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Abstract
In this paper, we focus on the ongoing research of the Cooperation algorithm, which combines features of the established and
successful GWO and jSO optimization algorithms. We introduce a new enhancement using the stagnation parameter, which
ensures switching between the two algorithms when no further improvements are achieved during the optimization process.
We test different settings of the stagnation parameter and find its effect on the performance of the Cooperation algorithm.
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1. Introduction
In this paper, we deal with two well-established and
successful optimization algorithms, namely jSO [2] and
GWO [3]. We have introduced the earliest experiment on
the cooperation of these two methods in [1]. The results
of that experiment were promising, which motivated us
to continue our research by modifying the proposed al-
gorithm and testing it on more functions. The progress
and results of the continuing research will be presented
in this paper. First, we briefly introduce the two main al-
gorithms. Then we will introduce a new method for their
cooperation, test it on functions of CEC2014 benchmark
set [7], and evaluate the effectiveness of the proposed
approach.

2. GWO and jSO
GWO and jSO are well-known, successful, and well-
established optimization algorithms. Like many other
optimization methods, they are stochastic, heuristically
derived, and inspired by nature.

2.1. GWO
GWO or also called Grey Wolf Optimizer, was introduced
in 2014 by S. Mirjalili and his collaborators [3]. It found
inspiration in the hunting and social hierarchy of the
wolf pack. The GWO algorithm is multi-agent system.
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Individual agents represent wolves that move in the en-
vironment. The environment is represented by a real
function instead of our planet in GWO. The movement of
the agents simulates the movement of real grey wolves
in their search and hunt for prey and their cooperation
with each other.
Let us focus on the hierarchy in the wolf pack. A pair of
Alpha wolves are the highest in the hierarchy, are pack
leaders and have reproductive duties. The Betas support
their decisions and give them feedback. Deltas take care
of routine tasks - protecting the pack in case of danger,
taking care of old and sick wolves, assisting with hunting,
etc. Omegas are the lowest in the hierarchy, for example
they can eat last and other wolves can take their frustra-
tions out on them, which helps keep the pack stable.
The hierarchy is also applied in a simplified form in the
GWO algorithm. The point in the environment at which
the wolf is currently located has a concrete value com-
putable by a fitness function. The fitness function com-
putes the value of the function at the position of the agent
that corresponds to a possible solution to the optimiza-
tion problem. The 3 wolves with the best fitness function
values at the moment are labeled as Alpha, Beta, and
Delta. From the point of view of GWO, they are equal.
And all other wolves are marked as Omega.
Another important characteristic of the wolf pack that
GWO is inspired by is the method of hunting. In the real
world, wolves hunt in the following phases: searching
for prey, stalking and closing in on it, encircling it, and
once the prey is encircled, coming into attack to the weak
area. GWO distinguishes between a Searching for prey
phase, when wolves tend to move away from the best
solution found so far to the optimization problem, and
a Hunting phase, when they move closer to the "prey"
(currently best position found so far, based on positions
of agents Alpha, Beta, and Delta).
Agents, like wolves, move around the environment with
the goal of finding the best possible food. Because it
is an iterative algorithm, in each iteration each of the
wolf-agents moves to a new position. Before each move,
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agents decide whether to hunt (Hunting phase) for the
best prey found so far (it moves in direction to currently
the best result found), or to further explore the envi-
ronment (Searching for prey phase) where even more
abundant prey may be found (the truly global optimum).
Which phase each agent chooses depends on two random
vectors, 𝐴⃗ and 𝐶⃗ . Each agent has both vectors assigned
to it. The vector 𝐶⃗ has components 𝑟𝑎𝑛𝑑(0, 2), where
𝑟𝑎𝑛𝑑(0, 2) generates a random number between 0 and
2 with uniform distribution. The vector 𝐴⃗ has compo-
nents 𝑟𝑎𝑛𝑑(−1, 1)× 𝑎, where 𝑟𝑎𝑛𝑑(−1, 1) generates a
random number between −1 and 1 with uniform distri-
bution and 𝑎 = 2− (2𝑖𝑡/𝑖𝑡𝑚𝑎𝑥), where 𝑖𝑡 is the current
iteration of the algorithm and 𝑖𝑡𝑚𝑎𝑥 is the maximum
number of iterations of the algorithm, also specified as a
termination criterion. The components of both vectors
affect the movement of the agent in each dimension of
the environment. The closer the value of the component
is to 0, the more probably the wolf is to hunt in a given
iteration (chooses the Hunting phase), and the closer it
is to 2, the more likely the wolf is to explore the environ-
ment elsewhere (chooses the Searching for prey phase).
Vector 𝐴⃗, unlike vector 𝐶⃗ , depends on the current itera-
tion of the algorithm and ensures that wolves explore the
environment more in the initial iterations (with higher
probability) and hunt towards the end of the algorithm.
The vector 𝐶⃗ is purely random and simulates various
obstacles in the environment, analogous to nature. As a
result, agents tend to choose both phases independently
of the iteration of the algorithm. This is needed to reduce
the probability of converging to a local optimum instead
of finding a global one in later iterations.
Now, we put both vectors into the context of calculat-
ing the new wolf-agent position. This is calculated as
follows:

𝑋𝑗
⃗ (𝑖𝑡+ 1) =

𝑋1
⃗ +𝑋2

⃗ +𝑋3
⃗

3
,

where 𝑋𝑗 is an agent with index 𝑗, 𝑖𝑡 is the current
iteration of the algorithm, and 𝑋1

⃗ , 𝑋2
⃗ , and 𝑋3

⃗ represent
potential new positions of the agent, which are calculated
based on the positions of the three best Alpha, Beta, and
Delta wolves as follows:

𝑋1
⃗ = 𝑋𝛼

⃗ (𝑖𝑡)−𝐴1
⃗ ×𝐷𝛼

⃗ ,

𝑋2
⃗ = 𝑋𝛽

⃗ (𝑖𝑡)−𝐴2
⃗ ×𝐷𝛽

⃗ ,

𝑋3
⃗ = 𝑋𝛿

⃗ (𝑖𝑡)−𝐴3
⃗ ×𝐷𝛿

⃗ ,

𝑋𝛼
⃗ (𝑖𝑡), 𝑋𝛽

⃗ (𝑖𝑡), and 𝑋𝛿
⃗ (𝑖𝑡) are the positions of agents

Alpha, Beta, and Delta in the current iteration 𝑖𝑡 of the
algorithm, 𝐴1

⃗ , 𝐴2
⃗ , and 𝐴3

⃗ are three different instantia-
tions of the vector 𝐴⃗, for each of the agents Alpha, Beta,

and Delta, and 𝐷𝛼
⃗ , 𝐷𝛽

⃗ , and 𝐷𝛿
⃗ represent the distance of

the agent from the prey, but due to the effect of random-
ness of instances of vector 𝐶⃗ , they are an approximate
estimates, and are calculated as follows:

𝐷𝛼
⃗ = |𝐶1

⃗ ×𝑋𝛼
⃗ (𝑖𝑡)−𝑋𝑗

⃗ (𝑖𝑡)|,

𝐷𝛽
⃗ = |𝐶2

⃗ ×𝑋𝛽
⃗ (𝑖𝑡)−𝑋𝑗

⃗ (𝑖𝑡)|,

𝐷𝛿
⃗ = |𝐶3

⃗ ×𝑋𝛿
⃗ (𝑖𝑡)−𝑋𝑗

⃗ (𝑖𝑡)|,

where 𝐶1
⃗ , 𝐶2

⃗ , and 𝐶3
⃗ are three different instances of the

vector 𝐶⃗ , for each of the agents Alpha, Beta, and Delta,
and 𝑋𝑗

⃗ (𝑖𝑡) is the position of the wolf in the current
iteration of the algorithm.
The symbol × in the calculations of 𝑋1

⃗ , 𝑋2
⃗ , and 𝑋3

⃗

and 𝐷𝛼
⃗ , 𝐷𝛽

⃗ , and 𝐷𝛿
⃗ represents multidimensional vector

multiplication by components. For example, for 𝐷 =
2, the calculation is performed as follows: (𝑥1, 𝑦1) *
(𝑥2, 𝑦2) = (𝑥1 * 𝑥2, 𝑦1 * 𝑦2).
Having described all the principles, we now describe the
sequence of steps of the algorithm. The input of GWO is
the environment definition, in our case we use the CEC
2014 functions. The next input is the number of agents
(pack size). The next and last input is the termination
criterion, which can be defined by the maximum number
of iterations, or alternatively by the maximum running
time of the algorithm in the number of computations of
the objective function value.
The pseudocode of the algorithm is as follows:

1. in each position of the environment where the
agent is located, the fitness function is calculated,

2. based on fitness values, agents are ranked in a
hierarchy: the agent with the best value becomes
Alpha, the second best Beta, the third best Delta,
and all others Omega,

3. vectors 𝐴⃗ and 𝐶⃗ with random components are
generated for each agent 𝑗,

4. it calculates new position of each wolf 𝑋𝑗
⃗ in

search space,
5. finally, the algorithm checks to verify that the

termination criterion - usually the expiration of
the maximum number of iterations - has already
been met; if so, the algorithm ends; if not, the
algorithm continues with the first step.

2.2. jSO
The jSO algorithm is a successful population-based op-
timization method that is an improved version of the
iL-SHADE algorithm [5] derived from differential evo-
lution DE [4]. Its improved strategy uses the weighted
mutation current-to-pbest/1 /bin and other tools like an
archive to store solutions which were rewritten in pop-
ulation by better points and circle memory for storing



parameters of distributions for generating new values of
DE parameters computed based on successful values of
these parameters.
An equally interesting feature of jSO is that its population
size is linearly reduced like in its predecessors L-SHADE
[6] and iL-SHADE [5]. Behind the success of jSO is also
the appropriate setting of its parameters. We describe
these principles in detail in the following text.
The jSO is an evolutionary algorithm that works with a
population that is evolving. It is an adaptive variant of
the Diferential Evolution (DE) algorithm. The algorithm
works with a population of points that evolve (move to
different positions in the search space) by several oper-
ations, mutation, crossover, and selection. It uses the
already mentioned current-to-pbest-w/1 strategy as a mu-
tation strategy for selecting a so-called trial point, which
is a potential new point for the next generation. The
advantage of this strategy is that it adaptively controls
its parameters and that it uses the archive. Thanks to
this mutation strategy, the algorithm selects one point
from the top few in the population to work with it and
also can use a point from the archive. The formula is as
follows:

𝑣𝑖,𝐺⃗ = 𝑥𝑖,𝐺⃗ +𝐹𝑤(𝑥𝑝best,𝐺⃗ −𝑥𝑖,𝐺⃗ )+𝐹𝑖(𝑥𝑟1,𝐺⃗ −𝑥𝑟2,𝐺⃗ ),

where 𝑥𝑖,𝐺⃗ is the 𝑖−𝑡ℎ point of generation 𝐺. 𝐹𝑤 , 𝐹𝑖 are
the parameters of the point 𝑥𝑖⃗ from interval [0, 1] that
determines the weights of the differences in the muta-
tion, 𝑥𝑟1⃗ , 𝑥𝑟2⃗ are two different randomly selected points,
the first one is randomly selected from the population
𝑃 in generation 𝐺, and the second one is randomly se-
lected from the union of population and the archive, and
𝑥𝑝best,𝐺⃗ is one of the 𝑁𝑃 ×𝑝 best points in generation 𝐺
(randomly selected), where 𝑁𝑃 is the size of population
and 𝑝 ∈ [0, 1] is a dynamic parameter randomly affecting
the number of points from which one is selected for this
mutation (this helps to balance between exploitation and
exploration phases).
The strategy current-to-pbest-w/1/bin additionally in-
cludes the binomial crossover operator. The parameter
𝐶𝑅 of this operator is adapted randomly. It is the proba-
bility that a component of the mutant 𝑣𝑖,𝐺⃗ will be used
in the trial point. 𝐶𝑅 is a random number with normal
distribution whose first parameter (mean of the distri-
bution) depends on successful values of 𝐶𝑅 used before.
Each component from 𝑣𝑖,𝐺⃗ is written into the trial point
with probability 𝐶𝑅, when the component does not write,
relevant component of original 𝑥𝑖,𝐺⃗ is used. If the trial
point is selected as a new point for the next generation,
the original 𝑥𝑖,𝐺⃗ is stored in archive 𝐴.
More information about this mutation strategy can be
found in [2].
The algorithm has a lot of input parameters that need
to be set during the initialization phase. First, an ini-
tial generation 𝑃0 of size NP is randomly generated, i.e.

𝑃0 = (𝑥1⃗, 𝑥2⃗, ..., 𝑥NP⃗ ). At this point, the archive 𝐴 is
empty, so 𝐴 = ∅. Also, for each point in the initial popu-
lation 𝑃0, the value of the objective function is calculated.
Finally, the default values of the parameter settings are
set during initialization.
As another tool, the jSO algorithm uses two circle mem-
ories: 𝑀𝐹 for storing the parameters of Cauchy distribu-
tion for generating values of mutation parameter 𝐹 and
𝑀CR for storing the parameters of normal distribution
for generating values of crossover parameter 𝐶𝑅. The
size of these circle memories is 𝐻 = 5 and they have all
values set to 0.5 when the algorithm is initialized.
The jSO algorithm works as described in the following
pseudocode. After initializing the population points and
the parameters listed above, the while loop follows these
steps:

1. For each point generate a random number 𝑟 in the
range 1, 2..., 𝐻 , where 𝐻 is the size of the circle
memory. If 𝑟 = 𝐻 , set both 𝑀CR𝑟 and 𝑀𝐹𝑟 to
0.9. If 𝑀CR𝑟 is not greater than or equal to 0, set
𝐶𝑅 to 0. And finally, if 𝑀CR𝑟 > 0, generate 𝐶𝑅
using normal distribution 𝑁(𝑀𝐹𝑟 , 0.1).

2. For each point, generate parameter 𝐹 using
Cauchy distribution 𝐶(𝑀𝐹𝑟 , 0.1).

3. If the current number of evaluations is less than
quarter of the maximum number of evaluations,
the probability 𝐶𝑅 is limited to 𝑚𝑎𝑥(𝐶𝑅, 0.7)
for the point, and if the number of evaluations is
less than half, 𝐶𝑅 is limited to 𝑚𝑎𝑥(𝐶𝑅, 0.6) for
the point.

4. If the current number of evaluations is less than
six tenths of the maximum number of evalua-
tions, the new value of parameter 𝐹 is limited to
𝑚𝑎𝑥(𝐹, 0.7) for the point.

5. For each point 𝑥⃗ from population, a new trial
point 𝑦⃗ is created using DE/current-to-pbest-
w/1/bin strategy, and then the value of the ob-
jective function 𝑓 in 𝑦⃗ is computed.

6. If 𝑓(𝑦⃗) is better than 𝑓(𝑥⃗), update the point 𝑥⃗ by
𝑦⃗ for further evolution. Otherwise, discard the
trial point 𝑦⃗ and keep the original 𝑥⃗.

7. If point 𝑥⃗ is updated (by trial point 𝑦⃗ in the pre-
vious step), put it in the archive 𝐴. If necessary,
shrink archive 𝐴. Also insert value of parameter
𝐶𝑅 into 𝑆𝐶𝑅 and 𝐹 into 𝑆𝐹 .

8. After doing steps 1-7 for all points in population
calculate the new value of the first parameter for
both distributions used for generating 𝐹 and 𝐶𝑅
from 𝑆𝐹 and 𝑆𝐶𝑅. Then, put them into 𝑀𝐹𝑘 and
𝑀CR𝑘 .

9. Increase the pointer 𝑘 in the circular memory by
1, and if it is greater than 𝐻 , set 𝑘 = 1 again.

10. Apply linear population size reduction mecha-
nism and update parameter 𝑝 for mutation
current-to-pbest-w/1.



11. If the termination criterion is not met, the com-
putation continues by repeating the cycle for the
new generation 𝐺 = 𝐺 + 1. Otherwise, the
computation terminates and the result is the best
point in population 𝑃 at current generation 𝐺.

3. Cooperation algorithm
As we have already mentioned, both algorithms GWO
and jSO are very useful for solving optimization problems
and provide very good results in solving them. According
to the No free Lunch theorem [8], it is not possible to say
which one is better, each is suitable for different types of
tasks, which is confirmed also by our testing results on
CEC 2014 functions. For some functions, GWO provides
better results, while for others jSO provides better results.
The results of both algorithms are shown in Tables 1 and
2. We wondered how to take advantages of both of them.
And so we introduced the first version of the Cooper-
ation algorithm using the findings of GWO and jSO in
[1]. The principle of Cooperation is based on switching
both GWO and jSO algorithms. Already in this first early
version, which we tested only on a few functions (opti-
mization problems), the results were promising. Based
on the results, we proposed further modifications to the
Cooperation and tested the improved algorithm on all
thirty CEC 2014 functions [7] at two levels of dimension.
In this section, we describe the principles of its working
and present new adjustments. In the following sections,
we evaluate the performance of the new proposed Coop-
eration in relation to the testing results.
Let us focus on the principles of the Cooperation algo-
rithm first. We run one of the original algorithms (GWO
or jSO) for a limited time, let it solve the problem for
some time, and pass its result as input to the second al-
gorithm (which has not yet run), which we also run for
a limited time to solve the problem for another piece of
time.
This simple idea allows us to use all advantages of both
algorithms, but in fact it is a bit more complicated. Both
algorithms work with different population sizes (number
of agents in the case of GWO and number of points in
population in the case of jSO). To simplify the following
text we will use a single term - a "point" for both algo-
rithms, and in GWO, we can imagine by the term "point"
the position where the agent is located.
In GWO, we use the usual number of points (agents) -
which is 6. This number remains constant during the
whole calculation of the algorithm. While in the jSO the
number of points is dynamically changed during the op-
timization, the population size decreases linearly.
First, we describe the switching of the GWO algorithm
to jSO. The output points of the GWO algorithm are
read into the jSO algorithm and they replace the ran-

dom points of the jSO algorithm except for the top three,
which are labeled as non-rewritable and are kept as repre-
sentatives of the current best solution. Now, we describe
the switching of the jSO algorithm to GWO. The GWO
algorithm reads the 6 best points (generally the number
corresponding to the size of its population, 𝑛) from the
jSO output and replaces all existing points with them. If
the output of jSO (the population is continuously decreas-
ing) contains fewer points than need to be replaced in
GWO when the algorithm is switched (i.e. the jSO popu-
lation is smaller than the GWO population), then only the
maximum possible number of points from jSO is replaced
in the GWO population. Which points are replaced in
the GWO population is chosen randomly, however the
best point in the GWO (Alpha agent position) is always
kept.
The next issue is how to properly determine after what
time the algorithms should switch to another one. In
previous research, we changed algorithms always after a
static number of evaluations. Each algorithm participated
equally in the solution. That is what we improved, and
for this research, we decided to choose a new strategy
of switching between both algorithms after a constant
number of generations/iterations when the algorithm
is already stagnant and no further improvements are
achieved. Specifically, we test the algorithms to switch
after 30, 60, 90, and 120 iterations (for GWO) or genera-
tions (for jSO) after it starts to stagnate. This allows us
to find the optimal running time of the algorithms and
outline a way for further research, in which we try to
change the running time dynamically after stagnation.
When the algorithm stagnates, before passing the popula-
tion to the second algorithm, we bring the configuration
to a state just before stagnation. The positions of the
agents (for GWO) or points (for jSO) at this moment are
passed to the second algorithm as input. This improve-
ment ensures that the second algorithm starts from a
better starting position, reducing the probability of rapid
stagnation immediately after execution.
Which algorithm starts the computation first is randomly
selected. Each of the algorithms has specific advantages,
and by randomly selecting the first one to run, we ensure
independence of their characteristics.
The flow of the Cooperation algorithm is shown in Figure
1 and proceeds as follows: first, an initial population of
points (or agent positions) is randomly generated for the
first algorithm, which is randomly selected from GWO
and jSO. Then, the following steps are performed in a cy-
cle until the maximum number of evaluations is reached:

1. If the GWO algorithm is selected, let it run until
there is no further improvement in the results
and thus the algorithm stagnates for more than 𝑙
iterations, where 𝑙 in our case is set to 30, 60, 90,
or 120.
Once the GWO run is interrupted due to stagna-



Figure 1: Flow chart showing how the GWO and jSO algo-
rithms switch during Cooperation.

tion, bring the configuration to a state just before
stagnation. The 𝑛 random points in the jSO input
are overwritten by the 𝑛 points from the GWO,
where 𝑛 is the population size of the GWO.
However, the best 3 points in jSO population can-
not be overwritten.

2. If the jSO algorithm is selected, let it run until
there is no further improvement in the results
and thus the algorithm stagnates for more than 𝑙
generations, where 𝑙 in our case is 30, 60, 90, or
120.
Once the jSO run is interrupted due to stagnation,
bring the configuration to a state just before stag-
nation.
The 𝑛 best jSO points (𝑛 is the population size
of the GWO) replace each of the original GWO
points and are used as its input.

4. Test results
The CEC2014 competition introduced benchmarking of
optimization algorithms on a set of 30 problems with
real function. They provide us an opportunity to test the
effectiveness of our optimization algorithms on a set of
problems with real function [7].
In this section, we discuss the results of the presented Co-
operation algorithm, which was tested on the CEC2014
function set, and its performance was compared with
the original GWO and jSO algorithms. We will examine
how these two algorithms solved the optimization prob-
lems and compare their results to evaluate the efficiency
of the new algorithm. The results provide insights into
the strengths and weaknesses of these optimization algo-
rithms in direct comparison.
The CEC2014 functions represent the search space for

the used optimization algorithms (jSO, GWO and Coop-
eration) and are defined in multiple dimensions, where
the number of dimensions 𝐷 is chosen by us. We tested
a total of 6 algorithms: GWO, jSO, and Cooperation with
the stagnation parameter set to 30, 60, 90, and 120. Test-
ing was performed at two levels of dimension, 𝐷 = 10
and 𝐷 = 30, and each configuration was run 15 times
for each of the 30 test functions.
In this section, we focus on the results of testing the
Cooperation algorithm with different settings of the stag-
nation parameter 𝑙 (𝑙 = 30, 𝑙 = 60, 𝑙 = 90, and 𝑙 = 120),
compare it with the original algorithms, and derive con-
clusions.

4.1. Test results in dimension 𝐷 = 10

The results of testing the algorithms in dimension 𝐷 =
10 on all CEC2014 problems (functions) are shown in
Table 1. In the columns GWO and jSO, we can see the
median results of 15 runs of the original algorithms with
these names. The best among these two medians is shown
in bold. The fact that jSO gives better results in the medi-
ans for all 30 functions is interesting. In the first iterations
of the computation, the GWO results seem promising, but
it converges too early and if we let both algorithms run
long enough (in our case, the total amount of allowed
function iteration (in GWO) or evaluations (in jSO) is
10000×𝐷 for each dimension 𝐷), jSO finds a more ac-
curate result (closer to the optimum) in the median of 15
runs.
The following columns show the results of the Coopera-
tion algorithm with different settings of the stagnation
parameter 𝑙, which is given in corresponding column.
For example, Coop 30 means that a Cooperation algo-
rithm with stagnation parameter 𝑙 = 30 was used, and
similarly for the other columns of the table. Each value
recorded in that table is the median of 15 results of 15
runs of respective algorithm (or setting of Cooperation
algorithm) for specific problem (function). Value of the
median which is better than values of the median of both
original algorithms GWO and jSO is highlighted in bold.
From the results, it can be observed that as the stagna-
tion parameter 𝑙 increases, the number of cases where
the Cooperation algorithm brings improvement also in-
creases, initially significantly, but only up to a certain
value, specifically 𝑙 = 90. Increasing it to 𝑙 = 120 no
longer brings improvement. In fact, there is a little degra-
dation. This demonstrates that stagnation is a signifi-
cant parameter for achieving improvement and should
be chosen carefully. Experiments involving dynamic ad-
justment of the stagnation parameter have even greater
potential for achieving better results than trying to find
the optimal stagnation setting. We plan to focus on this
aspect in the future.
The most interesting fact, as shown by the results of this



experiment, is that even though jSO outperforms GWO in
all cases, their Cooperation brings a noticeable improve-
ment. The GWO algorithm supports faster convergence,
while jSO contributes to finding a more accurate opti-
mum.

4.2. Test results in dimension 𝐷 = 30

The results of testing the algorithms in dimension 𝐷 =
30 on all CEC2014 functions are shown in Table 2. The
structure of the table is the same as described in the sec-
tion for summarizing the results in dimension 𝐷 = 10.
And again, the medians are displayed and compared.
In contrast to the 𝐷 = 10 dimension, GWO yields bet-
ter results in the 𝐷 = 30 dimension. Out of a total of
30 functions, GWO outperforms jSO in 3 cases (median
of results is lower). While this is still not a significant
number, it suggests that in higher dimensions (𝐷 = 50,
𝐷 = 100, etc.), GWO may still be more beneficial. We
plan to verify this hypothesis in future research.
The results obtained in the 𝐷 = 30 dimension provide
further confirmation that increasing the stagnation pa-
rameter leads to significant improvements in Coopera-
tion, particularly in the initial stages (improvement be-
tween 𝑙 = 30 and 𝑙 = 60 is significant), however, in
𝑙 = 90 and 𝑙 = 120, the improvements become either
marginal or non-existent. Compared to the results in
𝐷 = 10, there is not as much improvement in 𝐷 = 30,
but the general trend of improvement is the same.

4.3. Summary of results in dimensions
𝐷 = 10 and 𝐷 = 30

In Table 3, we can see a summary of the results of the
research.
In the first table section, we can observe the outcomes
of the original GWO and jSO algorithms, indicating the
number of functions for which they provided better re-
sults. We can compare the results in both 𝐷 = 10 and
𝐷 = 30 and the better value is highlighted in bold.
The subsequent table section displays the frequencies
at which the Cooperation algorithm, with varying stag-
nation settings, outperformed the original algorithms.
Again, we can compare the results in both 𝐷 = 10 and
𝐷 = 30 and the better value is highlighted in bold.
The next table section displays the frequencies at which
the Cooperation algorithm, with varying stagnation set-
tings, provided worse results than the better of the two
original algorithms.
And the last table section illustrates the instances in
which the Cooperation algorithm, with various stagna-
tion settings, yielded the same result as the better of the
two original algorithms.
Let us note that at stagnation parameter 𝑙 = 30, not

only the Cooperation algorithm does fail to bring signifi-
cant improvement, but in most cases, the results are even
worse compared to the original algorithms in both tested
dimensions, 𝐷 = 10 and 𝐷 = 30.
When setting the stagnation parameter to 𝑙 = 60, the
situation noticeably improves, but the results are still
worse for more than half of the tested functions in both
dimensions. In contrast, at stagnation parameter 𝑙 = 90,
the results become quite satisfactory, with more than
one-third of the cases outperforming the original func-
tions, and less than one-third of the cases yielding worse
results. The parameter 𝑙 = 120 does not bring any fur-
ther significant improvement, but the results do not differ
much from 𝑙 = 90 and are still more than satisfactory.
Recall that all compared values are medians of 15 algo-
rithm runs. As we can see, the stagnation parameter 𝑙
significantly affects the performance of the Cooperation
algorithm, and the best setting is somewhere between
𝑙 = 90 and 𝑙 = 120. This is the same in both tested
dimensions 𝐷 = 10 and 𝐷 = 30.
We believe that the reasons for this behavior are as fol-
lows. When the stagnation parameter 𝑙 is set low (𝑙 = 30),
the algorithms switch too early. The algorithm switch oc-
curs before the algorithm can search a sufficient number
of points and "focus" on the area of search space closest
to the current optimum. In contrast, when the stagnation
parameter 𝑙 is set high (𝑙 = 120), the algorithm runs too
long when it is no longer improving, wasting time for
the next algorithm that could have already been run.
In future, we expect to achieve even better results by
using an adaptive parameter dependent on the computa-
tion runtime separately for GWO and jSO. This is how
we plan to get the most efficiency out of both algorithms.

5. Conclusion
In this paper, we investigated an algorithm we devel-
oped, named Cooperation, which combines two well-
established and successful optimization algorithms, GWO
and jSO. Each of these algorithms is executed for a pe-
riod of time, determined by a stagnation state, where no
further improvement is observed. We tested different
settings of the stagnation parameter and identified its
significant impact on the overall performance of the new
algorithm, independent of the problem dimension. The
results are promising because we found a suitable setting
for the stagnation parameter. However, our future plans
include achieving even better results by further adjusting
not only the stagnation parameter.
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Median results of tested algorithms, dimension 𝐷 = 30
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Table 3
Summary of our experiments

Median comparison: D=10 D=30
Number of 𝑗𝑆𝑂 wins 30 27
Number of 𝐺𝑊𝑂 wins 0 3
Number of times Coop 30 is better than the winner 2 1
Number of times Coop 60 is better than the winner 3 7
Number of times Coop 90 is better than the winner 11 7
Number of times Coop 120 is better than the winner 10 8

Number of times Coop 30 is worse than the winner 21 21
Number of times Coop 60 is worse than the winner 18 15
Number of times Coop 90 is worse than the winner 7 15
Number of times Coop 120 is worse than the winner 9 13

Number of times Coop 30 is same as the winner 7 8
Number of times Coop 60 is same as the winner 9 8
Number of times Coop 90 is same as the winner 12 8
Number of times Coop 120 is same as the winner 11 9
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