
Graph Neural Networks for Hotel Recommendation
and Quality Assessment
Iveta Mrázová

1
, Marek Behún

2

1
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

2
Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic

Abstract

Popular travel-related forums provide prodigious support to customers. We scraped 3,125,631 Tripadvisor reviews for 3,260

hotels from 2,296,247 unique authors. This data allows for an extensive exploration from the perspective of social networks.

While the hotels and review authors correspond to the nodes of the corresponding network graph, the ratings represent edges.

In this paper, we inspect the prospects of graph neural networks for recommender systems. The experiments conducted

so far yielded promising results regarding modeling travel-related data despite disregarding textual or image-related parts

of the reviews. We see the core contribution of our research in providing a proof of concept for amplifying the power of

recommender systems with the principles of social networks and advanced machine learning.

Keywords
graph neural networks, social network analysis, link prediction, node´s score evolution, review rating prediction, hotel´s

star category assessment

1. Introduction
Travel-related forums provide prodigious support to cus-

tomers. In addition to possible accommodation media-

tion, these websites tender invaluable information on

the equipment and overall quality of the hotels and their

neighborhood. For example, Tripadvisor, Inc. [19] com-

prises about one billion reviews on eight million estab-

lishments. Successful recommender systems [15] would

utilize the collected information, e.g., to suggest an alter-

native accommodation option.

Previous research in this field focused on text-based

sentiment analysis of user opinions. Yet, the scraped data

records allow for a study from the perspective of social

networks (SNs). While the hotels and review authors

correspond to nodes of an SN graph, the ratings represent

edges. To facilitate learning in SNs, e.g., when modeling

the evolution of a network, the concept of graph neural

networks (GNNs) [17] might constitute a viable approach.

Our ultimate objective is thus to explore the prospects

of GNNs in support of a travel-related recommender sys-

tem. We see the core contribution of our research in

providing a proof of concept for utilizing extensive data

rich in structure in a way that allows autonomous learn-

ing of their mutually intertwined relationships.

Section 2 explains the principles of SNs, GNNs, and

visualization of high-dimensional data. Section 3 outlines

the construction of relevant SNs. Section 4 specifies het-

ITAT’23: Information technologies – Applications and Theory, Slovakia

$ iveta.mrazova@mff.cuni.cz (I. Mrázová);

behunmarek@gmail.com (M. Behún)

� 0000-0002-3765-1400 (I. Mrázová)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License

Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

Figure 1: Screenshot of the top section of the Tripadvisor
page for the Casablanca Hotel in New York City [19].

erogeneous GNNs [9] and graph convolutional recurrent

networks (GCRN) [18] we have used. The analyzed tasks

refer to review rating prediction, hotel category assess-

ment, and hotel score evolution. Conclusions summarize

the results and outline future enhancements.

2. Related Work
Static SNs are defined as a tuple (𝑉,𝐸, 𝑎𝑉 , 𝑎𝐸). (𝑉,𝐸)
denotes the graph of actors and relationships between

them, 𝑎𝑉 states the actor and 𝑎𝐸 the edge attributes,

resp. For the Tripadvisor data, 𝑎𝑉 might reflect the star

category of the hotels or the ID of review authors, and

𝑎𝐸 can indicate the awarded review rating. Dynamic

SNs consist of a finite sequence of static SNs.

A bipartite SN (𝑉1, 𝑉2, 𝐸, 𝑎𝑉1 , 𝑎𝑉2 , 𝑎𝐸) admits rela-

tionships only between two disjoint groups of actors, 𝑉1

mailto:iveta.mrazova@mff.cuni.cz
mailto:behunmarek@gmail.com
https://orcid.org/0000-0002-3765-1400
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

and 𝑉2. 𝑎𝑉1 and 𝑎𝑉2 are the actor attributes, 𝑎𝐸 spec-

ifies the edge attributes. The actual role of an actor is

often related to the connectivity structure of the whole

SN. E.g., the so-called eigenvector centrality [1] sums the

importance of the neighbors of an actor with a damping

factor 𝐶𝐸(𝑣) = 𝜆−1 ∑︀
𝑢∈ne(𝑣) 𝐶𝐸(𝑢).

Real-world SNs form massive graphs with millions of

nodes and edges [2] that would require full-batch training

for a traditional memory setting comprising the entire

graph. [17] introduced the graph neural network model

(GNN) to facilitate learning on graphs. GNNs capture

mutual dependencies of graph nodes via message passing.

[23] proposes a general pipeline design for GNN models

and reviews state-of-the-art methods relevant to GNNs

and their applications. A comprehensive survey on recent

GNN models can be found in [22].

A generalization of the efficient convolutional neural

network (CNN) like information processing to graphs

involves the so-called graph Fourier transform and is prin-

cipal to constructing graph convolutions [3]. To produce

networks universal to any graph structure, the Cheb-

Net model uses Chebyshev polynomials of order K to

determine the filters on graphs [5].

Graph Convolutional Networks (GCNs) [11] represent

a first-order approximation to ChebNets. Yet, due to van-

ishing gradients, GCNs are limited to shallow models (3

or 4) layers. To boost the scalability of GNNs, the Graph-

SAGE model (SAmple and aggreGatE) [8] introduces a

recursive node-wise sampling. Recursive neighborhoods

may, on the other hand, impact exponential memory

complexity that grows with the number of GNN layers.

The Graph Attention Networks (GATs) [21] further

learn to pay different attention to the respective node’s

neighbors. The Graph Autoencoders (GAEs) [12] lever-

age the GCNs for encoding with ReLU used as an acti-

vation function. Decoding may be implemented as an

inner product of the node embeddings. GCRN models

combine the ChebNet convolution with LSTM or GRU

units to process temporal SN data [18].

2.1. The UMAP Visualisation Technique
To grasp how the GNNs represent the high-dimensional

graph data, we will use the so-called Uniform Mani-

fold Approximation and Projection (UMAP) visualization

technique [13] that maps 𝑛 originally high-dimensional

data points x1 . . . x𝑛 ∈ R𝑓
to lower-dimensional (usu-

ally 2D) data points y1 . . . y𝑛 ∈ R𝑓 ′
in a non-linear

way. In this paragraph, X = (x1 . . . x𝑛)
𝑇 ∈ R𝑛×𝑓

represents the high-dimensional data point matrix and

Y = (y1 . . . y𝑛)
𝑇 ∈ R𝑛×𝑓 ′

the data point matrix after

dimensionality reduction.

Neighbor similarities visualized in the low-

dimensional space should match the similarities

existing for the high-dimensional data points as closely

as possible. Dimensionality reduction techniques adjust

the position of low-dimensional data points through

gradient descent to comply with this effort. The loss

function evaluates the discrepancy between high- and

low-dimensional neighbor similarities.

To visualize of the data points, UMAP considers the

neighbor similarities 𝑝𝑗|𝑖 only for 𝑘 nearest neighbors

of x𝑖. For 𝑖 ̸= 𝑗, we define the conditional neighbor

similarity of x𝑗 to x𝑖 (𝜎𝑖 > 0; 1 ≤ 𝑖 ≤ 𝑛) as:

𝑝𝑗|𝑖 =

⎧⎨⎩exp

(︂
−(𝑑(x𝑖,x𝑗)−𝜌𝑖)

𝜎𝑖

)︂
if 𝑑 (x𝑖,x𝑗) ≥ 𝜌𝑖,

1 otherwise,

with a (not necessarily Euclidean) metric 𝑑(·, ·) in the

high-dimensional space and 𝜌𝑖 being the distance to

the nearest neighbor in this metric. The symmetrized

neighbor similarities 𝑝𝑖𝑗 are then determined as 𝑝𝑖𝑗 =
𝑝𝑖|𝑗 + 𝑝𝑗|𝑖 − 𝑝𝑖|𝑗 · 𝑝𝑗|𝑖. The formula for differentiable

low-dimensional similarities 𝑞𝑖𝑗 has the form of:

𝑞𝑖𝑗 =
(︁
1 + 𝑎 ‖y𝑖 − y𝑗‖2𝑏

)︁−1

with the parameters 𝑎 and 𝑏 to be fitted by a non-linear

least squares method.

Before the gradient descent like adjustment of low-

dimensional data points, a weighted graph 𝐺X =
(X, 𝐸X,P) is constructed for the high-dimensional data

point matrix X with the weights 𝑝𝑖𝑗 . The so-called spec-

tral embedding method initializes the low-dimensional

data point matrix Y. UMAP uses the loss function ℒ:

ℒ = −
∑︁

{𝑖,𝑗}∈𝐸X

(𝑝𝑖𝑗 log 𝑞𝑖𝑗 + (1− 𝑝𝑖𝑗) log (1− 𝑞𝑖𝑗)) .

For performance reasons, UMAP uses stochastic gradi-

ent descent with negative sampling to optimizeℒ. In each

iteration, the algorithm updates the low-dimensional

points y𝑖 by the gradient of log 𝑞𝑖𝑗 and randomly se-

lects several y𝑘 as negative samples and updates y𝑖 by

the gradient of log (1− 𝑞𝑖𝑘).

3. Data Source
The Tripadvisor [19] portal provides helpful information

on travel destinations, such as descriptions and photos of

the hotels and their prices, availability, and booking op-

tions. It is also a popular travel review website that offers

millions of reviews and ratings from travelers worldwide.

Figures 1 and 2 illustrate the type of data available on

Tripadvisor.

3.1. Data Acquisition
On the Tripadvisor platform, each served HTML docu-

ment contains the definition of a JavaScript Object No-

tation (JSON) object that contains all the information

Figure 2: Screenshot of the About section for the Casablanca
Hotel in New York City from Tripadvisor [19].

displayed on the web page in a structured format. The

data scraping utility we have developed for this study
1

stores the scraped information in one of the respective

JSON files listed below:

• hotels.json contains information about the

reviewed hotels, i.e., the name, description, lo-

cation, contact information, star rating, a list of

languages the staff at the reception desk is able

to speak, and a list of amenities/perks (e.g., a non-

smoking hotel, WiFi, laundry service),

• authors.json embraces review author fields,

such as ID, username, displayed name, home

town, and home town ID, and

• reviews.json comprises the reviews them-

selves inclusive the review ratings, dates of stay,

writing and publication, the type of the trip (fam-

ily, couples, friends, business, solo, or none of

them), review title, text, and a potential room tip.

After running the scraping utility for several days non-

stop (without triggering any Denial of Service protec-

tion), we have acquired records of 3,125,631 Tripadvisor

reviews for 3,260 hotels from 2,296,247 unique authors,

see Table 1. Yet the scraped dataset contains only hotel

reviews from several US cities. Furthermore, the Covid

pandemic of the last few years seriously disturbed trav-

eling globally. Both these facts may have introduced a

specific bias into the studied data. Overall, the scraped

data elucidates two intriguing observations:

• The number of submitted reviews per year peaked

in 2016 and began to fall afterward.

• In 2020, the number of reviews fell even more

due to the Covid pandemic but resumed growth

in 2021 and 2022.

After data acquisition, the next step is to transform

the data so that each entry is flattened and contains only

1
The scraped data and the entire code we wrote for the study ex-

periments are publicly available at https://github.com/elkablo/gnn-

social-tripadvisor.

Table 1
Left: information about the scraped data (r is # reviews).
Right: number of authors who provided 1 to 7 reviews (r).

quantity value

of hotels 3,260
of reviews 3,125,631
of authors 2,296,247
avg r per author 1.36
max r per author 134
avg r per hotel 958.78
max r per hotel 19,534

r # authors

1 1,895,027
2 239,682
3 77,155
4 34,374
5 17,649
6 10,247
7 6,328

the information we will use for our experiments. Pre-

processing decreases the size of the dataset JSON files

significantly and involves:

• Flattening. Both hotel and review records con-

tain normalized information: hotels list their

amenities and languages, while reviews contain

lists of ratings. All these fields are flattened to fa-

cilitate deep learning computations with tensors.

• Filtering. We remove redundant textual infor-

mation from the records, such as names, descrip-

tions, URLs, and addresses. Similarly, we consider

just a pre-selected number of the most frequent

amenities and languages the scraped hotels pro-

vide. For the actual experiment settings, refer to

Section 4.

3.2. Graph construction
Based on the preprocessed dataset, we can build a bipar-

tite social network 𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟), where:

• 𝐴 is the set of review authors,

• 𝐻 is the set of reviewed hotels,

• 𝑅 ⊆ 𝐴×𝐻 is the set of reviews—author-hotel

pairs associated with a rating,

• 𝑎𝐴 and 𝑎𝐻 are author and hotel attribute func-

tions that assign to each of the respective author

or hotel nodes an attribute value, e.g., author ID

or eigenvector centrality (for further examples,

refer to Section 4),

• 𝑟 : 𝑅 → {1, 2, 3, 4, 5}𝑘 is the edge attribute

function—a function that maps author-hotel pairs

to rating values: 𝑟(𝑎, ℎ) = 𝑣 means that author

𝑎 gave rating 𝑣 to hotel ℎ.

Because of limited cluster machine memory, the

dataset preprocessing utility allows to specify the mini-

mum number of reviews for each hotel 𝑚ℎ and author

𝑚𝑎. Only those authors and hotels fulfilling this require-

ment will be kept. The resulting graph will be called the

Filtered Review Graph. Figure 3 illustrates the process.

Figure 3: An illustration for the process of review graph filter-
ing with 𝑚𝑎 = 3 and 𝑚ℎ = 2. Pink nodes represent hotels,
and violet nodes stand for review authors.

Definition 1 (Filtered Review Graph).
Let 𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟) be a bipartite social

network of authors 𝐴, hotels 𝐻 and reviews 𝑅, further

let 𝑚𝑎,𝑚ℎ ∈ N. The filtered review graph of 𝐺
with parameters 𝑚𝑎,𝑚ℎ is the maximum subnetwork

𝐺𝑓 = (𝐴𝑓∪𝐻𝑓 , 𝑅𝑓 , 𝑎𝐴𝑓 , 𝑎𝐻𝑓 , 𝑟𝑓);𝐴𝑓 ⊆ 𝐴,𝐻𝑓 ⊆ 𝐻 ,

and 𝐸𝑓 ⊆ 𝐸 ; ∀𝑎 ∈ 𝐴𝑓 : deg(𝑎) ≥ 𝑚𝑎 and

∀ℎ ∈ 𝐻𝑓 : deg(ℎ) ≥ 𝑚ℎ.

We need to work with monopartite networks when

analyzing the eigenvector centralities of the hotels and

authors. However, we will use the so-called bipartite

network projections in such a case. We create a network

of authors, where each author is connected to another if

they have reviewed the same hotel. The strength of such

an association grows with more reviews on hotels visited

by both authors. For an illustration of a projection, see

Figure 4. A monopartite network for the hotels can be

created in a similar way.

Definition 2 (Projection to Authors and Hotels).
Let 𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟) be a bipartite SN of authors

𝐴, hotels 𝐻 , and reviews 𝑅, and let 𝑚𝑟,𝑚𝑐,𝑚𝑛 ∈ N be

the minimum number of reviews, common associations,

and neighbors, respectively.

The projection 𝐺𝐴 of 𝐺 to the authors 𝐴 with the pa-

rameters 𝑚𝑟,𝑚𝑐,𝑚𝑛 is constructed by:

• first removing from 𝐺 all author nodes 𝑣 ∈ 𝐴 with

deg(𝑣) < 𝑚𝑟 ,

• then constructing the bipartite network projectioñ︁𝐺𝐴 = (𝐴,𝐸𝐴, 𝑎𝐴, 𝑎𝐸𝐴) of 𝐺 to 𝐴 with the set

of edges between the authors 𝐸𝐴 ⊆ 𝐴 × 𝐴 and

the author edge attribute function 𝑎𝐸𝐴 given by

𝑎𝐸𝐴((𝑎𝑖, 𝑎𝑗)) = |ℎ| if ∃ℎ ∈ 𝐻|((𝑎𝑖, ℎ) ∈ 𝑅 ∧
(𝑎𝑗 , ℎ) ∈ 𝑅), and 𝑎𝐸𝐴((𝑎𝑖, 𝑎𝑗)) = 0 otherwise.

• then removing all edges 𝑒 ∈ 𝐸𝐴 from
̃︁𝐺𝐴 with

𝑎𝐸𝐴(𝑒) < 𝑚𝑐 (so that only edges representing at

least 𝑚𝑐 common associations are kept),

• then successively removing from
̃︁𝐺𝐴 all nodes with

fewer than 𝑚𝑛 neighbors,

Figure 4: An illustration of projecting the bipartite social net-
work to authors with the parameters𝑚𝑟 = 2,𝑚𝑐 = 2,𝑚𝑛 =
2. Left: the original bipartite review graph. Right: its projec-
tion to the authors where, e.g., the link between 𝐴1 and 𝐴3

has strength 2/3 because there are two common associations
between 𝐴1 and 𝐴3 in the original network (through 𝐻2 and
𝐻4) and the maximum number of common associations for
any pair in this graph is 3. Authors 𝐴4, 𝐴5, and 𝐴6 are suc-
cessively removed from the graph because 𝐴6 submitted only
one review, 𝐴5 has only one neighbor after the removal of 𝐴6,
and 𝐴4 has only one neighbor after the removal of 𝐴5.

• finally normalizing the edge attributes in
̃︀𝐺 by

setting them to 𝑎′
𝐸 , with

𝑎′
𝐸(𝑒) =

𝑎𝐸𝐴(𝑒)

max𝑒∈𝐸𝐴 𝑎𝐸𝐴(𝑒)

.

The projection to hotels 𝐺𝐻 = (𝐴,𝐸𝐻 , 𝑎𝐴, 𝑎𝐸𝐻) is

constructed in an analogous way (just swapping hotels and

authors in the above definition).

In the last experiment, we will aim at predicting hotel

eigenvector centrality scores as they change over time.

Therefore, we will work with a dynamic SN of hotels

called temporal projection.

Definition 3 (Temporal Projection).
Let 𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟). Further, let

𝒯 = {𝑡0, 𝑡1, 𝑡2, . . . , 𝑡𝑛 | 𝑡0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛}
be a partition of the original time span for the reviews

available in 𝐺. Let 𝐺𝑡𝑘 be the maximum subnetwork

of 𝐺, which contains only those reviews written at time

𝑡; 𝑡𝑘−1 < 𝑡 ≤ 𝑡𝑘 and where each author and hotel have

at least one neighbor.

The temporal projection of 𝐺 to the authors 𝐴 with the

parameters 𝒯 ,𝑚𝑟,𝑚𝑐,𝑚𝑛 is the sequence of monopartite

networks 𝒢𝒯
𝐴 = (𝐺𝐴,𝑡𝑘)

𝑛
𝑘=1 , where 𝐺𝐴,𝑡𝑘 is the projec-

tion of the network 𝐺𝑡𝑘 to the authors 𝐴 with the parame-

ters 𝑚𝑟,𝑚𝑐,𝑚𝑛.

The temporal projection of 𝐺 to the hotels 𝐻 , 𝒢𝒯
𝐻 , is

created analogously, just by using the projection to the

hotels instead of the authors.

Figure 5: An illustration of a 2-layer heterogeneous GNN with
convolutional GNN layers for the review rating prediction task.

4. Supporting Experiments
In our experiments, we worked with a bipartite SN

𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟) and used a filtered review

graph with 𝑚𝑎 = 𝑚ℎ = 12. The resulting prepro-

cessed dataset contained 76,692 reviews of 1,287 hotels

from 4,404 authors. While the author features, X𝐴, cor-

respond to one-hot encodings of author IDs, the hotel

feature matrix X𝐻 used for this task contains:

• hotel class,

• existence of hotel website (binary),

• presence of 15 most popular amenities (binary),

• availability of 5 most popular languages (binary),

• optionally, other information like the eigenvector

centrality or hotel-hotel links used by the projec-

tion to the hotels was also included as a weighing

factor in some models.

As the filtered review graphs contain two distinct types

of nodes, we will employ the heterogeneous graph trans-

form [9]. See Figure 5 for an illustration of the bipartite

author-hotel-review social network and its encoding, .

Definition 4 (Heterogeneous GNN). Let

• A ∈ {0, 1}|𝐴|×|𝐻|
be the adjacency matrix of

reviews written by the authors for the hotels,

• Xe ∈ R𝑑𝑅×|𝑅|
be the author-hotel edge feature

matrix,
2 𝑑𝑅 being the dimensionality of review

embeddings,

• W𝐻 ∈ R|𝐻|×|𝐻|
and W𝐴 ∈ R|𝐴|×|𝐴|

be the

weighted adjacency matrices of the projections to

hotels and authors,

• H
(𝑙)
𝐻 ∈ R𝑑

(𝑙)
𝐻

×|𝐻|
and H

(𝑙)
𝐴 ∈ R𝑑

(𝑙)
𝐴

×|𝐴|
be the

current hidden state matrices of the hotel and au-

thor nodes,

2
The review feature matrix Xe

is not used in the review rating

prediction task, but it is used in hotel class prediction.

• 𝑑𝑅, 𝑑
(𝑙)
𝐻 , 𝑑

(𝑙)
𝐴 ∈ N be the dimensionalities of the

review, hotel and author input embeddings for layer

𝑙, while 𝑑
(𝑙+1)
𝐻 , 𝑑

(𝑙+1)
𝐴 ∈ N be the corresponding

dimensionalities of output embeddings for layer 𝑙,

• F𝐴→𝐻 : R𝑑
(𝑙)
𝐴

×|𝐴| × {0, 1}|𝐴|×|𝐻| →
R𝑑

(𝑙+1)
𝐻

×|𝐻|
be a graph neural function that com-

putes the embeddings of hotel nodes based on the

current activation states of author nodes H
(𝑙)
𝐴 and

the adjacency matrix A,

• F𝐻→𝐴 : R𝑑
(𝑙)
𝐻

×|𝐻| × {0, 1}|𝐴|×|𝐻| →
R𝑑

(𝑙+1)
𝐴

×|𝐴|
be a graph neural function that com-

putes the embeddings of author nodes from the

current activation states of hotel nodes H
(𝑙)
𝐻 and

the adjacency matrix A,

• F𝐻→𝐻 : R𝑑
(𝑙)
𝐻

×|𝐻| × R|𝐻|×|𝐻| → R𝑑
(𝑙+1)
𝐻

×|𝐻|

be a graph neural function that computes the em-

beddings of hotel nodes from their hidden states

H
(𝑙)
𝐻 and the weighted adjacency matrix W𝐻 ,

• F𝐴→𝐴 : R𝑑
(𝑙)
𝐴

×|𝐴| × R|𝐴|×|𝐴| → R𝑑
(𝑙+1)
𝐴

×|𝐴|

be a graph neural function that computes the em-

beddings of author nodes from their hidden states

H
(𝑙)
𝐴 and the weighted adjacency matrix W𝐴.

• We can use as a graph neural function, e.g., SAGE,

GAT, GCN, ChebNet, LSTM or GRU, among

others.

The (sum-aggregating) heterogeneous graph layer

HetLayer computes the next hidden activation states

of author and hotel nodes

(︁
H

(𝑙+1)
𝐻 ,H

(𝑙+1)
𝐴

)︁
∈

R𝑑
(𝑙+1)
𝐻

×|𝐻| × R𝑑
(𝑙+1)
𝐴

×|𝐴|
as:

H
(𝑙+1)
𝐻 = ReLU

(︁
F𝐴→𝐻

(︁
H

(𝑙)
𝐴 ,A,Xe

)︁)︁
+

+ReLU
(︁
F𝐻→𝐻

(︁
H

(𝑙)
𝐻 ,W𝐻 ,Xe

)︁)︁
H

(𝑙+1)
𝐴 = ReLU

(︁
F𝐻→𝐴

(︁
H

(𝑙)
𝐻 ,A

)︁)︁
+

+ReLU
(︁
F𝐴→𝐴

(︁
H

(𝑙)
𝐴 ,W𝐴

)︁)︁
.

Further, let X𝐻 ,X𝐴 be the hotel and author feature ma-

trices, 𝐿 ∈ N be the number of layers, and let HetLayer𝑙
be a heterogeneous graph layer constructed based on the

given F*→* functions for every 𝑙 ∈ {1, . . . , 𝐿}.

The heterogeneous graph neural network HetGNN with

layers HetLayer𝑙 is then defined as:

HetGNN(X𝐻 ,X𝐴,A,W𝐻 ,W𝐴) =
(︁
H

(𝐿)
𝐻 ,H

(𝐿)
𝐴

)︁
.(︁

H
(𝑙)
𝐻 ,H

(𝑙)
𝐴

)︁
is set to (X𝐻 ,X𝐴) if 𝑙 = 0 and to

HetLayer𝑙

(︁
H

(𝑙)
𝐻 ,H

(𝑙)
𝐴 ,A,W𝐻 ,W𝐴

)︁
otherwise.

Figure 6: UMAP embeddings of the reviews from the hidden layer of the best-performing GNN model used for the review
rating prediction colored by rating (left: true; right: predicted). The right-hand side also depicts the regions of various hotel
attributes internally detected by the network.

We programmed the SW
3

for the experiments mainly

in Python 3 [20]. The implemented command-line inter-

face (CLI) utilities benefit from the PyTorch Geometric

[6], PyTorch Geometric Temporal [16] and NetworkX [7]

libraries.

We applied the 10-fold cross-validation for training

and testing.
4

The Adam method [10] helped optimize

the models, with the parameters 𝛽1 = 0.9, 𝛽2 = 0.999
and with learning rates 0.1% for 800 epochs. The mean

squared error (MSE) between the true x and predicted y

ratings MSE(x,y) = mean

(︁∑︀
𝑖

(︀
(x)𝑖 − (y)𝑖

)︀2)︁
rep-

resented the loss function. We report on the results re-

ferring to the root mean squared error RMSE(x,y) =√︀
MSE(x,y).

4.1. Review Rating Prediction
Each review incorporates several ratings from 1 to 5 that

the evaluation author awarded to the reviewed hotel.

Missing rating values for the author-hotel pairs natu-

rally raise the question of a possible review rating pre-

diction. Formally, we will work with a bipartite SN

𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟), and our objective will be to

extend the original domain of the edge attribute function

𝑟 to the entire set of possible edges 𝐴×𝐻 , by leveraging

the information given by the attribute functions 𝑟, 𝑎𝐴,

and 𝑎𝐻 .

In the context of GNNs, review rating prediction epit-

omizes a link label prediction problem (i.e., predict the

overall hotel rating 𝑟; the per-item ratings remain ig-

nored) and belongs to the area of recommender systems.

3
https://github.com/elkablo/gnn-social-tripadvisor.

4
Computational resources were provided by MetaCentrum NGI

(https://www.metacentrum.cz/en) under the e-INFRA CZ project

(ID:90254) supported by the Ministry of Education, Youth, and

Sports of the Czech Republic.

The generic definition for the review rating prediction

models is thus:

Definition 5 (Review Rating Prediction Model).
Let HetGNN be a heterogeneous graph neural

network constructed for X𝐻 ,X𝐴,A,W𝐻 , and

W𝐴. Then, the review rating prediction model is a

graph autoencoder network model with the encoder

enc defined as: enc (X𝐻 ,X𝐴,A,W𝐻 ,W𝐴) =
HetGNN (X𝐻 ,X𝐴,A,W𝐻 ,W𝐴) = (H𝐻 ,H𝐴);
(H𝐻 ,H𝐴) ∈ R𝑑𝐻×|𝐻| × R𝑑𝐴×|𝐴|

. The decoder dec is

defined for hotel ℎ ∈ 𝐻 embedding hℎ = (H𝐻)ℎ ∈ R𝑑𝐻

and author 𝑎 ∈ 𝐴 embedding h𝑎 = (H𝐴)𝑎 ∈ R𝑑𝐴
, as:

dec (hℎ,h𝑎) = Θ2 ReLU

(︂
Θ1

(︂
hℎ

h𝑎

)︂
+ b1

)︂
+ b2,

where Θ1 ∈ R𝑑1×(𝑑𝐻+𝑑𝐴),b1 ∈ R𝑑1
and Θ2 ∈

R𝑑2×𝑑1 ,b2 ∈ R𝑑2
represent two fully connected linear

layers with 𝑑1, 𝑑2 ∈ N being the dimensionalities of the

edge embeddings produced by these layers.

Based on the pair of hotel and author embeddings, the

decoder defined in this way produces a review rating pre-

diction of dimensionality 𝑑2.

According to the above generic definition, we have

built review rating prediction models with the parameters

of the following type and range:

• the rating prediction dimensionality 𝑑2 is always

1 (we predict the overall rating only),

• the number of layers 𝐿 ranged through values 1,

2, and 3 (higher values led to worse performance),

• the number of hidden channels (the dimensional-

ity of node embeddings) ranged through the val-

ues 4, 8, 12, and 16 (higher values yielded worse

performance), and remained the same for all lay-

ers (𝑑 = 𝑑(𝑙) for all 𝑙 ∈ {1, . . . , 𝐿}),

• the same heterogeneous graph neural function

Fhetero was used for both F𝐴→𝐻 and F𝐻→𝐴;

its possible variants ranged through the SAGE,

GAT, and GNN* models,

• the same homogeneous graph neural function

Fhomo was used for both F𝐴→𝐴,F𝐻→𝐻 . Possi-

ble variants ranged through the same functions

as for the heterogeneous case and comprised also

GCN and ChebNet𝐾=2. Models without homo-

geneous edges were, however, tested, too.

In the tests, the graph autoencoder with 12 hidden

channels for one hidden layer with SAGE used for

Fhetero and GAT for Fhomo provided the best results

(RMSE = 0.8538). Table 2 compares the performance

of the best five models. Overall, training was relatively

rapid (about 30 s), with the actual ratings shifted on aver-

age by 0.8 from the predicted ones. More hidden channels

arranged in fewer layers seem to provide better results

for the review rating prediction task. While all the re-

ported models use the SAGE layer for heterogeneous

author-review message passing, the GAT layer leads to

slightly better results when used for the homogeneous

links.

Figure 6 shows the UMAP visualization of the pro-

cessed data representations developed in the hidden layer

of the best-performing model. The colors in the picture in-

dicate the obtained ratings. The visualization confirms an

adequate knowledge extraction capability of the trained

network.

4.2. Hotel Class Prediction
In the hotel class prediction task, our objective is to esti-

mate the hotel class attribute (i.e., the number of stars as

one of 9 possible values 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5) by

considering the information from the other attributes. In

Figure 7: An illustrative example for the review rating predic-
tion task: Alice, Bob, Dave, and Paul provided six ratings for
three hotels. The rating Bob would assign to Marriott SD is
unknown (depicted by the red "?" sign) and has to be predicted
based on the other known attribute values.

the context of GNNs, we call this task a node classification

problem. In Figure 8, the hotel class attribute value we

want to predict is depicted by the red "?". Potential use

cases for a model predicting the hotel class include, e.g.,

the detection of fake or misleading information about

hotels submitted by their owners and the assessment of

hotel class where we lack this information. Alternatively,

the model issues another score for users considering the

hotel for accommodation.

The methodology for the hotel class prediction ex-

periment remains the same as for review rating predic-

tion. Formally, we will work with the same bipartite SN

𝐺 = (𝐴,𝐻,𝑅, 𝑎𝐴, 𝑎𝐻 , 𝑟) and preprocess the data ac-

cordingly, except for the hotel feature matrix X𝐻 that

does not contain the hotel class now since this will be

the target attribute. We set 𝑚𝑎 = 𝑚ℎ = 12 for review

graph filtering and augment the bipartite network with

author-author and hotel-hotel edges. The models for

hotel class prediction have the following form:

Definition 6 (Hotel Class Prediction Model).
Let HetGNN be a heterogeneous graph neural net-

work constructed for X𝐴,A,W𝐻 ,W𝐴. Further,

let X𝐻 be the hotel feature matrix without hotel

class, let Xe
be the author-hotel edge feature ma-

trix. The hotel class prediction model is then defined

as: HotelClassPred (X𝐻 ,X𝐴,X
e,A,W𝐻 ,W𝐴) =

ΘH
(𝐿)
𝐻 +b.H

(𝐿)
𝐻 can be obtained from

(︁
H

(𝐿)
𝐻 ,H

(𝐿)
𝐴

)︁
=

HetGNN(X𝐻 ,X𝐴,X
e,A,W𝐻 ,W𝐴) . Θ ∈ R𝑑×𝑑𝐻

and b ∈ R𝑑
represent one fully connected linear layer

with 𝑑 = 1 for the resulting node embedding.

The other parameters (the number of hidden layers,

hidden channels, and the homogeneous and heteroge-

neous graph neural functions) range over the same values

as in the previous experiment. Again, the training of most

models was fast (under 30 s).

Figure 8: An illustrative example for the hotel class predic-
tion task: Alice, Bob, Dave, and Paul provided seven ratings
for three hotels. We know the classes for the hotels Hyatt SD
and Waldorf NY. The hotel class for Marriott SD is unknown
(depicted by the red "?" sign in the figure) and has to be pre-
dicted based on the other known attribute values.

Table 2
Comparison of the five best-performing models trained to solve the respective task.

Fhetero Fhomo nr. of layers nr. of hidden nr. of trainable mean train. RMSE with the 99%
[GCRN type] [the order K] channels parameters time confidence interval

Graph autoencoder-based architectures for the review rating prediction task:1

SAGE GAT 1 12 106,861 27.32 s 0.8538 ± 0.0132
SAGE GAT 1 16 142,609 27.87 s 0.8543 ± 0.0067
SAGE SAGE 1 12 107,101 26.12 s 0.8577 ± 0.0103
SAGE SAGE 1 16 142,929 26.29 s 0.8585 ± 0.0098
SAGE SAGE 2 16 144,513 31.05 s 0.8585 ± 0.0139

Heterogeneous GNN-based architectures for the hotel class prediction task:2

SAGE ChebNet 2 12 107,653 24.47 s 0.4154 ± 0.0514
SAGE GAT 2 12 107,305 24.27 s 0.4163 ± 0.0347
SAGE GCN 2 12 107,257 20.85 s 0.4178 ± 0.0364
SAGE GCN 2 8 71,345 20.81 s 0.4184 ± 0.0218
SAGE SAGE 1 16 142,337 15.82 s 0.4198 ± 0.0185

GCRN-based architectures for the temporal hotel score prediction task:3

[LSTM] [2] 16 5,121 92.85 min 0.0020 ± 0.0009
[LSTM] [2] 8 2,049 91.93 min 0.0027 ± 0.0014
[LSTM] [3] 12 5,089 97.92 min 0.0028 ± 0.0016
[GRU] [3] 16 5,585 55.23 min 0.0033 ± 0.0017
[GRU] [3] 4 965 49.56 min 0.0018 ± 0.0054

1 The times were obtained for training on NVIDIA GeForce RTX 2080 Ti GPU.
2 The times were obtained for training on NVIDIA A100-SXM4-40GB GPU.
3 The times are not comparable as 3 different GPUs were used for training.

In this experiment, the GNN with 12 hidden channels

in two hidden layers with SAGE used for Fhetero and

ChebNet for Fhomo achieved the best results (RMSE =
0.4154). In most cases, the class predicted by the model

thus differed by at most one hotel class (considering its

granularity of 0.5). Table 2 shows the performance of the

best five models. Regarding accuracy, the SAGE graph

neural function again outperformed other functions for

the author-hotel heterogeneous links.

4.3. Hotel Score Prediction
The final experiment evaluates the chance of predicting

how a hotel’s score changes over time, where the score

corresponds to the eigenvector centrality of the hotel in

the projection to hotels. To solve the task, we create a

temporal projection of the bipartite SN to hotels 𝒢𝒯
𝐻 and

then aim at predicting the eigenvector centrality based

on the static hotel attribute function 𝑎𝐻 and the dynamic

edge weights in the temporal projection.

For this task, we divided the time interval with the

scraped reviews (2003–2022) into monthly partitioning

𝒯 and then created a temporal projection to the hotels

with parameters 𝒯 ,𝑚𝑟 = 20,𝑚𝑐 = 3,𝑚𝑛 = 3. From

the resulting dynamic network, we removed the initial

snapshots that contained less than 10,000 edges. In the

last several years, the centralities stabilized. Therefore,

we removed the last six years’ data from the projected

temporal network, too. The remaining 109 monthly snap-

shots were split into 80%–20% training-testing sequences

(comprising 87 and 22 snapshots, resp.).

We initialized the network models with random

weights using the same hotel feature matrix X = X𝐻

and Adam parameters like in review rating prediction.

Concerning the temporal data, we ran the experiments

five times for evaluation instead of using 𝑘-fold cross-

validation. We trained each model for 3000 epochs with

the MSE loss. For this task, we applied the GCRN-LSTM

and GCRN-GRU models. In addition to the recurrent

layer, the ReLU activation function and a linear trans-

formation were used to generate score prediction.

Definition 7 (Hotel Score Prediction Model).
Let GRCN be either the GRCNLSTM or the GRCNGRU

model, X be the hotel feature matrix and W(𝑡)
be the

weighted adjacency matrices of the temporal projection

to hotels for 𝑡 ∈ {1, . . . , 𝑇}. The hotel score prediction

model computes the 𝑡-th score prediction as

ΘReLU
(︁
X,W(𝑡),X,H(𝑡)

)︁
+ b,

whereΘ ∈ R𝑑×𝑑𝐻
andb ∈ R𝑑

form a fully connected lin-

ear layer with 𝑑 ∈ N hidden states. H(𝑡)
is initialized with

0 and adjusted by H(𝑡) = GRCN
(︁
X,W(𝑡),H(𝑡−1)

)︁
.

We tested networks with the order of ChebNet’s

Chebyshev polynomial 𝐾 set to 2 and 3 and the num-

ber of hidden channels ranging through 4, 8, 12, and 16.

An LSTM-based GCRN model with 16 hidden channels

yielded the most accurate predictions (RMSE = 0.0020).

Table 2 shows the results for the five best-performing

models. Overall, LSTM-based models with higher val-

ues of 𝐾 (facilitating information flow from further dis-

tances) achieved better performance. Unfortunately, con-

siderable time costs accompany high accuracy (training

often takes longer than 1 hour).

5. Conclusions
In this paper, we have explored the applicability of GNN

models to the analysis of scraped Tripadvisor data. For

our investigations, we scraped 3,125,631 Tripadvisor re-

views for 3,260 hotels from 2,296,247 unique authors. The

analyzed problems involved prediction of review ratings,

assessment of the actual hotel (star) classes, and predic-

tion of dynamic / temporal centrality scores of the hotels.

The performed experiments yield reliable results for

recommender systems even without the information on

textual or image-related parts of the reviews. The paper

thus presents a proof of concept for boosting the per-

formance of recommender systems with advanced AI

techniques. Overall, a reasonably low number of wider

hidden layers led to a better performance in achieving

accuracy. Temporal models consumed, however, signifi-

cantly more computational resources. The involved GNN

models were able to extract adequate knowledge that re-

quires non-trivial methods, e.g., UMAP, to be visualized

in an easy-to-understand way.

To boost their accuracy, future models might embrace

attributes extended, e.g., by word embeddings of the ac-

tual review texts (like in [4]) or by the information on

close attractions or the quality of nearby restaurants.

The provided SW could benefit from integrating a Neo4j

graph database [14] as a core tool for dealing with SNs.

Efficient training of deeper and temporal GNN models for

dynamic SN data shall also represent a welcome addition.

References
[1] C.C. Aggarwal, “Data mining: the textbook”,

Springer, 2015.

[2] A.-L. Barabási and M. Pósfai, “Network Science”,

Cambridge University Press, 2016.

[3] J. Bruna, W. Zaremba, A. Szlam and Y. LeCun, “Spec-

tral Networks and Locally Connected Networks on

Graphs”, ICLR, 2014, 14 p.

[4] D. Chitiz and A. Perlmuter, “Hotel Rating Predic-

tion”, url: https://github.com/doviec/TripAdvisor-

Rating-Prediction. Accessed: 2023-07-12.

[5] M. Defferrard, X. Bresson and P. Vandergheynst,

“Convolutional Neural Networks on Graphs with

Fast Localized Spectral Filtering”, NIPS, 2016, 9 p.

[6] M. Fey and J.E. Lenssen, “Fast Graph Representation

Learning with PyTorch Geometric”, ICLR, 2019, 9 p.

[7] A. Hagberg, P. Swart and D.S. Chult, “Exploring

network structure, dynamics, and function using

NetworkX”, SciPy, 2008, 5 p.

[8] W.L. Hamilton, R. Ying and J. Leskovec, “Inductive

Representation Learning on Large Graphs”, NIPS,

2017, 11 p.

[9] Z. Hu, Y. Dong, K. Wang and Y. Sun, “Hetero-

geneous Graph Transformer”, WWW, 2020, pp.

2704–2710.

[10] D.P. Kingma and J.L. Ba, “Adam: A Method for

Stochastic Optimization”, ICLR, 2015, 13 p.

[11] T.N. Kipf and M. Welling, “Semi-Supervised Classifi-

cation with Graph Convolutional Networks”, ICLR,

2017, 14 p.

[12] T.N. Kipf and M. Welling, “Variational Graph Auto-

Encoders”, 2016, doi: 10.48550/ARXIV.1611.07308.

[13] L. McInnes, J. Healy and J. Melville, “UMAP:

Uniform Manifold Approximation and Pro-

jection for Dimension Reduction”, 2018, doi:

10.48550/ARXIV.1802.03426.

[14] Neo4j, https://neo4j.com, Accessed: 2023-08-19.

[15] F. Ricci, L. Rokach and B. Shapira (eds.), “Recom-

mender Systems Handbook (3 ed.), Springer, 2022.

[16] B. Rozemberczki et al., “PyTorch Geometric Tempo-

ral: Spatiotemporal Signal Processing with Neu-

ral Machine Learning Models”, CIKM, 2021, pp.

4564–4573.

[17] F. Scarselli, M. Gori, A.Ch. Tsoi, M. Hagenbucher

and G. Monfardini, “The Graph Neural Network

Model”, IEEE Transactions on Neural Networks,

vol. 20, no. 1, 2009, pp. 61–80.

[18] Y. Seo, M. Defferrard, P. Vandergheynst and X. Bres-

son, “Structured Sequence Modeling with Graph

Convolutional Recurrent Networks”, ICONIP, 2018,

pp. 362-373.

[19] Tripadvisor, https://www.tripadvisor.com, Ac-

cessed: 2022-12-19.

[20] G. Van Rossum and F. L. Drake, “Python 3 Reference

Manual”, Scotts Valley, CA: CreateSpace, 2009.

[21] P. Veličković et al., “Graph Attention Networks”,

ICLR, 2018, 12 p.

[22] Z. Wu et al., “A Comprehensive Survey on Graph

Neural Networks”, IEEE Transactions on Neural

Networks and Learning Systems, vol. 32, no. 1, 2021,

pp. 4-24.

[23] J. Zhou et al., “Graph neural networks: A review of

methods and applications”, AI Open, vol. 1, 2020,

pp. 57-81.

	1 Introduction
	2 Related Work
	2.1 The UMAP Visualisation Technique

	3 Data Source
	3.1 Data Acquisition
	3.2 Graph construction

	4 Supporting Experiments
	4.1 Review Rating Prediction
	4.2 Hotel Class Prediction
	4.3 Hotel Score Prediction

	5 Conclusions

