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Abstract
Traditional techniques for Named Entity Recognition (NER) need an extensive amount of labeled data in order to get accurate
outcomes. However, in real-world situations, it can be difficult to find large datasets, particularly in the biomedical field,
where it is challenging to retrieve the required material from which to derive the examples to be annotated and where a
domain expert is required for annotations. To address this challenge, data augmentation can be used to generate synthetic
data from an existing few-shot training set. However, current methods have a tendency to generate a vast amount of noise,
thus hindering performance improvements. In this work, we propose a framework to refine a policy that allows the selection
of the most informative examples in an augmented pool with a Policy-based Active Learning approach that employs a deep
Q-network to define the selection strategy. We experimented the proposed approach on three benchmark biomedical datasets
by simulating few-shot scenarios and found it to be more effective than the selected baselines in most of the cases.
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1. Introduction
Biomedical Named Entity Recognition (BioNER) is a cru-
cial natural language processing task that plays a pivotal
role in automatically identifying and extracting essential
entities, such as diseases, chemical agents, and genes,
from unstructured text data. Accurate BioNER is funda-
mental for numerous downstream applications, including
medical question answering agents and knowledge graph
building, enhancing the overall understanding of biomed-
ical information.
Training effective Named Entity Recognition (NER)

models requires significant amounts of manually anno-
tated data, which is a time-consuming and expensive
process, particularly in specialized domains, such as le-
gal, historical, or biomedical, where domain knowledge
is fundamental. Additionally, the availability of domain
experts in the medical field may be limited due to their
busy schedules.
To address the challenges posed by limited training
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data, there is a growing interest in exploring few-shot
learning techniques that enable effective NER even with
a limited number of labeled examples. Such techniques
offer novel approaches to data and model development,
facilitating the generalization of NER models to new and
unseen entities.

Among these approaches, data augmentation is a well-
established strategy for addressing the limited amount
of available training data. This technique involves in-
creasing the size of the existing dataset by generating
new samples through heuristics or external data sources.
While the field of Natural Language Processing (NLP)
has explored diverse data augmentation methods, includ-
ing sentence perturbations [1] and generative models
[2], applying these methods to NER input samples is not
straightforward due to the token-level classification in-
volved in this task. Consequently, the literature on data
augmentation techniques for NER is relatively limited
compared to other NLP tasks. Current methods have ex-
plored the adaptation of simple manipulation approaches
[3], the use of context similarity-based criteria [4] and
the imitation of language patterns from high-resource
corpora [5].

Although the first attempts of NER data augmentation
have shown promising results, the proposed methods
of data manipulation may frequently generate a consid-
erable amount of mislabeled and noisy samples, as the
new data may not be syntactically and/or semantically
accurate. For example, if we manipulate the sentence
”Hypotension is a term that indicates low blood pressure”
so as to replace the entity mention hypotension with an-
other disorder (e.g. dyspnea, hypertension), the resulting
augmented sample may be inaccurate and thus mislead
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the model in effectively identifying mentions.
In this work, we address the issue of selecting the most

informative samples from an augmented pool. Inspired
by policy-based active learning [6], we do not use a fixed
heuristic, but rather allow our framework to learn how to
actively select data by formalizing the selection process as
a reinforcement learning problem. Specifically, for each
sample in the augmented pool, an agent has to decide
whether to select it or not, based on its characteristics
and model outputs. The selection policy is learned by
means of a deep Q-network [7].

We experiment our method by simulating few-shot sce-
narios in BioNER applications, i.e. we use only 𝑘 samples
as our training data, 𝑘 ∈ {10, 50, 100}. In such settings,
we demonstrate the ability of the framework to select
the most informative augmented samples first and show
promising results as shown by the comparison with the
selected baselines. Our approach presents a new direc-
tion for exploring the potential of data augmentation
to improve the performance of NER models when the
training data is scarce, and our findings reveal a consider-
able margin for improvement, as the data augmentation
technique employed for generating the augmented pool
can be readily replaced with more advanced and effective
methods.
The remainder of this paper is organized as follows.

In Section 2, we summarize the literature on NER data
augmentation. In Section 3, we present our augmentation
framework, while experimental results are reported in
Section 4. We conclude our work in Section 5.

2. Related Work
Data augmentation aims to increase the amount of avail-
able training data bymeans of data manipulations, heuris-
tics or external data sources. Dai and Adel [3] investigate
the improvements in performance obtained by augment-
ing NER data with simple data manipulations, such as
token replacements, mention replacements, and shuffling.
However, these approaches may generate too many noisy
samples whichmay in turn hinder the ability of themodel
to be effectively trained. Bartolini et al. [4] address this
challenge by replacing entity mentions with the most
similar entities retrieved by computing context-base sim-
ilarity. Zeng et al. [8] address the poor generalization
ability of few-shot systems to spurious correlations be-
tween an entity mention and its context by generating
counterfactual examples. Chen et al. [5] leverage an
external high-resource corpus to learn how to imitate
language patterns (e.g. style, noise, abbreviations). All
these works do not evaluate the impact of the noise pro-
duced by their proposed augmentation approach over
models’ performance.

Our approach for the selection of the less noisy samples

from an augmented pool has its foundations in policy-
based active learning [6]. Active learning (AL) is a well-
established method to select the most informative un-
labeled data to be annotated in order to train the best
classifier, thus optimizing human efforts. AL approaches
are based on heuristics: uncertainty sampling [9, 10]
selects data based on the uncertainty expressed in the
outputs of the model, Seung et al. [11] choose data based
on the disagreement of a committee. Fang et al. [6] re-
vise AL as a reinforcement learning problem where the
selection strategy is automatically learned by an agent
by means of a deep Q-network [7]. In our work, an intel-
ligent agent automatically learns a policy to identify the
most advantageous samples, from an augmented dataset,
to improve the overall performance of the model. By
doing so, the agent selects samples that are less likely to
mislead the model without the requirement of human
input or guidance.

3. Methodology
The methodological workflow of the proposed frame-
work is illustrated in Figure 1. In this section, we will
first provide a formalization of the few-shot BioNER prob-
lem, and then describe each module in-depth, from the
generation of a concepts vocabulary to the reinforcement
learning cycles.

3.1. Problem formulation
The input of a NER system is a sentence s, which can
be represented as a sequence of tokens s = [𝑡1, 𝑡2, … , 𝑡𝑁].
NER outputs a list of tuples [𝐼𝑠, 𝐼𝑒, 𝑡] representing named
entities mentioned in s. Here, 𝐼𝑠 ∈ [1, 𝑁 ] and 𝐼𝑒 ∈ [1, 𝑁 ]
are the indexes of start and end characters of the named
entity mention, while 𝑡 is the entity type [12].
In practice, this task is usually accomplished by pro-

ducing a paired sequence of categorical values y =
[𝑦1, 𝑦2, … , 𝑦𝑁] as the output of the NER model, where
𝑦𝑖 ∈ 𝒴 indicates the entity type of the 𝑖-th token. Hence,
a NER dataset is defined as a collection of pairwise data
𝒟 = {(s𝑖,y𝑖)}𝐾𝑖=1, 𝐾 being the number of examples.

For the purposes of this work, we will be using the IOB
scheme to identify entity mentions. Under this scheme,
each input token is mapped to the beginning (B), inside
(I) or outside (O) of an entity mention. Furthermore, we
will consider inputs from biomedical domains, where the
NER task is known as Biomedical NER (BioNER). Due to
the data scarcity that usually affects such domains, we
will test our system in few-shot settings, i.e. the number
of training instances 𝐾 is small (e.g. 𝐾 ∈ {10, 50, 100}).
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Figure 1: Methodological workflow for the augmentation of BioNER datasets. First, we collect the entity mentions occurring
in training data, thus building a concepts vocabulary, which is then used to generate an augmented pool of data samples with a
simple data augmentation technique named mention replacement. A deep Q-learning based approach iteratively assigns a
state to each sample in the augmented pool and decides whether to select it or not to re-train the NER model according to a
policy that is updated at each cycle based on a reward that measures the extent to which the addition of the new samples
improves the quality of the model.

3.2. Generation of a vocabulary of
concepts

Based on the available training data, we extract all the
entity mentions, thus building a vocabulary of concepts.
In this work, we test our framework by relying solely
on the input training data, but this module can be easily
extended to include concepts from biomedical ontologies
or guided by domain experts. For example, physicians
are usually aware of the ways medical concepts can be
written in clinical notes; hence, if they are interested
in recognizing mentions of a particular concept, they
can provide a set of aliases for our system to effectively
augment the original training set.

3.3. Data augmentation via mention
replacement

For each sentence in our training set, to determine
whether a mention should be replaced, we employ a bino-
mial distribution. If the outcome is affirmative, we select
a replacement mention from the concepts vocabulary.
Subsequently, we modify the corresponding IOB-label
sequence as needed. Some examples of mention replace-
ment are provided in Table 1.
The reason behind the choice of this augmentation

technique lies in the high number of noisy samples it

may generate, given the random nature of the mention
replacement. This allows us to effectively test the ability
of our framework to discard samples that may mislead
the model. However, it is our belief that the performance
of the framework can be further improved with more
sophisticated augmentation methods, e.g. based on con-
text similarity [4] or learning patterns from cross-domain
data [5].

3.4. Reinforcement learning cycles
We learn how to select data from the augmented pool
with a module based on reinforcement learning. Our
method is built upon the foundations of Policy-based
Active Learning [6], which has been previously demon-
strated to be capable of automatically learning an active
learning strategy from data by formulating the active
learning as a reinforcement learning problem where the
state corresponds to the unlabeled data selected for la-
beling, and their label, and the action is the selection
heuristic. Specifically, we adapt the method not to work
with unlabeled data and human oracles, but with the aug-
mented pool generated in the previous step, and to learn
the best strategy to select the samples that may mostly
benefit the performance of the NER model. Furthermore,
while Fang et al. [6] make a streaming assumption, i.e.
unlabelled data arrive one by one and the agent decides



Input Output

If untreated, hemochromatosis can cause serious illness
and early death, but the disease is still substantially under-
diagnosed.

If untreated, mononucleosis can cause serious illness and
early death, but the disease is still substantially under-
diagnosed.

When expressed in Escherichia coli, SH-PTP2 displays
tyrosine-specific phosphatase activity

When expressed in Escherichia coli, PTPN6 displays
tyrosine-specific phosphatase activity

Table 1
Examples of data augmentation via mention replacement. Here, entity mentions are reported in bold.

the action to take, we assume batch-based learning where
the augmented pool is entirely available and the reward is
computed on the set of actions that the agent has decided
to take on the whole dataset in the 𝑖-th cycle.
In the remainder of this section, we provide in-depth

details on the components of the reinforcement learning
process.

3.4.1. States

We represent the state of each sentence s in the aug-
mented pool at time 𝑖 by taking in consideration both an
embedded representation of its content and the outputs
of the NERmodelΘ𝑖 trained over the selected data at time
𝑖. Specifically, the state 𝑠𝑘 consists in the concatenation
of the three representations described in the following:
content, marginals and confidence. We denote with 𝒮𝑖
the set of states at time 𝑖.

Content Following Kim [13], we first encode each
of the 𝑁 tokens 𝑡𝑖 in the sentence to produce a matrix
X = {x1, x2, … , x𝑁} and then apply a convolutional neural
network, which consists in a series of filters using linear
transformations followed by ReLU activation functions;
the last layer of the network performs a max-pooling op-
eration that provides the representation of the sentence
content hc.

Marginals Let 𝑝Θ𝑖(y|s) indicate the prediction outputs
of the NER model given the input sentence s. Another
convolutional neural network is used to represent the
predictive marginals, i.e. the probability distributions
associated to all the tokens in s. Following Fang et al.
[6], the convolutional layer contains 𝑗 filters activated
with ReLU applied with a window width of 3 and height
equal to the number of classes (3 in our case, i.e. I, O and
B). Padding is used to endure a wide convolution, and
mean pooling is used to allow the network to effectively
capture the average uncertainty in each window. The
final hidden layer outputs the representation of predictive
marginals h𝑚.

Confidence Following Fang et al. [6], we repre-
sent the confidence by computing the probability of

the most probable sequence of labels under the model,

𝐶 = 𝑛
√maxy𝑝Θ𝑖(y|s), where 𝑛 is the length of the sentence

s.

3.4.2. Actions

Given the state of each input sample, an agent has to
decide whether to select it or not to re-train the NER
model. Thus, for each sentence s𝑘 in the augmented pool,
the agent selects either to use it (𝑎𝑘 = 1) or not (𝑎𝑘 = 0).
We denote the set of actions made at time 𝑖 with 𝒜𝑖.

3.4.3. Reward

The reward provides a feedback on the quality of the
decisions made by the agent. At each step 𝑖, the reward
is defined as the change in held-out performance:

ℛ𝑖(𝒮𝑖−1, 𝒜𝑖) = Performance(Θ𝑖) − Performance(Θ𝑖−1),
(1)

where Performance(⋅) is a measure of the model’s qual-
ity. In our work, we compute the F1 score to determine
rewards. Note that the value of ℛ𝑖 could also be nega-
tive, i.e. the effect of the actions made by the agent has a
detrimental effect on the performance.

3.4.4. Deep Q-Network

We adopt a deep Q-learning [7] approach where the util-
ity of choosing the action 𝑎𝑘 from state 𝑠𝑘 is evaluated
by the Q function 𝒬𝜋(𝑠𝑘, 𝑎𝑘) according to the policy 𝜋.
The Q-function is iteratively updated by the agent by
considering the rewards obtained in each episode.

The deep Q-network (DQN) consists in a single hidden
layer which takes the state vector of a single instance 𝑠𝑘 =
[h𝑐,h𝑚, 𝐶] as input and uses a ReLU activation function
to output two scalar values𝒬(𝑠𝑘, 𝑎𝑘) associated to the two
possible actions 𝑎𝑘 ∈ {0, 1}.
The training objective is to minimize the difference

between the estimated 𝒬-value and the true 𝒬-value for
a given state-action pair. This is typically done by us-
ing a variant of the Q-learning algorithm known as the
Bellman equation, which recursively defines the 𝒬-value
for a state-action pair as the immediate reward plus the



Shots Dataset Method Precision Recall F1

10

NCBI-Disease
Random 11.94 ± 14.87 4.81 ± 9.66 6.30 ± 12.08
Uncertainty 20.01 ± 9.16 36.62 ± 20.58 25.05 ± 13.07
Ours 21.33 ± 6.82 26.31 ± 17.06 21.58 ± 13.77

BC2GM
Random 7.03 ± 9.34 0.33 ± 0.35 1.02 ± 0.45
Uncertainty 8.47 ± 7.95 25.38 ± 23.28 12.68 ± 11.82
Ours 21.32 ± 5.18 30.85 ± 21.05 23.11 ± 12.11

BC5CDR
Random 79.27 ± 13.40 49.84 ± 25.78 55.80 ± 18.26
Uncertainty 46.91 ± 28.45 50.22 ± 45.76 39.14 ± 35.96
Ours 62.15 ± 11.94 74.99 ± 9.64 66.71 ± 6.92

50

NCBI-Disease
Random 30.47 ± 17.32 41.52 ± 24.53 34.82 ± 19.75
Uncertainty 25.24 ± 15.23 47.42 ± 27.48 32.26 ± 18.37
Ours 29.16 ± 18.41 45.06 ± 27.31 34.37 ± 20.28

BC2GM
Random 26.79 ± 13.92 40.17 ± 23.47 31.91 ± 17.58
Uncertainty 25.17 ± 7.63 49.26 ± 27.83 31.28 ± 16.75
Ours 32.23 ± 2.41 52.70 ± 13.35 39.68 ± 5.90

BC5CDR
Random 62.02 ± 4.62 86.39 ± 4.35 72.02 ± 2.44
Uncertainty 61.89 ± 5.27 85.59 ± 3.64 71.69 ± 3.32
Ours 67.26 ± 7.16 83.38 ± 3.60 74.18 ± 4.12

100

NCBI-Disease
Random 49.74 ± 4.01 68.44 ± 4.09 57.45 ± 2.26
Uncertainty 50.66 ± 2.84 69.37 ± 5.36 58.39 ± 1.65
Ours 50.25 ± 8.34 72.90 ± 4.59 58.92 ± 4.34

BC2GM
Random 37.88 ± 3.02 62.90 ± 3.46 47.27 ± 3.30
Uncertainty 35.82 ± 1.28 62.91 ± 6.38 45.60 ± 2.64
Ours 37.02 ± 2.88 62.04 ± 7.52 46.33 ± 4.22

BC5CDR
Random 67.19 ± 4.35 88.65 ± 1.47 76.36 ± 2.41
Uncertainty 60.46 ± 3.20 90.44 ± 1.42 72.45 ± 2.72
Ours 64.53 ± 3.48 87.82 ± 4.54 74.28 ± 1.88

Table 2
Average results on the benchmark BioNER datasets in different 𝑘-shot scenarios, 𝑘 ∈ {10, 50, 100}. For each method and score,
we report the mean 𝜇 and standard deviation 𝜎 obtained across 5 repetitions, in the format 𝜇 ± 𝜎. Results with the highest
mean are reported in bold.

discounted future 𝒬-value for the next state-action pair.
Mathematically, this can be expressed as:

𝒬(𝑠𝑖, 𝑎𝑖) = 𝔼[𝑟𝑖 + 𝛾 ⋅max𝑎𝑖+1𝑄(𝑠𝑖+1, 𝑎𝑖+1)], (2)

where 𝒬(𝑠, 𝑎) is the 𝒬-value for state 𝑠 and action 𝑎, 𝛾 ∈
[0, 1] is the discount factor, and max𝑎𝑖+1𝑄(𝑠𝑖+1, 𝑎𝑖+1) is the
maximum 𝒬-value over all possible actions in the next
state.

The goal of the Q-learning algorithm is to update the
Q-network weights 𝜃 to minimize the mean squared error
between the estimated 𝒬-value 𝒬(𝑠, 𝑎; 𝜃) and the target
𝒬-value 𝑦:

ℒ(𝜃) = 𝔼[(𝑦𝑖(𝑟𝑖, 𝑠𝑖+1) − 𝒬(𝑠𝑖, 𝑎𝑖; 𝜃))
2], (3)

where 𝑦𝑖(𝑟𝑖, 𝑠𝑖+1) = 𝑟𝑖 + 𝛾 ⋅max𝑎𝑖+1𝑄(𝑠𝑖+1, 𝑎𝑖+1; 𝜃𝑖−1) is the
target 𝒬-value based on the current parameters 𝜃𝑖−1, and
results are averaged over a minibatch of samples. Learn-
ing updates are based on stochastic gradient descent.

4. Experiments
In this section, we provide an in-depth description of
the experiments we ran to assess the performance of
our system. First, we describe the experimental setup
in Section 4.1; then, we discuss experimental results in
Section 4.2.

4.1. Experimental setup
4.1.1. Datasets

We test our method on the three popular benchmark
datasets from the biomedical field listed as follows:

• NCBI-Disease [14]: 793 abstracts from PubMed,
annotated with disorders entity mentions.

• BC2GM [15]: over 20,000 abstracts from PubMed
annotated with gene mentions.



• BC5CDR [16]: over 1,500 abstracts from PubMed
annotated with diseases and chemicals. For sim-
plicity, we consider only chemical entity men-
tions in our experiments.

For each dataset, we have considered the original train-
ing, validation and test sets provided with their original
release.

Few-shot simulations To simulate data scarcity sce-
narios, we randomly sample 𝑘 sentences from the training
set, 𝑘 ∈ {10, 50, 100}. Since performance can vary greatly
based on the selected training samples, we run each ex-
periment 5 times and always report averaged results.

4.1.2. Training details

Given the data-scarcity nature of our work, we assume
that data to tune hyper-parameters is not available. How-
ever, we test models on the entire test set. Hence,
we choose hyperparameters based on previous work
and practical considerations. Specifically, we use a pre-
trained biomedical Transformer network [17] and train
all our models for 3 epochs with a learning rate of
2 ⋅ 10−4, an AdamW optimizer, a batch size of 5 and
a maximum sequence length of 256. We run our rein-
forcement learning framework for 5 episodes. We evalu-
ate the quality of models in terms of precision, recall and
F1 scores obtained with the seqeval1 Python library.

4.1.3. Hardware configuration

All experiments were conducted on the platform Google
Colab, using the Free tier plan, which provides a virtual
machine with an NVIDIA T4 GPU with 16GB of RAM,
an Intel® Xeon® processor with a frequency of 2.3GHz
and 10 cores (but only one used by the VM instance),
12 GB of available memory and 78.19 GB of free disk.
Due to the limits imposed by Colab’s free plan, we were
unable to pursue further improvements on the obtained
results. Specifically, we could only run a maximum of 5
PAL episodes per experiment. Although this was suffi-
cient to achieve the intended goals, conducting a greater
number of episodes could have allowed for a more refined
selection policy for the augmented instances, potentially
leading to improved model performances.

4.1.4. Baselines

We compare our method with the two baselines for the
selection of samples from the augmented pool described
as follows:

• Random: we sample a random set of instances
from the augmented pool.

1https://github.com/chakki-works/seqeval

• Uncertainty: we leverage uncertainty-based ac-
tive learning [9] as an heuristic-based framework
for the selection of samples, i.e. we rank aug-
mented samples according to the uncertainty of
the model in its predictions. Since model predic-
tions are mapped to each token in the sentence,
we aggregate them to obtain a single ranking
value.

For each method, we always pre-train the initial model
with the available training data in the simulated few-shot
scenario. Then, we assess the performance of the same
model when it is fine-tuned with the selected samples.

4.2. Results
Table 2 presents a comprehensive comparison perfor-
mance of different baselines in various 𝑘-shot scenar-
ios and datasets for BioNER tasks. We can observe that
our method consistently shows competitive performance,
achieving the highest F1 scores in several cases, indicat-
ing its effectiveness in correctly identifying entity men-
tions. The highest improvement over the random base-
line can be seen in the 10-shot scenario on BC2GM data.
Being this dataset focused on the gene entity type, and
being this information usually mentioned in many het-
erogeneous ways (e.g. mStaf gene, OBP, primase, V8
protease, MT), a vast amount of noise can be generated
by randomly replacing mentions. This negative effect
of noise is higher as the data-scarcity scenario becomes
stricter, because the effect of noise can be limited when
we include clean training data. Furthermore, our method
consistently achieves the highest precision or rivals the
top performer, as the learned selection policy reliably
minimizes the occurrence of false positives.
We should notice that results show high standard de-

viations, being the quality of the model strongly related
to the sampling that generates the few-shot training set.

Figure 2 illustrates the performance trends of F1 scores
as we increase the number of selected data from the aug-
mented pool in the 50-shots setting. Our method consis-
tently surpasses the random and uncertainty-based selec-
tion curves and the improvement is generally higher as
the number of selected elements is smaller. As the num-
ber of elements increases, the three curves converge to
values that are reasonably close. This trend is consistent
with findings from Fang et al. [6], which demonstrated
that Policy-based Active Learning achieves superior per-
formance while using fewer selected elements. In all the
three plots it can be observed that the peak performance
of our method outperforms the performance obtained by
the model without the augmented samples, represented
by the dashed red line.

https://github.com/chakki-works/seqeval
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Figure 2: Performance trends as the number of selected samples increases. The horizontal dashed red line is the performance
of the original model without augmented samples. These results have been obtained in the 50-shots scenario.

5. Conclusion & Future Work
In this work, we proposed a novel approach for selecting
informative samples from an augmented pool to improve
the performance of NERmodels in the biomedical domain
with limited training data. Our framework leverages
policy-based active learning [6] to learn a selection policy
that identifies the most informative augmented samples
to enhance the NER model’s generalization ability.
We evaluated our method on simulated few-shot sce-

narios in BioNER applications, where we demonstrated
its ability to select the most informative augmented sam-
ples first and achieve promising results compared to se-
lected baselines. Our approach presents a new direction
for exploring the potential of data augmentation to im-
prove NER models’ performance in specialized domains,
such as biomedical, where labeled data is scarce and do-
main knowledge is essential.
Future work should explore the robustness of our

framework on real-world biomedical datasets and investi-
gate the effectiveness of different data augmentation tech-
niques on improving the performance of the proposed ap-
proach. The simple mention replacement approach used
in the current implementation of our framework could be
indeed replaced with more advanced and sophisticated
approaches.
Furthermore, we intend to extend our approach to

other NLP tasks beyond NER, such as relation extraction
and entity linking, and compare its performance with
existing state-of-the-art methods. Finally, we also plan
to investigate the interpretability of the learned selection
policy to gain insights into the most informative features
and characteristics of the augmented data samples that
contribute to the NER model’s improved performance.
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