also tested for adequacy to experimental observations and used for 

numerical simulation and analysis of the kinetics of adsorption and concentration gradient 

fields.  
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1. Introduction 

Well-known, scientists often utilize experimental methods to monitor and evaluate the state of 

intricate physical objects, such as the complex adsorption systems used for mass transport in 

nanoporous media (such as zeolites). These methods are based on the most recent advancements in 

the fields of systems analysis and mathematical modeling [1-3]. 

Zeolites are currently employed in numerous industrial sectors (including medicine, 

petrochemistry, catalysis, and separations), owing to their multidimensional pore system, which can 

be broken down into two critical subsystems: a micro- and nano-pore system with exceptional 

adsorption capacity and a low degree of diffuse infiltration (intraparticle space), and a macropore 

system (voids between the particles of the medium), which is characterized by low spaciousness and 

rapid penetration (interparticle space) [4-7]. 

Previous papers have discussed the challenge of mathematically modeling the two-level adsorption 

mass transfer that occurs within catalytic media made up of microporous particles [8, 9]. However, an 

important issue that still requires attention is the identification of the kinetic parameters associated 

with the internal process. These parameters play a crucial role in the mass transfer flow and are 

instrumental in laying the groundwork for the development of new technologies. 

The objective of this study was to identify diffusion coefficients while considering the developed 

theory of optimal control for complex systems, mathematical models of adsorption mass transfer in 

heterogeneous media consisting of nanoporous particles, and their analytical and numerical solutions 

[10], along with the results of experimental studies [11]. To achieve this goal, the direct and conjugate 

problems statements of the identification problem were established, and a gradient procedure was 

employed to identify the kinetics of the transfer. Ultimately, the distributions of diffusion coefficients 

for interparticle mass transfer in porous media were obtained. 
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2. Mathematical model 

The mathematical model for one-component adsorption mass transfer can be described as the 

construction of a solution set of equations [12]: 
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and contact conditions for coordinate z:  
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3. Problem solution 

The solution of a defined mathematical model can be found by applying numerical methods.   

3.1. Numerical solution of the model 

Let’s put in domain mI  uniform orthogonal grid  
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and approximate equation of system (1) - (6) with the Crank-Nicolson scheme (where , ,N M L  - 

parameters of the partition area, , ,t Z X     grid steps for variables , ,t Z X , 1, 1m n  ) [13]. 
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Here, 
i

k
mC  - concentration for the i-th node of k-th time layer in the m-dimensional space segment 

of interparticle space; 
ij

k
mN  - concentration for the j-th node of k-th time layer interparticle space in 

the m-dimensional segment of the media ( m
m

N
Q

X
 ). 

After a few algebraic manipulations, the system of equations (7) - (8) can be reduced to: 
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To determine the concentrations for interparticle and intraparticle spaces at the (k+1)-th time layer 

in the m-th segment of the heterogeneous catalytic media from known concentrations at the k-th layer, 

the system of equations (9) - (10) needs to be solved, using the Thomas algorithm [13].  

This will yield the concentrations in the i-th and j-th nodes at the (k+1)-th time 

layer.
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Hence, when implementing the algorithm to construct the numerical solution of the mathematical 

model of adsorption mass transfer in a heterogeneous media consisting of catalytic particles with a 

microporous structure, a sweep method is utilized to calculate the concentration values for nodes in 

the (k+1)-th time layer. This method solves systems of equations for all n segments of the media 

simultaneously. To calculate the coefficients in the direct sweep, formulas (12) and (14) are used, 

while for the reverse sweep, formulas (13) and (11) are employed. 

 

3.2. Parameters Identefication 
3.2.1. Functional-residual

By assuming the diffusion coefficients
m minter intra,D D  of (1) - (6) are unknown and on the 

surfaces, we have traces of known solutions (concentrations).  
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be formulated as [17]: 
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3.2.2. Initial problem in increments  

Applying the increments to the diffusion coefficients 
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gains for concentrations q w . Consequently, the next boundary problem in increments can be 

formulated: 
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3.2.3. Conjugate problems 

By applying the principle of Lagrange's to advanced functional, which contain sum of functional-

residual and components that take into account the balance condition and initial boundary conditions, 

we obtain the formulation of the conjugate problem [12]. 
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The solution to the conjugate problem is constructed in a similar fashion, utilizing the Crank-

Nicolson scheme [13]. 

 

3.2.4. Determination of functional analytical form 

Following [10] analytical expression for the gradient of the functional component intraD  
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3.3. Identification diffusion coefficients algorithm 

The procedure of implementing the gradient method for the identification of diffusion coefficients 

intram
D  based on the use of matrix system states  M

mk i intrat ,z ,D
, which corresponds to the total 

accumulated mass of diffusion component in the pores of the particles [14]. 

Experimental studies, which produced the results shown in Figure 1, were conducted in the 

laboratory of the University of Pierre and Marie Curie Paris 6 with the participation of the authors, 

using the nuclear magnetic resonance method (NMR). The studies were carried out on systems of 

adsorption of benzene and hexane in zeolite ZSM-5 [9]. The results obtained are presented as profiles 

of the total accumulated mass of the diffusion component (benzene or hexane) along the studied 

experimental model. To track the evolution of the profiles over time, measurements were taken at 

different time intervals (shown in Figure 1 in hours). 

 

 
    а)     b)

Figure 1: Experimental data of studies of adsorption in a microporous media:
a) - hexane, b) - benzene

In the matrix  M
mk i intrat ,z ,D

 temporal and spatial variables t and z, are determine the specific 

status of the adsorption  for which the identification of kinetic parameters are carry out.  

To identify the distribution of diffusion coefficients was used one of the gradient methods, 

mathematical basis of which to the problem of parametric identification of multi-distributed systems 

are presented in [14]. Due to the nature of the problem, the most suitable is method of minimal errors. 



According to this method, for the determination of ( 1  )-th approximation of the diffusion 

coefficient in interparticle space, are used the following gradient-identification procedure [12]: 
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3.4. Numerical modeling and parameters identification 

The identification procedure was performed based on the determination of diffusion coefficients of 

a system of one-component adsorption using the gradient method described above. 

During the identification process, the experimental data 
1,

exp
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ki
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 matrix were populated with 

the total absorbed mass values along coordinate z for various times of the adsorption process [15, 16]. 

The identification results are shown in the figures below and represent different thicknesses of the 

nanoporous medium and different adsorption process duration correlated with physical experiment 

results.  

 

 
for  =0.02 hour 

 
for  =0.07 hour.

а)      b)
Figure 2: Identification of diffusion coefficients for benzene  = 0.02 and = 0.07: a) coefficients
distribution; b) adsorbed mass curves comparison for model (2) and experimental (1) results

 



At the fig. 2. shown the identified distributions of the diffusion coefficient intraD  (a) along with 

adsorbed mass curves (b) on coordinate z (the direction of mass flow) for benzen adsorption process. 

Two case are present for the kinetics  =0.02 hour and  = 0.07 hour from the start of adsorption. As 

can be seen from fig. 2, b) profiles of adsorption mass (1), represent the experimental data, have 

heterogeneous characteristic along the catalytic bed. Since, time slice  = 0.02 hour filling of pore’s 

subsystem placed in the entrance of the porous media is about 0.35 0.5 units. Here we can observe 

exponential growth of the adsorbed mass of the layer. Zone close to the center of porous media 

(position of coordinates of the thickness z = 0.8 0.5), has filling 0.5 0.58 units. Mass peak (the 

highest volume of benzene molecules) is concentrated in the area of a bed (coordinate z = 0.65 0.6) 

and equal to 0.58 unit. Further (position coordinates of the thickness z = 0.4 0.0) are observed 

almost linear decrease values of adsorbed mass from 0.3 to 0.01 units. Finally, the lowest adsorbed 

mass volume corresponds to the working area exaust. 

Futher analyze of the reduced diffusion coefficients intraD  profiles (Fig. 2, a) for time  = 0.02 

hour shows three characteristic regions. And regions have quite opposite character. The first one, 

around z = 1.0 0.8, has sharp decrease in diffusion coefficient’s value from 124.0 10  to 121.6 10  
2/m s   - exponential decay area. The next one, around z= 0.8 0.7, has a more linear decrease to a 

value of 121.5 10  2/m s . And next segment of the layer (z = 0.7 0.5) has static diffusion 

coefficient with insignificant convexity at the center. The lowest diffusion coefficient is 121.35 10  
2/m s  corresponds a peak of the adsorption mass curve (Fig. 2, b). 

 

 
for  =0.27 hour 

 
for  =0.39 hour

Figure 3: Identification of diffusion coefficients for benzene for time  = 0.27 and  = 0.39:
a) coefficients distribution; b) adsorbed mass curves comparison for model (2) and experimental (1)
results  

 

 



Further segments z = 0.5 0.4 and z = 0.4 0.2 is characterized by a linear increase of diffusion 

coefficient to 121.6 10  
2/m s  and 122.8 10  

2/m s , respectively. And at the last section of the 

layer (z = 0.20), has diffusion coefficient increase. 

As is evident from the compare the experimental (1) and model (2) curves of the adsorbed mass 

(Fig. 2b) curves are sufficiently consistent with each other. Such results confirm the efficiency of 

proposed method of identification and ensure the adequacy of the model and experimental study. 

Looking ahead, we must say that the picture is similar for all other distributions considered below. 

A further picture of the adsorption kinetic is followed by the next time slices shown in fig. 4 (  

= 0.27 hour,  = 0.39 hour). These times reflect the middle adsorption phase. At time slice  = 0.27 

hour the interval z = 1.0 0.8 filling equal 0.45-0.75 units. and diffusion coefficients vary from 
123.51 10

2/m s  to 121.068 10
2/m s , which is 25-30% smaller than the corresponding values at 

the previous time period. Accordingly, layer z = 0.8 0.4 filling is 0.76 0.82 units. Diffusion 

coefficients vary from 138.26 10  to 137.45 10  
2/m s . For the time slice  = 0.39 hour (layer z = 

1.0 0.8) filling is 0.5-0.79 units., the diffusion coefficients vary from 132.138 10  to 
138.62 10

2/m s , which is 40-45% lower than the at previous time slice. For the layer z = 0.8 0.4 

filling is 0.81-0.88, and the diffusion coefficients vary from 132.49 10  to 137.549 10
2/m s . 

 

 
for  =4.36 hour 

 
for  =15.3 hour 

а)      b)

Figure 4: Identification of diffusion coefficients for benzene for time  = 4.36 and  = 15.3
(equilibrium) a) coefficients distribution; b) adsorbed mass curves comparison for model (2) and
experimental (1) results

 

 

 



4. Discussion 

Comparing the results of different time slices we can observe little but distinct evolutions of 

absorbed mass curves in the direction of growth, and in same time diffusion coefficients going to be 

decreased, due to the accumulation of absorbed benzene molecules in the absorbent. 

A key stage of adsorption kinetics modeling is masstransfer system evolution towards equilibrium. 

It cleary observable by changes in the form of curves of adsorbed mass. Based on the conducted 

numerical experiments, can be observed that starting from time  = 4.36h, the shape of the curve is 

stabilized and further continuation of the adsorption has low variations. Another important timepoint 

was around  = 15.3 hour has an almost identical profile of the adsorbed mass in the micropores and 

confirms equilibrium condition achievement. 

One more important fact of equilibrium confirmation is the diffusion coefficients evolution. 

Moreover, the diffusion coefficients decrease with time  = 4.36 hour is practically unchanged, which 

is also on the other hand confirms that the system reached equilibrium.  

 

5. Conclusion 

An information system for identifying and studying of parameters of complex adsorption and 

diffusion processes in heterogeneous media of microporous particles has been implemented. The 

direct and conjugate problems of coefficient identification in intraparticle space are formulated. The 

identification algorithm of kinetic parameters using the gradient method and numerical solutions 

obtained from the considered adsorption complex model is implemented. 

The adequacy of the results obtained from the identification process was tested against 

experimental observations. Furthermore, numerical simulation and analysis of the kinetics of 

adsorption, as well as the concentration gradient fields were conducted. 

The results obtained from this study enable efficient simulation of adsorption process kinetics and 

can be utilized for investigating the equilibrium conditions in complex adsorption systems under the 

influence of many various factors.  
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