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Abstract
Many Machine Learning and Deep Learning algorithms are widely used with remarkable success in scenarios whose
benchmark datasets consist of reliable data. However, they often struggle to handle realistic scenarios, particularly those in
the financial sector, where available data constantly vary, increase daily, and may contain noise. As a result, we present an
overview of the ongoing research at the AImageLab research laboratory of the University of Modena and Reggio Emilia, in
collaboration with AxyonAI, focused on exploring Continual Learning methods in the presence of noisy data, with a special
focus on noisy labels. To the best of our knowledge, this is a problem that has received limited attention from the scientific
community thus far.
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1. Introduction
The use of artificial neural networks, enabled by the avail-
ability of large datasets, has yielded remarkable results
across various domains, including time series and, con-
sequently, finance. Recently, an increasing trend has
emerged to enhance investment performance via the use
of Deep Learning methods to forecast market price fluc-
tuations. This provides asset managers with valuable
assistance in assessing investment risk and return lev-
els, as well as analyzing portfolio performance under
uncertain circumstances. However, these applications
are often affected by the high complexity and volatility
of the financial market, which makes them susceptible
to noisy data. One major reason is the unpredictable and
often irrational behaviour of market participants that
can cause sudden and unexpected changes(see the latest
event at SVB [1]). Furthermore, financial data is often
subject to measurement errors, data gaps, class overlap,
and contexts where labels are ambiguous or subjective.
Additionally, other external factors such as geopolitical
events and economic policies can significantly contribute
to adding noise to the data. Therefore, the prediction
problems in this domain involve datasets with several
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challenges: (i) uncertain labels, (ii) imbalanced classes,
and (iii) data that change significantly over time, leading
to the well-known problem of concept drift [2]. While
DNNs represent a strong tool for simple classification
or prediction problems, financial data usually do not fit
appropriately in standard deep learning scenarios for
two main reasons: data comes continually from non-
stationary environments and may change with high fre-
quency, causing the data drifting phenomenon. This
leads to the urgency of periodically retraining networks
to learn from the most recent data. Indeed, as new data
arrive as a stream, the network naturally adapts to the
last-seen ones, making it prone to forget the previously
acquired knowledge. This aspect is usually not consid-
ered, assuming that old financial trends do not affect
future ones. Conversely, market trends are often cyclical;
hence, making financial models retain the knowledge
of past data while learning from the most recent ones
may make them more reliable in already-experienced
market conditions. By using Continual Learning tech-
niques, models can adapt to changing financial data and
improve their predictive power over time. Therefore, the
application of CL to finance has the potential to enhance
investment performance by providing more accurate and
reliable predictions in the face of noisy data.

The research under discussion endeavours to explore
complex CL scenarios that involve training data with
incorrect and noisy labels.

2. Related Works
There is a growing body of work on the application of
machine learning techniques to financial problems. The
interested reader can find a comprehensive overview of
financial machine learning techniques in [3, 4]. In this
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work, however, we are specifically interested in the prob-
lem of training supervised models with noisy financial
labels in a continual learning scenario. Both problems
have been studied independently, see e.g. [5] for the for-
mer and [6, 7] for the latter.

Let us now delve more deeply into the two problems
separately to show an overview of the state-of-the-art
contribution in both fields, which will then allow us to
deal with the current existing works that address both
continual learning ad noisy labels simultaneously.

2.1. Noisy Labels
Learning with noisy labels (LNL) is a common and long-
standing challenge in many machine learning applica-
tions, where the labels assigned to the data points may
not be entirely accurate. Consequently, the model perfor-
mances tend to degrade rapidly with respect to classical
scenarios since DNNs can easily overfit noisy labels and
show poor generalization performances. In this study,
we focus mostly on the supervised classification learn-
ing task. In [8] the authors present a comprehensive
overview of the existing approaches proposed to enhance
the robustness of models against noisy labels. We can
distinguish two main types of methods: those that at-
tempt to learn the noise transition matrix and those that
prioritize cleaning the data stream before using it to train
the model. The former approach focuses on building a ro-
bust architecture that is capable to estimate a noise model
that captures the label distribution pattern [9, 10]. In-
stead, the latter approach addresses the issue of keeping
training data as clean as possible via various “sample-
selection” techniques that try to identify clean examples
based on the small-loss hypothesis [11, 12, 13] and then
apply semi-supervised learning to re-label the leftover
and hence train on the whole training set. Notably, some
methods [14, 15, 16] feature a two-component Gaussian
Mixture Model to model and split the loss distribution of
correctly-labeled and incorrectly-labeled examples.

2.2. Continual Learning
The field of Continual Learning (CL) seeks to learn from
a non-stationary non-i.i.d. stream of data without incur-
ring the forgetting problem. Methods that tackle CL
are commonly categorized into three main groups [17].
Regularization-based methods introduce regularization
terms to prevent significant changes in the performance
of the model on past tasks. Elastic Weight Consolida-
tion (EWC) [18] and Synaptic Intelligence (SI) [19] seek
to prevent parameters deemed as important for the cur-
rent task from changing in the future. In EWC, the im-
portance of each parameter is estimated as the Fisher
information matrix while SI preserves connections that
strongly affected the past task loss. Differently, Learn-

ing without Forgetting [20] (LwF) employs Knowledge
Distillation (KD) to distill the model learned during past
tasks into the current one. Parameter-isolation meth-
ods explicitly define a separate sub-network per task to
avoid interference between the parameters during learn-
ing. Notably, in Progressive Neural Networks [21] (PNN)
the learner is expanded at each subsequent task, while in
Context-dependent Gating [22] (XdG) only sparse, mostly
non-overlapping patterns of units are active for any task.
While these methods usually achieve high performance,
they usually rely on the knowledge of the task identity
during inference, thus limiting their applicability to real
scenarios. Finally, Reharsal methods [23, 24] are based
on the idea of interleaving data for the current task with
a buffer of data from the previous ones, a strategy com-
monly referred to as Experience Replay (ER). iCARL [25]
combines replay with KD and uses the herding strategy
to select the most representative samples for each class.
DER [26] and X-DER [27] use the past responses of the
model as a means for knowledge distillation.

2.3. Continual with Noisy Labels
Bridging the gap between CL and LNL, a preliminary
work [28] proposes a self-supervised loss term to learn a
representation that is independent of label noise, while
distilling a small, purified buffer of samples for later use
in fine-tuning and classification. Although this method
achieves good initial performance when compared with
common CL baselines, its learning objective features a
low sample efficiency which limits its real-world appli-
cability. To address this limitation, [29] exploits the loss
difference between correct and noisy samples to split
the incoming data, using the latter as unlabeled data in
a FixMatch [30] objective. Finally, in [31] the authors
seek a balance between the purity and the effectiveness
of samples stored in the buffer. To achieve this, they
promote the removal of samples from the buffer based
on a combination of the sample loss with a measure of
diversity in the buffer.

3. Datasets with noisy labels
Researchers have developed several datasets specifically
designed to address the challenge of LNL. Although these
consist of images and therefore differ from the typical
financial datasets, we are interested in understanding
model response to noise, regardless of the data itself.
Here, we briefly describe the dataset commonly used in
LNL literature:

• Clothing1M: this large-scale dataset contains
1 million images of clothing items from differ-
ent online stores. The labels for the images were



Table 1
Final Average Accuracy (FAA) of CL baselines with different rates of label noise.

Method Split-N-CIFAR-10

Noise rate (symmetric) 0% 20% 40% 60%

Multitask 91.69 82.02 72.04 54.83
Finetuning 19.66 18.83 18.02 15.99

Offline
ER-ACE [34] 71.15 53.82 37.43 22.87

ER-ACE w/ oracle - 51.10 39.06 23.57
ER-ACE w/ GMM - 52.90 37.95 24.93

Online

ER-ACE [34] 49.14 36.31 29.61 19.90
ER-ACE w/ oracle - 36.60 29.06 20.85
ER-ACE w/ GMM - 36.82 30.12 22.04

SPR [28] - 43.9 43.0 40.0
CNLL [29] - 68.7 65.1 52.8

obtained through a web search and thus may con-
tain incorrect labels.

• WebVision: this dataset contains over 2.4 mil-
lion images from 1000 different categories col-
lected from the web. The dataset has been used
for various tasks such as image classification, ob-
ject detection, and fine-grained recognition under
noisy label scenarios.

• CIFAR-10-N andCIFAR-100-N [32]: these are
variations of the popular CIFAR-10 and CIFAR-
100 datasets [33] respectively, with human-
annotated real-world noisy labels collected from
Amazon Mechanical Turk1.

Overall, these datasets provide valuable resources for
developing and evaluating machine learning models un-
der noisy label scenarios, which are common in many
real-world applications.

In addition to these, another popular choice consists in
artificially applying noise on the annotations of a clean
dataset by flipping the label with a fixed probability. Such
a synthetic setting is particularly helpful since the avail-
ability of ground-truth labels, coupled with the noisy
ones, facilitates monitoring models’ behaviour with re-
spect to different noise patterns.

4. Problem formulation
For this proof preliminary analysis, we focus on a 𝐶-class
image classification problem, which we split in 𝑇 𝐵-fold
classification tasks. Let 𝑋 ∈ ℛ𝑁×𝑑 and 𝑌 ∈ {1, … , 𝐶}
be the input and ground-truth label space respectively.
In a standard CL setting, each task receives data 𝐷𝑡 =
{(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1, where each pair (𝑥𝑖, 𝑦𝑖) is independently and

1https://www.mturk.com

identically distributed according to a certain data gen-
erating distribution. Instead, in the LNL scenario, data
comes from a noisy distribution �̃� = {(𝑥𝑖, ̃𝑦𝑖)}𝑁𝑖=1, with �̃�
being the noisy label space. Here, we assume that the
corruption process that produces �̃� from 𝑌 is independent
of the input data; hence, one true label may be flipped
into another label with equal probability (noise rate). We
will refer to this process as “symmetric noise”.

5. Experiments
For the sake of simplicity and a fair comparison
with other existing works [28, 29], we will conduct
experiments on CIFAR-10. This consists of 60000 32×32
images, usually split into 50000 images for the training
set and 10000 for the test set. The classification task
involves 10 non-overlapping classes and the number of
examples per class is uniform. We modify the dataset
by adding symmetric noise in each of the classes. To
be compliant with Class-IL scenario [17], we split the
10-fold classification into 5 binary tasks and let the model
learn from each one sequentially. We denote the version
of the dataset obtained by such two modifications as
Split-N-CIFAR-10.

As emerges from [28, 29, 31], keeping the memory
buffer as clean as possible during training is a key aspect
of dealing with the label noise issue in a continual learn-
ing scenario. Therefore, we decided to test the GMM
technique used in [15, 14] to separate exemplars into
noisy and clean against a strategy we call “oracle”. For
the latter, since in this controlled scenario, we know
which samples are associated with a noisy label, we can
use this information to prevent all the noisy ones from
being stored inside the replay buffer. Both techniques
are tested using ER-ACE as a base strategy for CL. This
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method extends the common Experience Replay baseline
by adding an asymmetrical cross-entropy loss between
stream and buffer examples.
We used the ResNet18 [35] model initialized from scratch
and trained with Stochastic Gradient Descent (SGD) for
50 epochs per task, in a standard offline fashion. Addi-
tionally, to allow comparison against [28, 29] we evaluate
the online (single epoch) scenario.

5.1. Results
In Table 1 we report performances in terms of Final Av-
erage Accuracy (FAA) at the end of all tasks. Results are
averaged across five runs and the buffer size is set to 500.
We provide a lower and an upper bound, respectively fine-
tuning without any countermeasure to forgetting and
“Multitask”, given by training all tasks jointly. Expectedly,
the model is strongly affected by the presence of noise,
and indeed its performances decrease as the noise rate
increases. When in presence of low noise levels (20%),
the standard ER-ACE model and its variants with buffer
cleaning techniques perform on par, whereas for noise
levels above 40%, the model seems to benefit from replay-
ing a clean buffer. Surprisingly, in some scenarios the
adoption of the GMM makes the model outperform the
oracle for the same noise conditions, suggesting that hav-
ing some noisy examples stored in the buffer may reduce
generalization error by providing some extra regular-
ization. Finally, while the GMM-based buffer cleaning
provides an initial benefit, by looking at results from
the online scenario it is clear that using semi-supervised
learning on mislabeled examples (as CNLL does) provides
a significant boost in terms of performance.

6. Conclusion
In this manuscript, we have investigated the challenging
problem of learning from non-stationary and noisy data,
which is highly relevant to the domain of financial data
analysis. Through a joint effort between the AImage-
Lab research laboratory at the University of Modena and
Reggio Emilia and AxyonAI, we have conducted a pre-
liminary analysis to assess the effectiveness of rehearsal-
based continual learning baselines equipped with com-
mon label noise learning strategies. Our findings shed
light on the complex interaction between these challeng-
ing fields and provide a proof of concept for future re-
search in this area.
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