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Abstract
This paper explores the use of Gaussian processes (GPs) in the covariance matrix adaptation evolution strategy (CMA-ES) for
black-box optimization. GPs are powerful probabilistic models that capture complex relationships, making them suitable
for modeling uncertain objective functions. Integrating GPs into the CMA-ES improves exploration and adaptation in the
search space, enhancing convergence speed and solution quality. The paper describes a novel implementation framework
allowing to use GPs as surrogate models for the CMA-ES. That framework findings encourage further research to advance
the application of GPs in black-box optimization.

1. Introduction
Black-box optimization is an optimization of objective
functions for which no analytical description is provided.
It employs optimization methods that need as input only
points in the search space paired with respective values of
the objective function obtained in a non-analytical way,
e.g. from sensors, in experiments or through numerical
simulations. The most frequently used approaches are
evolutionary optimization, such as evolution strategies,
genetic algorithms, and differential evolution, or other
metaheuristics, such as particle swarm optimization.

Because black-box optimization methods receive only
information about values of the objective function, they
typically need many such values. This is a problem in
situations when evaluating the black-box objective func-
tion is time-consuming and/or expensive. That is fre-
quently the case if it is evaluated empirically in experi-
ments. For example, for the evolutionary optimization
tasks described in the book [1], the evaluation of a com-
paratively small generation of a genetic algorithm can
sometimes take more than a week and cost more than
10000 e. To tackle such problems, an approach called
surrogate modeling has emerged more than 20 years ago.
In particular in continuous optimization, surrogate mod-
eling consists in evaluating the true, black-box objective
function only in some points and evaluating a suitable
regression model in all remaining points. Such a regres-
sion model is called surrogate model or metamodel of the
objective function. It is trained on points where the true
objective function has been evaluated and approximates
it in the search space.

The earliest kinds of surrogate models in continuous
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black-box optimization were low-order polynomials and
artificial neural networks (ANNs), specifically multilayer
perceptron (MLP). The former have always remained a
suitable choice in situations when enough evaluations
of the true, black-box objective function are affordable
for the approximation properties of polynomials to be in
effect. On the other hand, surrogate modeling for sub-
stantially fewer evaluations of the true objective function
has undergone further development during the last two
decades. MLPs were soon replaced with another kind
of ANNs, radial basis function networks (RBFs), which
better fit the local peculiarities of an objective function
landscape. Those networks, however, have since the late
2000s been superseded by other kinds of surrogate mod-
els, primarily Gaussian processes (GPs), but also ranking
support vector machines (RSVMs) and random forests
(RFs). GPs are currently the most successful kind of sur-
rogate models for black-box optimization with a small
evaluation budget of functions with complicated multi-
modal landscapes, mainly due to their ability to estimate
the probability distribution of the true objective function
in a given point.

2. Surrogate Modeling in
Black-Box Optimization

Surrogate modeling for black-box optimization relies on
the combination and interaction of three components: a
regression model serving as a surrogate of the true, black-
box objective function, a black-box optimization method
seeking the optimum of that objective function, and a
strategy when to evaluate the true objective function and
when its surrogate model. In the context of evolutionary
black-box optimization, that strategy is usually called
evolution control [2, 3, 4, 5, 6].

The regression models that are the most suitable kind
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of surrogate models if sufficiently many evaluations of
the true, black-box objective function are affordable, are
low-order polynomials, typically quadratic functions [7,
8, 9, 10, 11]. The sufficient number of evaluations de-
pends, according to these cited research works, on the
black-box function and on the dimension. For substan-
tially fewer evaluations, the most traditional kind of sur-
rogate models were MLPs [5, 12], soon replaced with
RBFs [13, 14, 11, 15, 10], and since the late 2000s with
Gaussian processes (GPs) a.k.a. kriging [2, 4, 16, 17,
18, 19, 20, 21, 22]. Occasionally, RBFs were used as lo-
cal models in combination with GP-based global mod-
els [23]. Other kinds of surrogate models employed
during the last decade include decision trees [24], ran-
dom forests [25, 26, 24] and ranking support vector ma-
chines [27, 28]. The last one has an exceptional property
of invariance with respect to order-preserving transforma-
tions of the objective function. This is important in situ-
ations when the black-box optimization algorithm pos-
sesses such invariance, a frequently encountered prop-
erty of evolutionary algorithms. On the other hand, the
surrogate modeling methods proposed in [4] and [22] use
GPs to perform preselection based on a partial ordering
that is also invariant with respect to order-preserving
transformations. More importantly, the adaptive func-
tion value warping approach recently proposed in [29]
aims to provide such invariance to any surrogate model.

As to the black-box optimization methods, surrogate
models are most often combined with evolutionary op-
timizers. Their combinations with the most important
among them, the state-of-the-art black-box optimization
algorithm CMA-ES will be surveyed in some detail below,
in Subsection 2.1. GPs were combined also with other evo-
lutionary optimization methods [18, 30], and GPs, poly-
nomials and RBFs were combined with particle swarm
optimization [11] and with memetic optimization [14].
Moreover, GPs are used in black-box optimization in
two different ways. In connection with evolutionary and
similar black-box optimization methods, they serve as
a regression model evaluated instead of the true objec-
tive function. In addition, they also play a key role in
Bayesian optimization. That kind of optimization relies
on GP-estimates of probability distributions of values of
the true objective function. Those probability distribu-
tions enable several ways of searching for optima of that
objective function, each of them governed by a specific
acquisition function [31, 32, 33]. The surrogate-assisted
black-box optimization methods constructing several sur-
rogate models simultaneously either aggregate them to
a team [14, 11] or complement the evolution control by
a classifier selecting the most appropriate among those
models. Important examples of classifiers used in this con-
text are ANNs [34, 35, 36] and classification trees [37, 20].
Their learning can be viewed as metalearning because
it is based on metafeatures, i.e. properties empirically

characterizing the objective function landscape and the
black-box optimization method [35, 24, 38, 10]. Apart
from classification according to the appropriateness of
the surrogate model for the considered data, metalearn-
ing can also be used for regression of model error on the
combination of values of metafeatures [39].

Finally, evolution control has been since the first surro-
gate-assisted black-box optimization methods performed
basically in two ways, generation-based and individual-
based. In the generation based, all points are in some
generations evaluated with the true objective function
and in the remaining generations with the model. On the
other hand, in every generation of the individual-based
evolution control, based on the evaluation of all points
with the model, a preselection of points to be evaluated
with the true objective function is performed [5]. In most
of the surrogate-assisted methods, however, the evolution
control is specifically tailored to the respective method.

2.1. Surrogate Modeling in Connection
With the CMA-ES

Not only the two most important kinds of surrogate mod-
els, i.e. low-order polynomials [7, 8, 9] and GPs [13,
4, 17, 21, 22], but also the less common RBFs, RFs and
RSVMs [25, 27, 26, 15] are most often combined with the
Covariance matrix adaptation evolution strategy (CMA-
ES). That is not surprising because CMA-ES has already
in the 2000s become a state-of-the-art approach to single-
objective unconstrained continuous black-box optimiza-
tion [40, 41]. Occasionally, also Bayesian optimization
is combined with CMA-ES. For example in [42], opti-
mization switches from the most traditional Bayesian
optimization method, EGO (Efficient Global Optimiza-
tion) [32], to CMA-ES. Finally, CMA-ES has also been
combined with a team of surrogate models and the choice
of the most appropriate among them based on landscape
analysis [37, 20].

As to the evolution control of surrogate-assisted vari-
ants of CMA-ES, the authors of the present paper have
been involved into an investigation of the evolution con-
trol of two important polynomial-assisted CMA-ES vari-
ants lmm-CMA [7, 9] and lq-CMA-ES [8] and of two
variants of the GP-assisted variant DTS-CMA-ES [2, 19].
Noteworthy, that investigation included mutually replac-
ing the evolution control of each variant with the evolu-
tion control of the others. According to its findings, the
success of those important surrogate-assisted CMA-ES
variants is definitely not limited to using the respective
specific tailored evolution control [6].



3. New Framework for a
Surrogate-Assisted CMA-ES

The most widely used implementation of the CMA-ES
algorithm is the official code written by the author of the
algorithm Nikolaus Hansen and his team [43]. It is avail-
able in multiple programming languages, including C,
C++, Matlab, R, Python, and others. It is being actively de-
veloped, and it contains various versions and extensions
of the algorithm and extensive parameterization options.
While the C and C++ versions are the most performant
for solving real problems in practice, the most suitable
for experimentation with the algorithm itself is nowa-
days the Python version. However, the Python CMA-ES
version is still based on the original Matlab legacy code
rewritten into Python. It contains very long function def-
initions with multiple nested if statements for different
algorithm variants and parameter handling, which makes
it highly inconvenient to experiment with modifications
of the core parts of the algorithm.

Therefore we decided to base our code on a different
implementation by Jacob de Nobel and his colleagues
called Modular CMA-ES [44], which is written in a mod-
ern modular object-oriented way, allowing to create dif-
ferent variants of the CMA-ES algorithm easily.

3.1. Modular CMA-ES
The starting point of our implementation is the library
Modular CMA-ES. Each optimization technique is en-
capsulated within a modular component, providing in-
dependence and flexibility in selecting and combining
different modules. This modularity enables users to con-
struct tailored optimization strategies by combining mul-
tiple modules, thereby expanding the exploration space
and enhancing the search capabilities of the CMA-ES al-
gorithm. By integrating previously distant optimization
techniques, the library enables combinatorial exploration
of different strategies within the CMA-ES framework.
Users can effortlessly combine modules representing var-
ious optimization methods such as population sampling
techniques, surrogate modeling, elitism, step size adap-
tation, restart strategies, and constraint handling mech-
anisms. This combinatorial exploration empowers re-
searchers to exploit the strengths of different techniques,
leading to more effective and efficient optimization pro-
cesses. The Modular CMA-ES library prioritizes ease of
use and customization. Moreover, the modular architec-
ture allows for the activation and deactivation of mod-
ules during runtime, facilitating dynamic exploration and
adaptation during the optimization process.

A general scheme of an evolution strategy can be ex-
pressed in the following steps:

1. Generate a new population

2. Evaluate individuals
3. Select parents
4. Reproduce
5. Repeat

For the CMA-ES algorithm in particular, the steps are
these:

1. Sample 𝜆 points 𝑥𝑖

2. Evaluate the objective function 𝑓(𝑥𝑖)

3. Select 𝜇 lowest 𝑓(𝑥𝑖)

4. Update the population mean and covariance ma-
trix

5. Repeat until optimum reached

These steps correspond to the methods implemented
in the main class of the framework ModularCMAES as
shown in the diagram in Figure 1. It also depicts the so-
called ask-and-tell interface provided by the framework
as well.

Figure 1: UML of the main classes in the Modular CMA-ES
framework, which serves as the interface between the problem
(objective function 𝑓 ) and the solver (CMA-ES)

However, this library does not provide support for
surrogate models on its own. That is why we have been
developing the framework described in this paper.



3.2. Incorporating Gaussian Processes
We added to the Modular CMA-ES package popular co-
variance functions such as Matérn, RBF, periodic, and
many others [45]. In addition to these individual ker-
nels, the package also provides the flexibility to explore
additive and multiplicative combinations of them, cf. Sub-
section 3.3. This allows users to create more complex and
customized GP-based surrogate models by combining
multiple kernels together. Furthermore, the framework
offers a search within these kernels. A list of Gaussian
process covariance functions that are available in the
framework follows.

Included covariance functions [45]

• Polynomial Kernels
• Parabolic
• RBF
• Exponential curve
• Periodic kernel
• Matérn 1

2
, Matérn 3

2
and Matérn 5

2

Included covariance function modifications

• Learnable scaling of features
• Exponential mapping

3.3. A Systematic Approach to Combining
Incorporated Covariance Functions

The works [46] and in more detail [47] present a sys-
tematic approach to automating the construction of GP
covariance functions. Compositional kernels enable flex-
ible and automatic discovery of the appropriate structure
and complexity of a model by allowing the composition
of multiple simpler kernels. By combining these ker-
nels, the model can capture a wide range of patterns and
structures, adapting to the complexity of the underlying
data. Our framework evaluates the performance of each
kernel through cross-validated regression, ensuring its
effectiveness in capturing the underlying data patterns.
Additionally, a complexity-based penalization approach
is employed to assess the complexity of each kernel. By
incorporating these evaluation methods, the framework
enables the automatic selection of the most suitable ker-
nels for optimizing complex problems.

3.4. Included Evolution Control
Evolution control in surrogate CMA-ES involves the man-
agement of the surrogate model and the decision-making
process of how to update it. The key idea is to balance
the exploration of the search space and the exploitation
of promising regions guided by the surrogate model’s

predictions. The evolution control in surrogate CMA-ES
plays a crucial role in leveraging the surrogate model to
guide the search. We will briefly outline two different
evolution controls we implemented in the framework.

Doubly Trained S-CMA-ES

The DTS-CMA-ES published in [2, 19] is a successor
to the S-CMA-ES algorithm, which it extends with a
second round of surrogate model training. The algo-
rithm involves sampling a new population, training a
surrogate model on original-evaluated points, selecting
points based on the model’s prediction, evaluating those
points, retraining the model, and predicting fitness for
non-original evaluated points. The key features include
sampling from the CMA-ES distribution, utilizing Gaus-
sian process uncertainty estimation for point selection,
using recent points for fitness prediction, and maintain-
ing a training set near the CMA-ES distribution mean.

Each generation of this EC can be summarized in the
following steps:

1. sample a new population of size𝜆 (standard CMA-
ES offspring),

2. train the first surrogate model on the original-
evaluated points from the archive 𝐴,

3. select ⌈𝛼𝜆⌉ point(s) wrt. a criterion 𝐶 , which is
based on the first model’s prediction,

4. evaluate these point(s) with the original fitness,
5. retrain the surrogate model also using these new

point(s), and
6. predict the fitness of the non-original evaluated

points with this second model.

Kendall-𝜏 Rank Test Strategy From lq-CMA-ES

In this evolution strategy developed for the surrogate-as-
sisted CMA-ES variant LQ CMA-ES [8], which is based
on quadratic polynomials, a queue is utilized to store
all evaluated solutions for model building. During each
iteration, a limited number of the best solutions based on
the model’s performance are chosen from the population.
These selected solutions are then evaluated using the
true objective function 𝑓 , sorted, and added to the end of
the queue (with the best solution being enqueued last).
To maintain the queue’s size, the oldest elements are
dropped when the maximum capacity is reached. This
process continues until the Kendall-𝜏 rank correlation
coefficient between the rankings of function 𝑓 and the
model’s rankings exceeds a threshold of 0.85, or until
the entire population has been evaluated. At the end of
the process, the population is ranked based on surrogate
fitness unless all population members have been evalu-
ated using function 𝑓 , in which case the rankings based
on function 𝑓 are used. Through using the correlation



coefficient, this approach avoids a direct comparison of
the model and true objective function.

3.5. IOHprofiler Integration
The use of Modular CMA-ES in conjunction with IOH-
profiler [48, 49] offers a powerful approach for analyzing
and comparing iterative optimization heuristics. IOH-
profiler, a versatile tool for evaluating algorithm perfor-
mance, provides statistical assessments by analyzing the
distribution of fixed-target running time and fixed-budget
function values. By integrating modular CMA-ES with
IOHprofiler, researchers can gain insights into the algo-
rithm’s behavior, assess its adaptability, and compare its
performance against other optimization heuristics. The
combination allows for tracking the evolution of algo-
rithm parameters, facilitating the analysis, comparison,
and design of self-adaptive algorithms. With IOHpro-
filer’s experimental and post-processing capabilities, re-
searchers can generate and evaluate running time data
for benchmark problems, adjust the precision and range
of displayed data, and make informed decisions based on
the statistical evaluations produced.

4. Conclusion
This paper presented a new framework for support of the
state-of-the-art black-box optimization method CMA-ES
through GP-based modeling. It is a work-in-progress
paper: not all intended functionality described in Sec-
tion 3 has already been implemented and even some of
the implemented is not yet working properly. However,
we hope that the situation will be much better at the time
of the workshop. Still, we are not aware of any other
system that provides such a comprehensive functionality
for combining CMA-ES with Gaussian processes.

We have concentrated on Gaussian processes because
we consider them to be the most suitable kind of surro-
gate models for difficult multimodal black-box functions
if only a small number of evaluations of the true objective
function is available. In the future, however, we intend
to extend the developed framework also to other kinds of
surrogate models. Most importantly, to low-order poly-
nomials, which are a surrogate-modeling continuation
of traditional response surface models [50], and which
have always been the most successful kind of surrogate
models if a large number of evaluations of the true ob-
jective function is available or if that function is easy to
fit. In addition, we intend to include also some other of
the models recalled above in Section 2, as well as several
models that have not yet been employed for surrogate
modeling, but we believe that they are worth to be inves-
tigated to this end. For various time horizons, we think
altogether of the following models:

• Deep Gaussian processes, in which an ANN ar-
chitecture connects individual GPs, similarly to
connecting individual recurrence cells in a long
short term memory [51, 52].

• MLPs in the neural tangent kernel parametriza-
tion [53, 54, 55], which at a sufficient width have
an ability to mimic GP sampling and to replace
traditional acquisition functions in Bayesian opti-
mization. Such behaviour of this kind of ANNs is,
according to [53] and [55], a consequence of their
asymptotic properties if the number of hidden
neurons increases to infinity [56, 54, 57].

• Variational autoencoders, allowing to perform op-
timization on a latent space of a substantially
lower dimension. Such use of a low dimensional
latent space has already been investigated in the
case of Bayesian optimization [58, 59].

• The generative adversarial networks (GANs) par-
adigm has been recently shown to be applicable
to black-box optimization. More precisely, a gen-
erator has to propose samples compatible with
the distribution of low values or directly with
the distribution of the optimum of the consid-
ered black-box function, whereas one or more
discriminators have to classify samples according
to whether they are governed by that distribu-
tion [60, 61].
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