
Which Graph Properties Affect GNN Performance for a
Given Downstream Task?
Pavel Procházka1,∗, Michal Mareš1,2 and Marek Dědič1,3

1Cisco Systems, Inc., Karlovo náměstí 10, Prague, Czech Republic
2Czech Technical University in Prague, Technická 2, Prague, Czech Republic
3Czech Technical University in Prague, Trojanova 13, Prague, Czech Republic

Abstract
Machine learning algorithms on graphs, in particular graph neural networks, became a popular framework for solving various
tasks on graphs, attracting significant interest in the research community in recent years. As presented, however, these
algorithms usually assume that the input graph is fixed and well-defined and do not consider the problem of constructing the
graph for a given practical task. This work proposes a methodical way of linking graph properties with the performance of
a GNN solving a given task on such graph via a surrogate regression model that is trained to predict the performance of
the GNN from the properties of the graph dataset. Furthermore, the GNN model hyper-parameters are optionally added
as additional features of the surrogate model and it is shown that this technique can be used to solve the practical problem
of hyper-parameter tuning. We experimentally evaluate the importance of graph properties as features of the surrogate
model with regards to the node classification task for several common graph datasets and discuss how these results can be
used for graph composition tailored to the given task. Finally, our experiments indicate a significant gain in the proposed
hyper-parameter tuning method compared to the reference grid-search method.

Keywords
Graph neural networks & Model performance prediction & Hyper-parameter tuning & Node classification

1. Introduction
Across awide variety of applications and domains, graphs
emerge as a ubiquitous way of organizing data. Conse-
quently, machine learning on graphs has, in recent years,
seen an explosion in popularity, breadth and depth of
both research and applications. At the same time, the
underlying graph topology has, until recent works [1, 2],
received much less attention. Specifically, the organi-
zation of data points into nodes and edges of a graph
is usually assumed to be given, unambiguous, and well-
defined, especially in works utilizing common, publicly
available graph datasets that have a pre-defined topology.
While in the research environment this may be consid-
ered beneficial in simplifying the comparison of various
graph-based methods, in many practical applications, the
mapping from data to graphs is a non-trivial and open
problem. An example of such an application domain is
computer network security, where a graph representa-
tion of network telemetry may contain entities of various
types (users, servers, IP addresses), the edges may repre-
sent either a physical connection between two entities

ITAT’23: Information technologies – Applications and Theory, Septem-
ber 22–26, 2023, Tatranské Matliare, Slovakia
∗Corresponding author
Envelope-Open paprocha@cisco.com (P. Procházka); mimares@cisco.com
(M. Mareš); marek@dedic.eu (M. Dědič)
GLOBE https://dedic.eu (M. Dědič)
Orcid 0000-0003-1021-8428 (M. Dědič)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

or a more general similarity or distance measure, both
the nodes and edges may have associated with them ad-
ditional features, the full dataset may be prohibitively
large to efficiently process and some data points may not
be available across all entities.

In our work, we investigate the problem of creating a
graph representation of data such that graph neural net-
works (GNNs) may be used to effectively and efficiently
solve a given task on the data (e.g., classifying agents in
a computer network as infected by malware or clean).
Given the complex and multi-faceted nature of this prob-
lem, we limit the reported research to the sub-problem of
measuring and predicting the suitability of a given graph
representation to a given task.

1.1. Problem formulation
To solve the problem of predicting the suitability of a
given graph dataset for a particular task, we first rep-
resent the graph dataset by its properties (Section 2.2)
that are aggregate values representing the whole graph
dataset instead of individual nodes or edges. A GNN
model [3] is trained to solve the task, and its performance
is measured using several metrics. The main aim of this
work is to extract information about the usefulness of
individual graph properties from a meta-model that is
trained on the graph dataset properties to predict the
GNN performance represented by the performance met-
rics. In the reported research, we propose and evaluate
such a meta-model on publicly available datasets, how-

mailto:paprocha@cisco.com
mailto:mimares@cisco.com
mailto:marek@dedic.eu
https://dedic.eu
https://orcid.org/0000-0003-1021-8428
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

ever, it forms a useful and general tool for evaluating the
suitability of graph datasets to tasks on them, which is a
basic prerequisite to solving the more general problem
of constructing an advantageous graph representation.

1.2. Related work
Machine learning model performance prediction is com-
monly used to avoid the expensive evaluation of the orig-
inal model on the test set [4]. However, the problem of
trust in these meta-models limits their applicability in
real-world scenarios. To address this problem, the au-
thors in [5] propose attaching prediction uncertainty to
the meta-models and suggest a method for evaluating
this uncertainty. In [6], the authors observe that state-
of-the-art shift detection metrics (referred to as graph
properties in our paper) do not generalize well across
datasets, and they propose incorporating error predic-
tors. In this paper, we address both the trust and gen-
eralization problems. The novelty of this paper lies in
our use of the meta-model: firstly, for interpreting the
graph properties that drive the model’s performance, and
secondly, for hyper-parameter tuning. To the best of our
knowledge, there is no existing use of the meta-model
for these purposes in the current state of the art.
Graph theory encompasses various numeric graph

properties, ranging from basic ones such as the num-
ber of nodes, to more sophisticated metrics like graph
curvature [1]. In this paper, we select a subset of these
metrics, listed in Table 1, as features for the meta-model.
Graph Neural Networks (GNNs) [3] achieve superior

performance on graph datasets. However, this perfor-
mance often comes at the cost of high computational
resources required for training. Additionally, the large
configuration space of these models necessitates non-
trivial resources for fine-tuning. Our research aims to
reduce the required computational resources in two ways.
Firstly, we attempt to construct a graph dataset from the
source data with favorable properties for GNN execution.
Secondly, the proposed hyper-parameter search aims to
reduce computational resources during fine-tuning.
Shapley Additive Explanations (SHAP) [7] is a frame-

work for explaining predictions of any model based on
coalition game theory concepts introduced in [8]. An
additional benefit of this framework is its ability to see
whether low or high values of the input variables con-
tribute to low/high predictions of themodel. In this paper,
we adopt the SHAP framework for model explanation.

1.3. Contribution
• We propose a method to identify important graph
dataset properties using the meta-model.

• We present a hyper-parameter tuning method
based on the meta-model.

• We experimentally verify the generalization ca-
pability of the meta-model.

• We evaluate the importance of graph properties
and their impact on GNN performance.

• We experimentally validate the hyper-parameter
tuning approach with very promising results.

2. Graph representation for GNN
performance prediction

2.1. Notation and definitions
Consider an undirected graph 𝐺 = (𝑉 , 𝐸, X) with nodes
𝑉, edges 𝐸 ⊆ 𝑉 2, and real-valued node features X ∈ ℝ𝑛×𝑑,
where 𝑛 = |𝑉|. In this work, we limit the definition of a
graph task to be one of transductive node classification,
however, the method as defined is general and can be
applied to other tasks such as inductive node classification
or link prediction. In the transductive setting, a task on
graph 𝐺 can be viewed as an assignment of node labels
𝑌 (belonging to one of 𝑁𝐶 classes) to the graph. Using a
modelM, a prediction 𝑌̂ = M (𝐺) is obtained for the task,
and compared to the ground truth using a performance
metric 𝜇(𝑌̂ , 𝑌).

2.2. Graph representation
Our goal is to find a set of graph dataset propertiesP𝑖 such
that those properties would only keep global-level infor-
mation about the graph 𝐺 and at the same time provide
as much information as possible about the performance
𝜇 obtainable on 𝐺.
We offer a range of graph dataset properties (see Ta-

ble 1). We categorize these properties into three types
of information. Specifically, these properties can con-
vey information regarding: 1) node attributes, 2) graph
structure, 3) specified task, or any combination thereof
(awareness in Table 1).

Apart from basic graph properties and well-established
metrics on graphs, we consider some additional graph
properties for better description. In order to define these
additional non-standard properties formally, we denote
𝑉 𝑐 ⊆ 𝑉 the set of nodes belonging to the class 𝑐 and |𝑉 𝑐|
its size. The mean attribute vector over the class 𝑐 is then
given as ̄𝑥𝑐 =

1
|𝑉 𝑐| ∑𝑖∈𝑉 𝑐 𝑥𝑖, where 𝑥𝑖 denotes the attribute

vector of the corresponding node 𝑖. Finally, we define a
mean squared distance between attributes in class 𝑐1 and
mean of attributes in 𝑐2 (attribute similarity) as

𝐶𝐴(𝑐1, 𝑐2) =
1

|𝑉 𝑐1 |
∑
𝑖∈𝑉 𝑐1

(𝑥𝑖 − ̄𝑥𝑐2)
2. (1)

This asymmetric quantity is used to express similarity
between attributes based on the task (see Table 1).

GraphDataset Property Awareness Description / Definition
Task Structure Attributes

Node count No No No Number of nodes – dataset size.
Class ratio Yes No No Ratio between the number of positive and negative nodes.
Number of components No Yes No Number of connected components of the graph.
Average node degree No Yes No Average node degree in the graph.
Global assortativity No Yes No Measure of the tendency of nodes to connect with other

similar nodes, rather than dissimilar nodes [9].
Attribute similarity No Yes Yes Average cosine similarity of attributes across all edges in

the graph.
Attribute homophily Yes Yes No Measure of how clustered together are nodes with similar

attributes [10].
Edge homophily Yes Yes No Fraction of edges connecting nodes of the same class [11].
Node homophily Yes Yes No Fraction of node neighbours having the same class as the

node in question, averaged over all nodes [12].
Class homophily Yes Yes No A modification of node homophily that is invariant to the

number of classes [13].
Ratio of positive nodes
of degree > 1

Yes Yes No Ratio of positive nodes with degree greater than one.

Fraction of positive
nodes of degree > 2

Yes Yes No The fraction of positive nodes with degree greater than
two, out of those with degree greater than one.

Average positive node
degree

Yes Yes No Average node degree in the sub-graph restricted to nodes
from 𝑉 1.

Relative presence of
positive edges

Yes Yes No Number of edges connecting positive nodes, divided by
the number of edges that would be present in a theoretical
clique constructed of all positive nodes.

Positive attribute simi-
larity

Yes No Yes 𝐶𝐴(1, 1) – see Equation (1).

Positive to negative at-
tribute similarity

Yes No Yes 𝐶𝐴(1, 0)/𝐶𝐴(1, 1) – see Equation (1).

Negative to positive at-
tribute similarity

Yes No Yes 𝐶𝐴(0, 1)/𝐶𝐴(1, 1) – see Equation (1).

Table 1
Graph dataset properties considered for the meta-model training.

2.3. GNN performance prediction
Based on the graph dataset properties, we consider a
meta-model Mmeta, which makes a prediction 𝜇̂ of the
true performance 𝜇 based on the properties {P𝑖}.

2.4. Multiple binary classification
To train and evaluate the meta-model, a sufficient dataset
is needed. Given that the individual points in this dataset
themselves correspond to graph-task pairs and models
trained on them, obtaining such a dataset for the meta-
model is computationally expensive. To aid with its cre-
ation, only binary classification tasks were considered,
where for datasets with more than 2 classes, multiple
tasks were constructed by taking one class as positive
and other classes as negative, for each class in the original
dataset. This procedure has its motivation in applications,
where e.g. in the domain of computer security, a classifier
distinguishing each particular kind of malware is a useful
addition to a general malware classifier.

2.5. Measuring graph property usefulness
We train a regression meta-model on a dataset consisting
of graph properties (features of the meta-model) and the
corresponding GNN performance metric (label for the
meta-model). If the regression model generalizes well,
we consider the graph properties that are important for the
meta-model prediction to also be important for the GNN
performance on a graph with the given properties.
By evaluating the meta-model’s performance on the

test set and determining the important features of the
meta-model (e.g., using SHAP), we propose applying the
meta-model explanation to determine the impact of indi-
vidual graph properties on the GNN performance. The va-
lidity of this claim is assessed through the meta-model’s
performance on the test set.

2.6. Hyper-parameter optimization
In order to apply the meta-model to hyper-parameter
optimization, the hyper-parameter values are added to

[0.2, 0.8][0.1, 0.9]

[0.6, 0.4]

[0.7, 0.3]

[0.9, 0.1][0.8, 0.2]

[0.1, 0.9][0.1, 0.9]

[0.5, 0.5]

[0.6, 0.4]

[0.7, 0.3][0.7, 0.3]

[0.6, 0.4][0.7, 0.3]

[0.6, 0.4]

[0.7, 0.3]

[0.4, 0.6][0.5, 0.5]

task
1

task 2

task 3

setu
p 1

setup 2

setup M

basic graph
properties

task specific
properties

GNN hyper-
parameters

GNN
performance

av
g.

no
de

de
gr
ee

nu
m
be
r
of

no
de
s

cl
as
s
ra
ti
o

ho
m
op

hi
lly

dr
op

ou
t

nu
m
be
r
of

la
ye
rs

lo
g-
lo
ss

R
O
C
-A
U
C

2 6 1/3 1 0.2 2 0.2 0.7

2 6 1/3 1 0.3 1 0.4 0.6

2 6 1/3 0.3 0.1 3 0.3 0.6

Figure 1: A schema of how the proposed dataset for the meta-model is obtained. Starting from well-established graph datasets
suited for multiple-class node classification – Table 2 (left), we create a graph (task) for each label, so that each label induces a
positive class for binary node classification. We apply a GNN described in Equation (2) with hyper-parameter space described
in Table 3. The output of the GNN is then used for performance metric evaluation. Each datapoint is the described by general
graph properties (yellow), task specific graph properties (orange) (see Table 1 for the considered properties), hyper-parameters
of the GNN (green) and performance of the GNN (blue), which is then used as label.

the inputs of the meta model, making it

𝜇̂ = Mmeta ({P𝑖} ∪ {𝐻𝑖})

where 𝐻𝑖 are the hyper-parameters of a particular model
M whose performance is being predicted.
Since the meta-model is trained solely on aggregated

graph dataset properties and hyper-parameters, its train-
ing process is considerably simpler compared to training
the full GNN on the original graph. Therefore, the sug-
gested procedure is to find a hyper-parameter setup that
maximizes the predicted meta-model performance for a
given set of graph dataset properties. We experimentally
evaluate this proposed method in Section 3.3.

3. Experimental evaluation

3.1. Experiment description
We consider graph datasets (Table 2) each inducing 𝑁𝐶
binary classification tasks (see Section 2.4). We follow
the design space [20] to run the GNN for each dataset.

Dataset #Classes #Nodes #Edges

ArXiv [14] 40 169 343 2 315 598
Flickr [15] 7 89 250 899 756
Computers [16] 10 13 752 491 722
Pubmed [17] 3 19 717 88 648
DBLP [18] 4 17 716 105 734
Squirrel [19] 5 5 201 396 846
Cora [17] 70 19 793 126 842

Table 2
Graph datasets considered in the experimental section. Each
graph induces a binary classification problem for each class.

The GNN is described as

m(𝑘)
N𝑠(𝑢)

= AGGREGATE(𝑘) ({h(𝑘)𝑣 , ∀𝑣 ∈ N𝑠(𝑢)}) (2)

h(𝑘+1)𝑢 = 𝜎 (W𝑘 ⋅ CONCAT (h(𝑘)𝑢 , m(𝑘)
N𝑠(𝑢))) (3)

with h(0)𝑢 = 𝑋𝑢 being the feature vector corresponding
to the node 𝑢 ∈ 𝑉. The parameters of the design space
are described in Table 3 and N𝑠(𝑢) denotes the 1-hop

Average node degree

Average positive node degree

Brier_Score

Class homophily

Class ratio

Edge homophily

Fraction of positive nodes of degree > 2

Global assortativity
LogLoss

Negative to positive attrib
ute covariance

Node count

Node homophily

Number of components

Positive class attrib
ute variance

Positive to negative attrib
ute covariance

Prec_01

ROC_AUC

Ratio of positive nodes of degree > 1

Relative presence of positive edges

Average node degree

Average positive node degree

Brier_Score

Class homophily

Class ratio

Edge homophily

Fraction of positive nodes of degree > 2

Global assortativity

LogLoss

Negative to positive attribute covariance

Node count

Node homophily

Number of components

Positive class attribute variance

Positive to negative attribute covariance

Prec_01

ROC_AUC

Ratio of positive nodes of degree > 1

Relative presence of positive edges

1.0

0.53

0.24
**

0.24
**

0.11 0.01 0.34

0.11 0.31

0.39

0.32

0.17
*

0.8

0.22
**

0.45

0.43

0.46

0.34

0.19
*

0.53

1.0

0.43

0.04 0.4

0.51

0.86

0.2
*

0.42

0.01 0.1 0.47

0.33

0.21
*

0.03 0.08 0.06 0.86

0.1

0.24
**

0.43

1.0

0.12 0.9

0.86

0.34

0.02 0.99

0.12 0.19
*

0.93

0.3

0.05 0.33

0.17
*

0.22
*

0.31

0.5

0.24
**

0.04 0.12 1.0

0.38

0.19
*

0.04 0.16 0.06 0.1 0.34

0.24
**

0.32

0.08 0.01 0.69

0.65

0.0 0.13

0.11 0.4

0.9

0.38

1.0

0.92

0.35

0.13 0.86

0.24
**

0.37

0.98

0.12 0.19
*

0.44

0.46

0.08 0.34

0.38

0.01 0.51

0.86

0.19
*

0.92

1.0

0.47

0.21
*

0.8

0.33

0.41

0.94

0.01 0.28

0.54

0.46

0.08 0.45

0.27
**

0.34

0.86

0.34

0.04 0.35

0.47

1.0

0.35

0.31

0.12 0.22
**

0.41

0.13 0.43

0.12 0.13 0.0 0.9

0.23
**

0.11 0.2
*

0.02 0.16 0.13 0.21
*

0.35

1.0

0.09 0.37

0.79

0.13 0.48

0.67

0.46

0.46

0.45

0.37

0.75

0.31

0.42

0.99

0.06 0.86

0.8

0.31

0.09 1.0

0.09 0.11 0.9

0.39

0.0 0.28

0.08 0.33

0.28

0.56

0.39

0.01 0.12 0.1 0.24
**

0.33

0.12 0.37

0.09 1.0

0.48

0.24
**

0.45

0.65

0.57

0.36

0.24
**

0.13 0.21
*

0.32

0.1 0.19
*

0.34

0.37

0.41

0.22
**

0.79

0.11 0.48

1.0

0.35

0.57

0.52

0.58

0.63

0.46

0.2
*

0.56

0.17
*

0.47

0.93

0.24
**

0.98

0.94

0.41

0.13 0.9

0.24
**

0.35

1.0

0.17
*

0.2
*

0.43

0.37

0.01 0.38

0.38

0.8

0.33

0.3

0.32

0.12 0.01 0.13 0.48

0.39

0.45

0.57

0.17
*

1.0

0.48

0.48

0.54

0.66

0.13 0.55

0.22
**

0.21
*

0.05 0.08 0.19
*

0.28

0.43

0.67

0.0 0.65

0.52

0.2
*

0.48

1.0

0.54

0.32

0.31

0.46

0.42

0.45

0.03 0.33

0.01 0.44

0.54

0.12 0.46

0.28

0.57

0.58

0.43

0.48

0.54

1.0

0.37

0.15 0.13 0.06

0.43

0.08 0.17
*

0.69

0.46

0.46

0.13 0.46

0.08 0.36

0.63

0.37

0.54

0.32

0.37

1.0

0.79

0.18
*

0.29

0.46

0.06 0.22
*

0.65

0.08 0.08 0.0 0.45

0.33

0.24
**

0.46

0.01 0.66

0.31

0.15 0.79

1.0

0.09 0.5

0.34

0.86

0.31

0.0 0.34

0.45

0.9

0.37

0.28

0.13 0.2
*

0.38

0.13 0.46

0.13 0.18
*

0.09 1.0

0.26
**

0.19
*

0.1 0.5

0.13 0.38

0.27
**

0.23
**

0.75

0.56

0.21
*

0.56

0.38

0.55

0.42

0.06 0.29

0.5

0.26
**

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2: Spearman correlation coefficient of graph properties with the performance metrics over all datasets with associated
p-value represented as ∗ if 𝑝 ≤ 0.05, ∗∗ if 𝑝 ≤ 0.01 and ∗ ∗ ∗ if 𝑝 ≤ 0.001.

Hyperparameter Values

Layers 1, 2, 3
Hidden channels 16, 32, 64
Dropout probability 0, 0.3, 0.6
Activation function ReLU, PReLU
Aggregation function mean, max

Table 3
Design space [20] considered for the GraphSAGE architecture.

neighborhood of the node 𝑢 ∈ 𝑉 in the graph 𝐺, 𝑘 stands
for order of GNN-layer and 𝑊 𝑘 is the trainable weight
vector describing the 𝑘-th layer of the GNN.

The size of the considered design space consists of
108 unique hyper-parameter configurations and there-

fore 𝑁𝐶 × 108 datapoints for each dataset, that is 15 012
datapoints in total.
The GNN, along with its hyper-parameter setup, is

applied to each point in the dataset for predictions in
each node. Using these predictions and the true labels,
we evaluate the final performance metrics on the test
nodes. Specifically, we consider the following metrics:

• Log Loss.
• Brier Score – Mean squared distance between
GNN prediction output and true label.

• ROC-AUC – Area under the ROC Curve.
• Prec0.1 – Precision at top 10% positive nodes
based on the predicted score.

• F1 score.

0.0 0.2 0.4
Prediction [-]

0.0

0.1

0.2

0.3

0.4
Tr

ue
 L

og
lo

ss
Train: RMSE = 1.32e-02, Corr = 0.99

0.0 0.2 0.4 0.6
Prediction [-]

Tr
ue

 L
og

lo
ss

Test: RMSE = 6.10e-02, Corr = 0.92

ArXiv
Computers
CoraFull
DBLP
Flickr
PubMed
Squirrel

Figure 3: Performance of the meta-model predicting Log Loss
of the GNN model on the original graph. The model is able to
generalize reasonably for unseen tasks on the given datasets.

The tuple (basic graph properties, target class specific
properties, hyper-parameters, performance measured on
the test nodes) constitutes a datapoint in the final dataset
(see Figure 1).

Our meta-model is a random forest regression model
with 100 trees with mean squared optimisation criterion
with at most 30% of features considered at each split.

3.2. GNN performance prediction based
on graph properties

Given a dataset described in Section 3.1, we train a re-
gression meta-model predicting the performance metric
using the graph properties. In this experiment, we con-
sider a selection of the best performance over all available
hyper-parameter settings for each graph and target class,
where only graph properties are used for training.

The dataset was split randomly to a training and test-
ing subsets of sizes 93, respectively 46 data-points. The
meta-model was optimised to minimize MSE between
the model prediction and true performance of GNN.

We evaluated Spearman correlation of the considered
graph properties with the targetmetrics within the dataset
(see Figure 2). The results show very high correlation
between the log loss and the Brier Score and also high
correlation between the ROC AUC and precision at 10%
of positive nodes. Additionally, graph properties corre-
late better with log loss and Brier score, indicating better
performance in predicting these metrics (which is later
confirmed in the experiments).

The results of our meta-model predicting the true log
loss of the GNN are shown in Figure 3. We can see quite
decent performance on the testing set. Although we do
not use this performance directly for any task, it provides
us with the important information that the meta-model
does not just memorize the training set and indeed uses
the graph properties to model the true performance of
the GNN. Based on this generalization ability, we claim
that graph properties are driving the decision of both the
meta-model as well as the underlying GNN (Section 2.5).

Based on SHAP explanation of the meta-model, we
evaluated how individual graph properties affect the final
GNN performance (see results in Figures 4 and 5 for
Log Loss and ROC AUC). We can observe that the most
important graph properties differ for each task.
As expected, a higher homophily (all of its variants)

contributes to better performance. Interestingly, a higher
class ratio leads to better performance in ROC-AUC pre-
diction but worsens the performance in log-loss predic-
tion. Although these observations are very interesting
and essentially answer our research question, we should
also consider the limitations of these results. Firstly, their
validity is conditioned by the validity of our hypothesis
assuming that the explanation of the meta-model holds
for the task itself. Secondly, as the graph properties are
not independent of each other (see Figure 2), impact of
one particular property can be reflected in importance
of multiple correlated properties. We leave deeper inves-
tigation of these limitations and their impact for future
work.

3.3. Hyper-parameter optimization
In this experiment, we use the dataset generation method
described in Figure 1 for each graph from Table 2. We
split randomly test and train sets with a ratio 𝑟 so that the
training set size is given by round(𝑟𝑁𝐷), where 𝑁𝐷 is the
dataset size. We provide 100 realizations of this split for
each ratio 𝑟. In each realization, we train the meta-model
on the training set and calculate predictions on the test
set. We consider the performance based on the following
hyper-parameter selection procedures:

• Reference (random search): We select the best
performance on the training set plus one sample
from the test set to ensure fair comparison.

• Ours: We find the hyper-parameter setup achiev-
ing the best performance prediction on the test
set, evaluate the true corresponding performance,
and select the best performance on the training
set along with the evaluated one.

• Optimum: We select the best performance from
both the test and training sets.

• Ours - Cross-datasets: Similar to “ours” method,
but we consider all graph datasets except the eval-
uated one for training.

The mean of the resulting performance over realisa-
tions is reported in Figure 6. In addition to the afore-
mentioned hyper-parameter selection procedures, we
consider one more reference (best hyper-parameter) by
selecting a single hyper-parameter setup with the best av-
erage performance over all binary tasks for each dataset,
ensuring that the model does more than just learn the
best setup for a specific dataset.

0.02 0.00 0.02 0.04 0.06 0.08
SHAP value (impact on model output)

Sum of 6 other features

Positive class attribute variance

Fraction of positive nodes of degree > 2

Number of components

Average positive node degree

Positive to negative attribute covariance

Class ratio

Relative presence of positive edges

Edge homophily

Node homophily

Low

High

Fe
at

ur
e

va
lu

e

Figure 4: SHAP explanation for log loss prediction identifying node and edge homophily as the most important graph
properties for the log-loss prediction. Therefore, we claim these graph properties to be the most important graph properties,
when training GNN on the graph with log-loss objective. In addition, the SHAP explanation shows that the higher homophily
the lower log-loss and therefore the better performance. Recall that the GNN aims to minimize log-loss.

0.20 0.15 0.10 0.05 0.00 0.05
SHAP value (impact on model output)

Sum of 6 other features

Class ratio

Positive class attribute variance

Edge homophily

Average node degree

Positive to negative attribute covariance

Average positive node degree

Number of components

Node count

Class homophily

Low

High

Fe
at

ur
e

va
lu

e

Figure 5: SHAP explanation for ROC-AUC prediction.

As we can see, the suggested method (“ours”) outper-
forms the reference in almost all cases, resulting in a
significant difference, for example, in the Cora dataset.
However, the most interesting result is achieved by “ours
cross-datasets” method. This method is evidently able to
learn the optimal parameter setup from the graph proper-
ties since it achieves nearly optimal performance across
all datasets. The comparison to the best hyper-parameter
reference method ensures that the meta-model did not

simply learn the global solution for all datasets.

4. Conclusion
We propose a systematic approach to linking graph prop-
erties with corresponding GNN performance using a sim-
ple meta-model. This meta-model is trained to predict
the true performance based on the graph properties. We
experimentally validated the generalization capability of

10
0

10
2

Training set size

0.07

0.08

0.09

0.10
lo

g_
lo

ss
ArXiv - log_loss

10
0

10
2

Training set size

0.018

0.020

0.022

br
ie

r_
sc

or
e

ArXiv - brier_score

10
0

10
2

Training set size

0.75

0.80

0.85

ro
c_

au
c

ArXiv - roc_auc

10
0

10
2

Training set size

0.10

0.15

0.20

pr
ec

_0
.1

ArXiv - prec_0.1

10
0

10
2

Training set size

0.01

0.02

0.03

0.04

f1
_s

co
re

ArXiv - f1_score

10
0

10
2

Training set size

0.10

0.15

0.20

lo
g_

lo
ss

Computers - log_loss

10
0

10
2

Training set size

0.03

0.04

0.05
br

ie
r_

sc
or

e
Computers - brier_score

10
0

10
2

Training set size

0.90

0.95

ro
c_

au
c

Computers - roc_auc

10
0

10
2

Training set size

0.4

0.5

0.6

0.7

pr
ec

_0
.1

Computers - prec_0.1

10
0

10
2

Training set size

0.2

0.3

0.4

0.5

f1
_s

co
re

Computers - f1_score

10
0

10
2

Training set size

0.03

0.04

0.05

lo
g_

lo
ss

CoraFull - log_loss

10
0

10
2

Training set size

0.008

0.010

br
ie

r_
sc

or
e

CoraFull - brier_score

10
0

10
2

Training set size

0.85

0.90

0.95
ro

c_
au

c
CoraFull - roc_auc

10
0

10
2

Training set size

0.4

0.5

0.6

pr
ec

_0
.1

CoraFull - prec_0.1

10
0

10
2

Training set size

0.2

0.4

0.6

f1
_s

co
re

CoraFull - f1_score

10
0

10
1

10
2

Training set size

0.20

0.25

lo
g_

lo
ss

DBLP - log_loss

10
0

10
1

10
2

Training set size

0.05

0.06

0.07

br
ie

r_
sc

or
e

DBLP - brier_score

10
0

10
1

10
2

Training set size

0.94

0.95

0.96

ro
c_

au
c

DBLP - roc_auc

10
0

10
1

10
2

Training set size

0.76

0.78

0.80

pr
ec

_0
.1

DBLP - prec_0.1

10
0

10
1

10
2

Training set size

0.6

0.7

0.8

f1
_s

co
re

DBLP - f1_score

10
0

10
1

10
2

Training set size

0.32

0.34

0.36

lo
g_

lo
ss

Flickr - log_loss

10
0

10
1

10
2

Training set size

0.095

0.100

0.105

br
ie

r_
sc

or
e

Flickr - brier_score

10
0

10
1

10
2

Training set size

0.60

0.65

ro
c_

au
c

Flickr - roc_auc

10
0

10
1

10
2

Training set size

0.225

0.250

0.275

pr
ec

_0
.1

Flickr - prec_0.1

10
0

10
1

10
2

Training set size

0.10

0.15

0.20
f1

_s
co

re
Flickr - f1_score

10
0

10
1

10
2

Training set size

0.30

0.35

0.40

lo
g_

lo
ss

PubMed - log_loss

10
0

10
1

10
2

Training set size

0.08

0.10

0.12

br
ie

r_
sc

or
e

PubMed - brier_score

10
0

10
1

10
2

Training set size

0.92

0.94

ro
c_

au
c

PubMed - roc_auc

10
0

10
1

10
2

Training set size

0.78

0.80

0.82

pr
ec

_0
.1

PubMed - prec_0.1

10
0

10
1

10
2

Training set size

0.6

0.7

0.8

f1
_s

co
re

PubMed - f1_score

10
0

10
1

10
2

Training set size

0.40

0.45

lo
g_

lo
ss

Squirrel - log_loss

10
0

10
1

10
2

Training set size

0.11

0.12

0.13

0.14

br
ie

r_
sc

or
e

Squirrel - brier_score

10
0

10
1

10
2

Training set size

0.75

0.80

0.85

ro
c_

au
c

Squirrel - roc_auc

10
0

10
1

10
2

Training set size

0.4

0.5

0.6

pr
ec

_0
.1

Squirrel - prec_0.1

10
0

10
1

10
2

Training set size

0.2

0.3

0.4

f1
_s

co
re

Squirrel - f1_score

optimum
best hyperparameter
reference
ours
ours -- cross-datasets

Figure 6: Comparison of reference random hyper-parameter search with the proposed solutions for considered datasets.
While log-loss and Brier score (two columns from left) are to be minimised, the remaining performance metrics are to be
maximised. We stress that the violet curve is very close to the (optimal) blue dotted line for almost all datasets and target
metrics. It means that the proposed way of hyper-parameter tuning is able to reveal almost optimal hyper-parameter setup
based only on the actual graph properties (not the whole graph itself!).

this meta-model on common datasets in the graph re-
search community. By interpreting the meta-model’s ex-
planations, we identified graph properties that influence
the meta-model’s behavior and claim that this interpre-
tation also applies to the impact on GNN performance.
We evaluated these properties and found that they align
with our expectations.

The meta-model predictions were also utilized to solve
the hyper-parameter optimization problem. Leveraging
the fact that the meta-model is computationally cheaper
compared to the GNN, we demonstrated that relying on
the meta-model’s predictions can lead to superior perfor-
mance compared to the reference random search method.
Specifically, when the meta-model incorporates knowl-
edge from other graph datasets, we achieved almost op-
timal performance even without seeing any data points
from the target dataset. This indicates that the model is
capable of learning solely from the graph properties.

The proposed hyper-parameter search method can po-
tentially be extended beyond graph datasets, where we
train the meta-model on suitable properties of the given
dataset. However, in this paper, we only scratched the
surface of this topic, which warrants further research
and an in-depth survey of available works on hyper-
parameter optimization. In the context of this paper,
we view it as a validation of the concept of learning a
meta-model based on graph properties. Nonetheless, the
presented results offer a practical approach to solving
the hyper-parameter search problem for graph datasets.

References
[1] J. Topping, et al., Understanding over-squashing

and bottlenecks on graphs via curvature, in: The
Tenth International Conference on Learning Repre-
sentations, 2021.

[2] P. Veličković, Geometric Deep Learning - Grids,
Groups, Graphs, Geodesics, and Gauges, 2021.

[3] W. Hamilton, Z. Ying, J. Leskovec, Inductive rep-
resentation learning on large graphs, Advances in
neural information processing systems 30 (2017).

[4] S. B. Guerra, R. B. Prudêncio, T. B. Ludermir, Predict-
ing the performance of learning algorithms using
support vector machines as meta-regressors, in: Ar-
tificial Neural Networks-ICANN 2008: 18th Interna-
tional Conference, Prague, Czech Republic, Septem-
ber 3-6, 2008, Proceedings, Part I 18, Springer, 2008,
pp. 523–532.

[5] B. Elder, et al., Learning Prediction Intervals for
Model Performance, Proceedings of the AAAI
Conference on Artificial Intelligence 35 (2021)
7305–7313. Number: 8.

[6] S. Maggio, V. Bouvier, L. Dreyfus-Schmidt, Perfor-
mance Prediction Under Dataset Shift, in: 2022 26th

International Conference on Pattern Recognition
(ICPR), 2022, pp. 2466–2474. ISSN: 2831-7475.

[7] S. M. Lundberg, S.-I. Lee, A Unified Approach to
Interpreting Model Predictions, in: Advances in
Neural Information Processing Systems, volume 30,
Curran Associates, Inc., 2017.

[8] L. S. Shapley, Notes on the N-Person Game — II:
The Value of an N-Person Game, Technical Report,
RAND Corporation, 1951.

[9] M. E. J. Newman, Mixing patterns in networks,
Physical Review E 67 (2003) 026126. Publisher:
American Physical Society.

[10] L. Yang, et al., Diverse Message Passing for At-
tribute with Heterophily, in: Advances in Neural
Information Processing Systems, volume 34, Cur-
ran Associates, Inc., 2021, pp. 4751–4763.

[11] J. Zhu, et al., Beyond Homophily in Graph Neu-
ral Networks: Current Limitations and Effective
Designs, in: Advances in Neural Information Pro-
cessing Systems, volume 33, Curran Associates, Inc.,
online, 2020, pp. 7793–7804.

[12] H. Pei, et al., Geom-GCN: Geometric Graph Con-
volutional Networks, 2020. ArXiv:2002.05287 [cs,
stat].

[13] D. Lim, et al., Large Scale Learning on Non-
Homophilous Graphs: New Benchmarks and
Strong Simple Methods, in: Advances in Neural In-
formation Processing Systems, volume 34, Curran
Associates, Inc., online, 2021, pp. 20887–20902.

[14] W. Hu, et al., Open Graph Benchmark:
Datasets for Machine Learning on Graphs,
2021. ArXiv:2005.00687 [cs, stat].

[15] H. Zeng, et al., GraphSAINT: Graph Sampling
Based Inductive Learning Method, in: International
Conference on Learning Representations, 2019.

[16] O. Shchur, et al., Pitfalls of Graph Neural Network
Evaluation, 2019. ArXiv:1811.05868 [cs, stat].

[17] Z. Yang, W. Cohen, R. Salakhudinov, Revisiting
Semi-Supervised Learning with Graph Embeddings,
in: Proceedings of The 33rd International Confer-
ence on Machine Learning, PMLR, New York, NY,
USA, 2016, pp. 40–48.

[18] A. Bojchevski, S. Günnemann, Deep Gaussian Em-
bedding of Graphs: Unsupervised Inductive Learn-
ing via Ranking, in: 6th International Conference
on Learning Representations, 2018.

[19] B. Rozemberczki, C. Allen, R. Sarkar, Multi-Scale
attributed node embedding, Journal of Complex
Networks 9 (2021) cnab014.

[20] J. You, Z. Ying, J. Leskovec, Design Space for Graph
Neural Networks, in: Advances in Neural Informa-
tion Processing Systems, volume 33, Curran Asso-
ciates, Inc., 2020, pp. 17009–17021.

	1 Introduction
	1.1 Problem formulation
	1.2 Related work
	1.3 Contribution

	2 Graph representation for GNN performance prediction
	2.1 Notation and definitions
	2.2 Graph representation
	2.3 GNN performance prediction
	2.4 Multiple binary classification
	2.5 Measuring graph property usefulness
	2.6 Hyper-parameter optimization

	3 Experimental evaluation
	3.1 Experiment description
	3.2 GNN performance prediction based on graph properties
	3.3 Hyper-parameter optimization

	4 Conclusion

