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Abstract
First-order logic has been applied successfully to real-world configuration problems through Answer Set Programming (ASP).
To extend the application scope of ASP, lazy grounding and domain-specific heuristics were introduced. Domain-specific
heuristics support the problem solver in selecting choices aiming at minimizing the search effort. Dynamic heuristics exploit
the current state of the problem-solving process and assign priorities to choices. Depending on the domain, heuristics must
be formulated which reason about the properties of sets of atoms. E.g., how many components are connected to a particular
type of component, or what is the current sum/maximum/minimum of a physical quantity (power, voltage, current, etc.) of
a particular subconfiguration? For expressing such queries, ASP offers aggregates. The semantics of these aggregates are
defined w.r.t. a complete solution. However, in dynamic heuristics, the problem solver has to reason about partial solving states.
In this paper, we extend heuristics in ASP with dynamic aggregates and show their implementation as well as effectiveness.
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1. Introduction
Answer Set Programming (ASP) [1] is a declarative
knowledge representation and reasoning framework
based on first-order logic that has been applied success-
fully to a variety of industrial problems [2] such as con-
figuration [3]. Current ASP solvers transform first-order
descriptions of problem instances into propositional logic
(called grounding) and apply a propositional problem
solver (e.g., backtracking search) to generate solutions.
However, applications manifested two issues with the
ground-and-solve approach. The first issue is the so-
called grounding bottleneck: Large problem instances
cannot be grounded by modern grounders like gringo [4]
in acceptable time and space. The second issue is that,
even if the problem can be grounded, computation of
answer sets might take considerable time, as indicated
by ASP competition reports [5].

Both issues were recently addressed. First, to over-
come the grounding bottleneck, lazy grounding ASP sys-
tems interleave grounding and solving to instantiate and
store only relevant parts of the ground program in mem-
ory. The second performance-related issue is tackled by
modern solvers using various techniques, among which
domain-specific heuristics play a central role.

The work in [6] extends existing approaches by (1) in-
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troducing dynamic heuristics and (2) their exploitation in
a lazy-grounding ASP system. The ASP system extended
by this approach isAlpha [7], the most actively developed
lazy-grounding system available. Dynamic heuristics al-
low reasoning about the current problem-solving state
represented by a partial assignment of truth values to
some (but not all) atoms of a logical specification.

This reasoning may require the application of aggrega-
tion. E.g., during the configuration process of electronic
equipment, an effective heuristic for problem-solving can
say: Given the current state of problem-solving, select the
most power-hungry, currently unconnected electronic
board, and connect this board to the rack with minimal
power consumption (i.e., the rack for which the total
power consumption of all boards currently connected is
minimal).

However, state-of-the-art ASP aggregates are evalu-
ated only w.r.t. a complete assignment of truth values, i.e.,
only if every atom (proposition) is true or false, so that
their value cannot change during solving. For our rack
configuration example, this semantics implies that the
power consumption of a rack can only be determined if
the assignment of boards to a rack is final. Consequently,
ASP aggregates like sum cannot be employed in dynamic
heuristics to reason about the current search state where
board assignments to a rack are not completed.

In this paper, we introduce dynamic aggregates, which
are computed w.r.t. the current state of problem-solving.
Consequently, such aggregates can be exploited in dy-
namic heuristics to steer the reasoning process depending
on the current state of problem-solving.

The paper is organized as follows. In Section 2, we give
a brief introduction to ASP and lazy grounding. Section 3
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provides a driving example and introduces dynamic ag-
gregates informally. In Section 4, we present the syntax
and semantics of dynamic aggregates. Section 5 shows
the implementation and integration of dynamic aggre-
gates using a query-driven approach. Finally, in Section 6,
we present the results of our evaluation.

2. Answer Set Programming
Answer Set Programming (ASP) [1] is an approach to
declarative programming. Instead of stating how to solve
a problem, the programmer formulates the problem as a
logic program specifying the search space and the prop-
erties of valid solutions. An ASP solver then finds models
(so-called answer sets) for this logic program, which cor-
respond to solutions for the original problem.

2.1. Syntax
ASP offers a rich input language, of which we introduce
only the core concepts needed in this paper. For a com-
prehensive definition of ASP’s syntax and semantics, we
refer to [8].

Let ⟨𝒱 , 𝒞 ,ℱ ,𝒫 ⟩ define a first-order language, where
𝒱 is a set of variable symbols, 𝒞 is a set of constant
symbols, ℱ is a set of function symbols, and 𝒫 is a set of
predicate symbols.

A classical atom is of the form 𝑝(𝑡1, … , 𝑡𝑛), where 𝑝 ∈ 𝒫
is a predicate symbol and 𝑡1, … , 𝑡𝑛 are terms. Each variable
𝑣 ∈ 𝒱 and each constant 𝑐 ∈ 𝒞 is a term. Furthermore,
for 𝑓 ∈ ℱ, 𝑓 (𝑡1, … , 𝑡𝑛) is a function term. ASP also allows
built-in atoms, such as equality or comparison predicates,
which take arithmetic terms as arguments, e.g., X∗∗2 > 1
where ∗∗ is the power operator.

An answer-set program 𝑃 is a finite set of rules of the
form

ℎ ← 𝑏1, … , 𝑏𝑚, not 𝑏𝑚+1, … , not 𝑏𝑛. ⟨1⟩

where ℎ and 𝑏1, … , 𝑏𝑛 are atoms and not is negation as
failure (a.k.a. default negation), which refers to the ab-
sence of information, i.e., an atom is assumed to be
false as long as it is not derived by some rule. A lit-
eral is either an atom 𝑎 or its negation not 𝑎. Given a
rule 𝑟 of the form ⟨1⟩, head(𝑟) = {ℎ} is called the head
of 𝑟, and body(𝑟) = {𝑏1, … , 𝑏𝑚, not 𝑏𝑚+1, … , not 𝑏𝑛} is
called the body of 𝑟. By body+(𝑟) = {𝑏1, … , 𝑏𝑚} and
body−(𝑟) = {𝑏𝑚+1, … , 𝑏𝑛} we denote the positive and neg-
ative atoms in the body of 𝑟, respectively. A rule 𝑟 where
head(𝑟) = ∅, e.g., ← b., is called constraint. A rule 𝑟
where body(𝑟) = ∅, e.g., h ← ., is called fact. In facts the
arrow can be omitted. A rule is ground if all its atoms are
variable-free. A ground program comprises only ground
rules.

2.2. Semantics
Given a program 𝑃, the Herbrand universe of 𝑃, denoted
by 𝑈𝑃, consists of all integers and of all ground terms con-
structible from constant symbols and function symbols
appearing in 𝑃. The Herbrand base of 𝑃, denoted by 𝐵𝑃,
is the set of all ground classical atoms that can be built
by combining predicates appearing in 𝑃 with terms from
𝑈𝑃 as arguments [8].

A substitution 𝜎 is a mapping from variables 𝒱 to ele-
ments of the Herbrand universe 𝑈𝑃 of a program 𝑃. Let
𝑂 be a rule, an atom, or a literal, then by 𝑂𝜎 we denote
a rule, atom, or literal obtained by replacing each vari-
able 𝑣 ∈ vars(𝑂) by 𝜎(𝑣). The function vars maps any
rule, atom, literal, or any other object containing vari-
ables to the set of variables it contains. For instance,
vars(a(X)) = {X} and for a rule 𝑟1 ∶ a(X) ← b(X,Y).,
vars(𝑟1) = {X,Y}.

As usual, we assume rules to be safe, which is the
case for a rule 𝑟 if vars(𝑟) ⊆ ⋃𝑎∈body+(𝑟) vars(𝑎), e.g., all
variables must occur in the positive atoms of the rule,
which allows the grounding process to substitute them
with constants.

The (ground) instantiation of a rule 𝑟 equals 𝑟𝜎 for some
substitution 𝜎, which maps all variables in 𝑟 to ground
terms. The (ground) instantiation grd(𝑃) of a program 𝑃
is the set of all possible instantiations of the rules in 𝑃 [8].
Function symbols may cause the Herbrand base and the
full grounding of a program to be infinite. By restricted
usage of function symbols, answer-set programs can be
designed in a way that reasoning is decidable.

An Herbrand interpretation for a program 𝑃 is a set of
ground classical atoms 𝐼 ⊆ 𝐵𝑃. A ground classical atom
𝑎 is true w.r.t. an interpretation 𝐼, denoted 𝐼 ⊧ 𝑎, iff 𝑎 ∈ 𝐼.
A ground literal not 𝑎 is true w.r.t. an interpretation 𝐼,
denoted 𝐼 ⊧ not 𝑎, iff 𝐼 ⊭ 𝑎. A ground rule 𝑟 is satisfied
w.r.t. 𝐼, denoted 𝐼 ⊧ 𝑟, if its head atom is true w.r.t. 𝐼
(ℎ ∈ head(𝑟) ∶ 𝐼 ⊧ ℎ) whenever all body literals are true
w.r.t. 𝐼 (∀𝑏 ∈ body(𝑟) ∶ 𝐼 ⊧ 𝑏). An interpretation 𝐼 is a
model of 𝑃, denoted 𝐼 ⊧ 𝑃, if 𝐼 ⊧ 𝑟 for all rules 𝑟 ∈ grd(𝑃).

Given a ground program 𝑃 and an interpretation 𝐼,
let 𝑃 𝐼 denote the transformed program obtained from 𝑃
by deleting rules in which a body literal is false w.r.t. 𝐼:
𝑃 𝐼 = {𝑟 ∣ 𝑟 ∈ 𝑃, ∀𝑏 ∈ body(𝑟) ∶ 𝐼 ⊧ 𝑏}.

An interpretation 𝐼 of a program 𝑃 is an answer set of 𝑃
if it is a subset-minimal model of grd(𝑃)𝐼, i.e., 𝐼 is a model
of grd(𝑃)𝐼 and there exists no 𝐼 ′ ⊊ 𝐼 that is a model of
grd(𝑃)𝐼.

2.3. Notation
In this section, we introduce some notation that will be
used later in the article.

An assignment 𝐴 over 𝐵𝑃 is a set of signed literals T 𝑎,
F 𝑎, or M 𝑎, where T 𝑎 and F 𝑎 express that an atom 𝑎



is true and false, respectively, and M 𝑎 indicates that 𝑎
“must-be-true”. M means that an atom must eventually
become true by derivation in a correct solution extending
the current partial assignment, but no derivation has yet
been found that would make the atom true. E.g., given
constraint ← not b. we know that atom b must be true
and has to eventually become true by derivation. Intu-
itively, T 𝑏 ∈ 𝐴 means that 𝑏 is true and justified, i.e.,
derived by a rule that fires under 𝐴, while M 𝑏 ∈ 𝐴 only
indicates that 𝑏 is true but potentially not derived. Let
𝐴𝑠 = {𝑎 ∣ 𝑠 𝑎 ∈ 𝐴} for 𝑠 ∈ {F,M,T} denote the set of atoms
occurring with a specific sign in assignment 𝐴. We as-
sume assignments to be consistent, i.e., no negative literal
may also occur positively (𝐴F ∩ (𝐴M ∪ 𝐴T) = ∅), and
every positive literal must also occur with must-be-true
(𝐴T ⊆ 𝐴M). The latter condition ensures that assign-
ments are monotonically growing (w.r.t. set inclusion) in
case an atom that was must-be-true becomes justified by
a rule deriving it and hence changes to true.

An assignment 𝐴 is complete if every atom in the Her-
brand base is assigned true or false (∀𝑎 ∈ 𝐵𝑃 ∶ 𝑎 ∈
𝐴F ∪ 𝐴T). An assignment that is not complete is par-
tial.

Many useful language constructs have been intro-
duced to extend the basic language of ASP defined in
Sections 2.1 and 2.2. We discuss such extensions only
briefly and refer to [8] and [1] for full details.

A cardinality atom is of the form
lb {𝑎1 ∶ 𝑙11 , … , 𝑙𝑚1 ; … ; 𝑎𝑛 ∶ 𝑙1𝑛 , … , 𝑙𝑚𝑛} ub,
where, for 1 ≤ 𝑖 ≤ 𝑛, 𝑎𝑖 ∶ 𝑙1𝑖 , … , 𝑙𝑚𝑖 represents a con-

ditional literal in which 𝑎𝑖 (the head of the conditional
literal) is a classical atom and all 𝑙𝑗𝑖 are literals, and lb
and ub are integer terms indicating a lower and an upper
bound, respectively. If one or both of the bounds are not
given, their defaults are used, i.e., 0 for lb and∞ for ub. A
cardinality atom is satisfied if lb ≤ |𝐶| ≤ ub holds, where
𝐶 is the set of head atoms in the cardinality atom that are
satisfied together with their conditions (e.g., 𝑙1𝑖 , … , 𝑙𝑚𝑖 for
𝑎𝑖).

As an extension of cardinality atoms, ASP also sup-
ports aggregate atoms that apply aggregate functions
like count or sum to sets of literals. An aggregate atom is
satisfied if the value computed by the aggregate function
respects the given bounds, e.g., 1 = #sum{1 ∶ a; 2 ∶ b} is
satisfied if a but not b is true.

2.4. Lazy Grounding
Lazy grounding is an approach that interleaves the solv-
ing and grounding phases, such that computations are
guaranteed to yield all answer sets. The foundation for
lazy grounding is known as the computation sequence [9].
A computation sequence S = ⟨𝑆0, 𝑆1, … , 𝑆𝑛⟩ is a sequence
of partial assignments that is monotonically growing
(w.r.t. set inclusion). Every element 𝑆𝑖 of the sequence

represents the state of the computation at step 𝑖. The first
element of the sequence is empty (𝑆0 = ∅), and every
other element 𝑆𝑖 contains the signed literals that can be
derived from the preceding partial assignment 𝑆𝑖−1 in the
program 𝑃.

Since each element of a computation sequence is a
partial assignment containing signed literals, and the se-
quence is monotonically growing, each 𝑆𝑖 contains atoms
assigned T that will remain true in all extensions of 𝑆𝑖,
and atoms assigned F that will definitely remain false in
all extensions of 𝑆𝑖.

Computation sequences require a normal logic pro-
gram as input (i.e., rules of the form ⟨1⟩ without cardi-
nality atoms and aggregate atoms, cf. [9, 10, 7]). Hence
lazy grounding systems usually only accept normal logic
programs or, in the case of Alpha, rewrite enhanced ASP
constructs like aggregates into normal rules.

A rule 𝑟 is said to be applicable in 𝑆𝑖 if {T 𝑎 ∣ 𝑎 ∈
body+(𝑟)} ⊆ 𝑆𝑖 and {M 𝑎 ∣ 𝑎 ∈ body−(𝑟)} ∩ 𝑆𝑖 = ∅, i.e., if
the positive body is satisfied and 𝑆𝑖 does not contradict the
negative body. For every applicable rule 𝑟 in 𝑆𝑖 without
a negative body, the partial assignment 𝑆𝑖 is extended to
𝑆𝑖+1 by T head(𝑟).

Based on the fact that the computation sequence only
needs to know those ground rules that are applicable only
those rules are grounded, whose positive body holds in
the current partial assignment.

Each applicable rule 𝑟 in 𝑆𝑖 with a non-empty negative
body constitutes an active choice point. Given a set of
choice points for 𝑆𝑖 the problem solver has to decide
which rule to apply. Applying an applicable rule 𝑟 has
the consequence that 𝑆𝑖 is extended to 𝑆𝑖+1 by adding
T head(𝑟) and F 𝑎 for all 𝑎 ∈ body−(𝑟), i.e., all atoms of
the negative body are assumed to be false.

In the following example in 𝑆0, Rule 1 is the only ap-
plicable rule. Consequently, 𝑆1 = {M x(1),T x(1)}. In
𝑆1 Rules 2 and 3 are applicable. If the solver decides to
apply Rule 2 then M b(1), T b(1) and F c(1) are added to
assignment 𝑆2 and therefore Rule 3 is not applicable in
𝑆2.

x(1) ← . % Rule 1
b(1) ← x(1), not c(1). % guessing b Rule 2
c(1) ← x(1), not b(1). % guessing c Rule 3

Deciding which rule to apply is based on heuristics
which may be general, i.e., designed for every ASP pro-
gram [11], or they may be domain-specific, e.g., designed
for a specific problem [6].

3. Example
As an introductory example, consider the following ASP
program. The idea is that for every number i ∈ {1, … , n}
the solver can decide either to assert b(i) or c(i). As an



example we set 𝑛 = 400. Let Bs and Cs be all the 𝑏/1 and
𝑐/1 atoms in an answer set of the example program. We
require that any answer set must fulfill the constraint
((∑b(i)∈Bs i) − (∑c(i)∈Cs i))2 ≤ 1, e.g., the difference be-
tween these two sums must be at most 1. We call this
problem the Balanced Sum Problem (BSP). The example
program comprises a guessing part and a part where solu-
tions are checked. Moreover, we may specify initial facts
like b(200) and b(201). In the worst case, 2398 guesses are
possible. To avoid a high number of possible guesses, we
can formulate heuristics that aid the solver in performing
correct guesses such that backtracking is minimized.

x(1..400). % initializing values from 1 to 400.
% guessing
b(X) ← x(X), not c(X). % guessing b
c(X) ← x(X), not b(X). % guessing c
% initial imbalance
b(200). b(201).
% check solution
sumB(Sum) ← Sum = #sum{Y ∶ b(Y)}.
sumC(Sum) ← Sum = #sum{Y ∶ c(Y)}.
% constrain difference between sums
← sumB(SB), sumC(SC), (SB − SC)∗∗2 > 1.
% heuristics
#heuristic b(X) ∶ % b-heuristic

x(X), not c(X), S = #sum{Y ∶ c(Y)},
Weight = X, Level = S. [Weight@Level]

#heuristic c(X) ∶ % c-heuristic
x(X), not b(X), S = #sum{Y ∶ b(Y)},
Weight = X, Level = S. [Weight@Level]

As an example, let us consider an instantiated
version of a heuristic for the partial assignment
𝑆1 = {M b(200),T b(200), M b(201), T b(201),M x(1),
T x(1), … ,M x(400),T x(400)}, i.e., the partial assignment
comprising all initial facts which are true. For x(400) an
instance of the c-heuristic (including the evaluation of
the aggregate) is #heuristic c(400) ∶ x(400), not b(400),
401 = #sum{200, 201}, [400@401].

Heuristic directives assign a weight and a level to a
rule which derives an atom. In this instantiated heuristic
directive, the weight is 400, and the level is 401. All other
instantiated c-heuristics and b-heuristics have either a
lower level or lower weights in case of the same level. For
performing choices, guesses are preferred with higher
levels, and higher weights are prioritized among guesses
with the same level. Consequently, the solver will apply
a rule which asserts c(400).

The novel concept of this paper is that aggregates
in heuristic directives like #sum are evaluated w.r.t. the
current assignment. For the partial assignment 𝑆1, the
aggregate #sum{Y ∶ b(Y)} in the c-heuristic is evaluated as
#sum{200, 201} since 𝑆1 contains the atoms T b(200) and
T b(201). Applying the aggregate function #sum derives
401. Note, in the partial assignment 𝑆1, the c-heuristic is

not applicable if the #sum aggregate is evaluated under the
standard declarative semantics of ASP. This semantics
assumes that the truth assignments for the b/1 atoms are
fixed.

By adding the shown heuristic directives to the exam-
ple program, wrong choices, which lead to backtracks,
can be avoided for the depicted problem instance. The
following section will present the syntax and semantics
of heuristics that employ dynamic aggregates.

4. Syntax and semantics
In [6] domain-specific heuristics for answer set pro-
gramming were proposed which allow to reason about
the current state of the problem-solving process. This
state is reflected by the latest partial assignment. Con-
sequently, heuristic directives are evaluated w.r.t. this
assignment. However, in the declarative semantics of
ASP the truth value of aggregates as presented in the ex-
ample (e.g., S = #sum{Y ∶ b(Y)}) can only be determined
w.r.t. a fixed set of truth assignments for atoms. In the
declarative semantics of ASP assigning a truth value
to S = #sum{Y ∶ b(Y)} implies that the set of b/1 atoms
which are assigned to true is fixed, i.e., rules must not be
applied which assert additional b/1 atoms to true.

However, in the spirit of [6] we propose to evaluate ag-
gregates w.r.t. the latest partial assignment 𝑆𝑖 to evaluate
heuristic directives for determining the choice, i.e., which
rule to apply to compute the next partial assignment.

Definition 1 (Heuristic Directive). A heuristic direc-
tive is of the form ⟨2⟩, where 𝑎𝑖 (0 ≤ 𝑖 ≤ 𝑛) are atoms and
𝑤 and 𝑙 are integer terms.

#heuristic 𝑎0 ∶ 𝑎1, … , 𝑎𝑘,
not 𝑎𝑘+1, … , not 𝑎𝑛.[𝑤@𝑙] ⟨2⟩

The heuristics’ head is given by 𝑎0 and its condition by
{𝑎1, … , 𝑎𝑘, not 𝑎𝑘+1, …, not 𝑎𝑛}.

We call an atom in a heuristic directive a heuristic
atom. We now describe our semantics, beginning with
the condition under which a heuristic atom is satisfied.

Definition 2 (Satisfying a Heuristic Atom). Given a
ground heuristic atom 𝑎 and a partial assignment 𝐴, 𝑎 is
satisfied w.r.t. 𝐴 iff 𝑎 ∈ 𝐴T, i.e., atom a is assigned to true.

The head of a heuristic directive 𝑑 of the form ⟨2⟩ is
denoted by head(𝑑) = 𝑎0, its weight by weight(𝑑) = 𝑤
if given, else 0, and its level by level(𝑑) = 𝑙 if given, else
0. The (heuristic) condition of a heuristic directive 𝑑 is
denoted by cond(𝑑) ∶= {𝑎1, … , 𝑎𝑘, not 𝑎𝑘+1, … , not 𝑎𝑛},
the positive condition is cond+(𝑑) ∶= {𝑎1, … , 𝑎𝑘} and the
negative condition is cond−(𝑑) ∶= {𝑎𝑘+1, … , 𝑎𝑛}.

Whether a heuristic directive is satisfied depends on
whether the atoms occurring in the directive are satisfied.



Definition 3 (Satisfying a Heuristic Directive).
Given a ground heuristic directive 𝑑 and a partial
assignment 𝐴, cond(𝑑) is satisfied w.r.t. 𝐴 iff: every
𝑎 ∈ cond+(𝑑) is satisfied and no 𝑎 ∈ cond−(𝑑) is satisfied.

Intuitively, a heuristic condition is satisfied iff its posi-
tive part is fully satisfied and none of its default-negated
literals is contradicted.

Definition 4 (Applicability of a Heuristic Directive).
A ground heuristic directive 𝑑 is applicable w.r.t. a partial
assignment 𝐴 and a ground program 𝑃 iff: cond(𝑑)
is satisfied, ∃𝑟 ∈ 𝑃 s.t. head(𝑟) = head(𝑑) and {T 𝑎 ∣
𝑎 ∈ body+(𝑟)} ⊆ 𝐴 and {M 𝑎 ∣ 𝑎 ∈ body−(𝑟)} ∩ 𝐴 = ∅,
and head(𝑑) ∉ (𝐴T ∪ 𝐴F).

Intuitively, a heuristic directive is applicable iff its con-
dition is satisfied, there exists a currently applicable rule
that can derive the atom in the heuristic directive’s head,
and the atom in its head is assigned neither T nor F. If
the atom in the head is assignedM, the heuristic directive
is still applicable, because any atom with the non-final
truth value M must be either T or F in any answer set.

What remains to be defined is the semantics of weight
and level. Given a set of applicable heuristic directives,
one directive with the highest weight will be chosen from
the highest level.

Definition 5 (Heuristics Eligible for Choice).
Given a set 𝐷 of applicable ground heuristic directives,
the subset eligible for immediate choice is defined as
maxpriority(𝐷) in two steps:

maxlevel(𝐷) ∶= {𝑑 ∣ 𝑑 ∈ 𝐷 and
level(𝑑) = max𝑑∈𝐷 level(𝑑)}

maxpriority(𝐷) ∶= {𝑑 ∣ 𝑑 ∈ maxlevel(𝐷) and
weight(𝑑) = max𝑑∈maxlevel(𝐷)weight(𝑑)}

After choosing a heuristic using maxpriority, a solver
makes a decision on the directive’s head atom. Other solv-
ing procedures, e.g., deterministic propagation, are unaf-
fected by processing heuristics. In case no heuristic di-
rective is applicable or multiple directives have the same
maxpriority the solver’s default heuristic (e.g., VSIDS)
makes a choice as usual.

Aggregate atoms may be employed in the condition of
a heuristics directive. An aggregate atom is of the form

𝑠1 ≺1 𝛼 {t ∶ 𝑙11 , … , 𝑙𝑚1 ; … ;
t ∶ 𝑙1𝑛 , … , 𝑙𝑚𝑛} ≺2 𝑠2

where t corresponds to a variable, an integer, or a ground
atom. We call t an aggregate term. 𝛼 refers to some
aggregate function that is applied to the multiset of ag-
gregate terms t that remain after evaluating the condition

Figure 1: Integration of Alpha and Prolog

𝑙1𝑖 , … , 𝑙𝑚𝑖 . The aggregate terms are treated as members of
a mulitset. Duplicates are allowed.1

The result of applying 𝛼 is exploited to evaluate the
comparison condition expressed by 𝑠1 ≺1 and ≺2 𝑠2.
These conditions may be omitted. 𝑠1, 𝑠2 are terms, e.g.,
numbers or variables. 𝑠1 ≺1 and ≺2 𝑠2 are called guards.
For the guard operator ≺ comparison operators such as
=, ≠, ≤, ≥, <, > may be employed.

If in t ∶ 𝑙1𝑖 , … , 𝑙𝑚𝑖 of an aggregate atom the term t is a
variable, then this variable must be safe. This variable
is safe if it is contained in the condition or it is a global
variable. A variable in a heuristic directive 𝑑 is global if
it appears in a classical atom in cond+(𝑑) or in a guard
of an aggregate atom of 𝑑 where ≺ corresponds to =.

We allow aggregate functions 𝛼 like #count (the num-
ber of aggregate terms) or #sum (sum of aggregate terms).

An aggregate atom is satisfied if the value computed
by the aggregate function respects the given bounds,
e.g., 1 = #sum{1 ∶ a; 1 ∶ b} is satisfied if either a
or b is true. Let us assume that the facts a(1). a(2).
b(5). are given. Evaluating the aggregate atom X =
#sum{Y ∶ a(Y);Y ∶ b(Y)} will bind 8 to variable X.

5. Integration into a
lazy-grounding ASP solver

In search for answer sets, Alpha applies heuristics to se-
lect an active choice point. In contrast to [6], the heuristic
directives are transformed to Prolog queries and evalu-
ated by a Prolog interpreter. We have chosen this ap-
proach to implement the efficient evaluation of dynamic
aggregates in heuristic directives.

Figure 1 shows the integration of Alpha with Prolog.
Query-driven heuristics are employed by Alpha if the

-uqh flag is set. The heuristic directives are removed from
the input program and translated into internal data struc-
tures. These data structures comprise all the necessary
1Note that this semantics differs from the ASP semantics of aggre-
gates employed in rules. First, for our prototypical system t is a
single term and not a tuple of terms for simplicity reasons. Sec-
ond, we allow a multiset of aggregate terms instead of a set, i.e.,
we do not remove duplicates. Sets and multisets can be easily im-
plemented. However, the removal of duplicates may introduce
additional computational costs.



information for evaluating the heuristic directives, such
as their head atom, variables, atoms occurring inside the
heuristic, and crucially, their respective Prolog query.
Thus, the heuristic directives are separately stored from
the program and are all evaluated whenever a choice is
made.

As an example, the following heuristic directive

#heuristic c(X) ∶
x(X), not b(X), S = #sum{Y ∶ b(Y)},
W = S ∗ 10 + X. [W@1]

is translated to the following Prolog query:
x(X), \+ b(X),

aggregate_all(sum(Y), b(Y), _0), S is _0 ,
WEIGHT is S ∗ 10 + X , LEVEL is 1 , \+ c(X).

The Prolog predicate aggregate_all(+Template ,
∶ Goal , −Result) aggregates bindings in Goal according
to Template . Possible template values comprise the
aggregate functions, count , sum(X), max(X), and min(X).
The variable in sum(X), max(X), and min(X) corresponds to
the variable serving as aggregate term and is instantiated
by querying Goal which contains this variable. The
result is bound to an anonymous variable (_0 in our
example) and exploited in the aggregates’ guards. Any
negated atom is preceded by the operator \+, equivalent
to not for our purposes. Finally, the negated head atom
of the heuristic directive is added to the query to exclude
already assigned head atoms.

During problem-solving, Alpha synchronizes the as-
signments with the database of the Prolog system. Every
atom assigned as true by Alpha is inserted in the Prolog
database. If such atoms are removed from the assignment,
the corresponding facts are retracted from the Prolog
database. Atoms assigned to false or must-be-true by
Alpha are not considered since the heuristic directives
are evaluated on atoms assigned to true.

The current implementation of Alpha sources and
binaries which implement query-driven heuristics can
be found on https://github.com/tilmanni/Alpha/tree/
domspec_heuristics_extended_prolog.

6. Evaluation
We tested our approach to declarative domain-specific
query-driven heuristics by creating heuristics for two
example domains and applying the extended Alpha sys-
tem. The two concrete domains under investigation were
the Partner Units Problem (PUP) and the Balanced Sum
Problem (BSP) introduced in Section 3.

These two problems are abstracted variants of typical
configuration (sub)problems experienced in more than
25 years of applying AI technology in the automated con-
figuration of electronic systems [3]. To put ASP systems
under stress, we used problem encodings and instances of

varying sizes, where the larger instances were challeng-
ing to ground and/or to solve. More precisely, traditional
grounders excessively consumed space or time when
grounding these instances, and/or solving was infeasible
without domain-specific heuristics.

6.1. Experimental setup
Encodings (including heuristics) and instances used for
our experiments are available online.2

Alpha was used without justification analysis [12]
(command-line argument -dj) and without support for
negative integers in aggregates (-dni). Apart from that,
Alpha was used in its default configuration. The JVM
running Alpha was called with command-line parame-
ters -Xms1G -Xmx24G , thus initially allocating 1 GiB for
Java’s heap and setting the maximum heap size to 24 GiB.
The Prolog interpreter swi-prolog3 [13] version 9.0.4 was
integrated with Alpha via jpl.4 For comparison, clingo5

[14] was used in version 5.6.2.
Each of the machines used to run the experiments ran

Ubuntu 22.04.2 LTS Linux and was equipped with two
Intel® Xeon® E5-2650 v4 @ 2.20GHz CPUs with 12 cores.
Hyperthreading was disabled and the maximum CPU
frequency was set to 2.90GHz. Scheduling of benchmarks
was done with slurm6 version 21.08.5. runsolver7 v3.4.1
was used to limit time consumption to 10 minutes per
instance and memory to 32 GiB. Care was taken to avoid
side effects between CPUs, e.g., by requesting exclusive
access to an entire machine for each benchmark.

All solvers were configured to search for the first
answer set of each problem instance. Finding one or
only a few solutions is often sufficient in industrial use
cases since solving large instances can be challenging
[3]. Therefore, the domain-specific heuristics used in
the experiments are designed to help the solver find one
answer set that is “good enough”, even though it may
not be optimal.

6.2. Case Study 1: The Partner Units
Problem (PUP)

The Partner Units Problem (PUP) [15] is an abstracted
version of industrial configuration problems. In partic-
ular, PUP deals with configuring parts of railway safety
systems. This problem is a benchmark problem for ASP
systems since its challenges for grounding and solving.

2https://github.com/tilmanni/Alpha/tree/domspec_heuristics_
extended_prolog/Evaluation

3https://www.swi-prolog.org/
4https://jpl7.org/
5https://potassco.org/clingo/
6https://slurm.schedmd.com/
7https://github.com/utpalbora/runsolver

https://github.com/tilmanni/Alpha/tree/domspec_heuristics_extended_prolog
https://github.com/tilmanni/Alpha/tree/domspec_heuristics_extended_prolog
https://github.com/tilmanni/Alpha/tree/domspec_heuristics_extended_prolog/Evaluation
https://github.com/tilmanni/Alpha/tree/domspec_heuristics_extended_prolog/Evaluation
https://www.swi-prolog.org/
https://jpl7.org/
https://potassco.org/clingo/
https://slurm.schedmd.com/
https://github.com/utpalbora/runsolver
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Figure 2: Sample PUP instance and one of its solutions [6]

Definition 6 (PUP). The input to the (PUP) is given by
a set of units 𝑈 and a bipartite graph 𝐺 = (𝑆, 𝑍 , 𝐸) (also
called the input graph), where 𝑆 is a set of sensors, 𝑍 is a
set of zones, and 𝐸 is a relation between 𝑆 and 𝑍.

The task is to find a partition of vertices 𝑣 ∈ 𝑆∪𝑍 into bags
𝑢𝑖 ∈ 𝑈 such that for each bag the following requirements
hold: (1) the bag contains at most UCAP vertices from 𝑆
and at most UCAP vertices from 𝑍; and (2) the bag has at
most IUCAP adjacent bags, where the bags 𝑢1 and 𝑢2 are
adjacent whenever 𝑣𝑖 ∈ 𝑢1 and 𝑣𝑗 ∈ 𝑢2 for some (𝑣𝑖, 𝑣𝑗) ∈ 𝐸.

We say a unit 𝑢𝑖 is connected to a sensor/zone iff the
sensor/zone is in 𝑢𝑖. Two units are connected iff they are
adjacent. Connections correspond to physical connec-
tions in an assembled configuration.

Figure 2 shows an example of a PUP instance. The
bipartite graph comprises six sensors and six zones. Each
of the three units can be adjacent to at most two other
units, and each unit can contain at most two sensors and
two zones. Connections of sensors, zones, and units that
satisfy all PUP requirements are presented in Figure 2.

Encodings and instances. To show the application
and effectiveness of query-driven heuristics, we focus on
the PUP instances employed in the ASP competition [5].
Domain-specific heuristics allow exploiting knowledge
about properties of classes of problem instances. We
concentrate on the double and double-variant classes
of PUP instances. For these instances, domain-specific
heuristics were formulated.

Figure 3 shows the basic structure of the double in-
stances. There are two rows of rooms connected by doors.
Each room corresponds to a zone, and each door repre-
sents a sensor. For each room and the doors of this room,
there is an edge in the bipartite graph 𝐺, i.e., the zone
and its doors are connected through an edge. The dou-
ble instances’ sizes vary depending on the number of
columns of rooms. The structure depicted in Figure 3
shows three columns of rooms. The bipartite graphs 𝐺
of the double-variant instances comprise the nodes and
edges of the double instances. However, each dotted
rectangle represents an additional zone (i.e., the dotted
rectangle clusters rooms). Each door (i.e., a sensor) next

Figure 3: Double and double-variant instances

to a dotted rectangle (i.e., a zone) is connected by an
edge in 𝐺. Note that there is no edge between a door
surrounded by a rectangle and the zone corresponding
to this rectangle.

Heuristics. The double PUP instances can be solved
efficiently without backtracking by formulating the fol-
lowing heuristic directives, which employ dynamic ag-
gregates.

#heuristic assigned_sensor_unit(S,U) ∶
assignable_sensor_unit(S,U),
not sensor_blocked_on_unit(S,U),
Deg_sensor_dyn =
#count{Z ∶ zone2sensor(Z, S),

assigned_zone_unit(Z, _)},
Forbidden_placement_total =
#max{N ∶ num_forbidden_places_of_sensors(S,N)},

Assigned_sensors_unit =
#count{SN ∶ assigned_sensor_unit(SN,U)},

Direct_con_zones =
#count{Z ∶ assigned_zone_unit(Z,U),

zone2sensor(Z, S)},
W =
Deg_sensor_dyn ∗ 10000+
Forbidden_placement_total ∗ 1000+
Assigned_sensors_unit ∗ 100+
Direct_con_zones ∗ 10.[W@0]

The atom assignable_sensor_unit(S,U) is true if a sen-
sor is ready to be assigned, i.e., if a sensor is connected to
a zone in the input graph and this zone is connected
to a unit. The atom sensor_blocked_on_unit(S,U) is
true if sensor 𝑆 cannot be connected to unit U. The
variable Deg_sensor_dyn is assigned to the number
of zones connected to sensor S in the input graph
and which are already assigned to a unit. The atom
zone2sensor(Z, S) encodes the edges of the input graph
(i.e., connections between zones and sensors). Values
of the variable Deg_sensor_dyn express the number of
constraints put on placing sensor S. We prefer con-
necting sensors to units with a higher number of con-
straints. The atom num_forbidden_places_of_sens(S,N)
represents the number of connections to units that are not
possible for 𝑆 for a given set of connections between sen-
sors, zones, and units (e.g., the configuration in a specific
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Figure 4: Resource consumption for solving each PUP Double instance

partial assignment). Rules compute different numbers
depending on the connections. We prefer connecting sen-
sors to units with a higher number of forbidden places
(i.e., connections). The variable Assigned_sensors_unit
counts the number of sensors connected to unit U. The
variable Direct_con_zones counts the number of zones
that are connected to unit U and which are connected to
sensor S in the input graph. All these numbers are added
with different weights resulting in the final weight of the
heuristic directive expressing the priority to connect S
and U. The design of the heuristic directive follows the
principle of preferring assignments of connections that
are most constrained in the spirit of heuristics of heuris-
tics for constraint satisfaction problems (CSPs) such as
“fail-first” or “degree” [16].

The second heuristic for assigning zones to units in
double PUP instances can be formulated shorter than the
presented one. We prefer assignments of zones to units
U, where the number of connected zones to U is high,
and the number of possible connections for sensors to U
and its adjacent units is large.

Results. Figure 4 shows performance data for experi-
ments with the double PUP instances. Cactus plots were
created in the usual way. In Figure 4c, the x-axis gives the
number of instances solved within real (i.e., wall-clock)
time, given on the y-axis. Similarly, Figure 4b shows
the number of guesses needed and Figure 4d shows the
memory consumed to solve the instances. In all plots,
data points are sorted by y-values. Figure 4a contains a
legend with all solver configurations. The number of in-
stances solved by each system is shown next to its name
(in parentheses).

One curve was drawn for each solver configuration:
Alpha with query-driven evaluation of domain-specific
heuristics (qh-alpha), and clingowith (h-clingo) andwith-
out domain-specific heuristics.

Figure 5 shows the results for the double-variant in-
stances in exactly the same way.
Alpha was used with encodings and heuristics de-

signed to achieve a good performance as described above.
clingo was used with the “new” encoding from the Fifth
ASP competition8 [17]. h-clingo used the domain-specific
heuristics devised in previous work [6]. Both systems
used the same sets of problem instances, which consisted
of 10 instances of the “double” class (with a number of
units ranging between 20 and 200), and 6 instances of the
“double-variants” class (with 30–180 units).

Substantial differences can be observed. The curves
for qh-alpha reach farthest to the right, meaning that
Alpha with query-driven heuristics solved the highest
number of instances (all 10 double, 5 of 6 double-variants).
clingo needed more time and thus solved fewer instances.
Apparently, the domain-specific heuristics used with h-
clingo were not useful for solving the double-variants
instances.

6.3. Case Study 2: The Balanced Sum
Problem (BSP)

The second evaluation case deals with the BSP. In con-
figuring, sub-problems arise where quantities such as
power consumption should be equally distributed.

8https://www.mat.unical.it/aspcomp2014/#Participants.2C_
Encodings.2C_Instance_Sets

https://www.mat.unical.it/aspcomp2014/#Participants.2C_Encodings.2C_Instance_Sets
https://www.mat.unical.it/aspcomp2014/#Participants.2C_Encodings.2C_Instance_Sets
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Figure 6: Resource consumption for solving each BSP instance

Encodings and instances. As the encoding of the
problem, we use the ASP code introduced in Section 3.
To strain the problem-solving, we increment the num-
ber of x/1 atoms and adapt the constant in the rules for
sumB/1 and sumC/1.

Results. Results obtained for BSP are shown in Fig-
ure 6, which was generated in the same way as for
PUP (cf. Section 6.2). clingo was used with the encod-
ing presented in Section 3, while Alpha used an alter-
native representation of the sum constraints that the
lazy-grounding system could evaluate more efficiently.

Since heuristics in the non-dynamic semantics are not
known for this problem, clingo was only used without
domain-specific heuristics. A hundred instances with
𝑛 ∈ {10, 20, … , 990, 1000} were used for the experiments.

In the BSP experiments, qh-alpha greatly outper-
formed clingo, showing the benefits of domain-specific
heuristics evaluated in a query-driven way within a lazy-
grounding ASP solver. While qh-alpha solved all 100 in-
stances within at most 2.33 minutes per instance, clingo
reaches the grounding bottleneck very quickly and is not
able to solve instances larger than 𝑛 = 140.



7. Conclusions and future work
Dynamic heuristics are an effective means for formu-
lating domain-specific heuristics to speed up problem-
solving. We have introduced dynamic aggregates, allow-
ing us to reason about the current problem-solving state.
E.g., we can reason about second-order properties of this
state, such as the number of atoms with specific proper-
ties or summing quantities over sets of atoms or comput-
ing the maximum/minimum of such quantities. We have
provided the prototypical implementation qh-alpha by
integrating Prologwith the lazy-grounding systemAlpha.
This system was evaluated on two problems related to
configuration, i.e., the double and double variant cases of
the well-known Partner Units Problem, and the Balanced
Sum Problem. However, dynamic aggregates are a gen-
eral concept that knowledge engineers can apply to other
problem domains. The evaluation shows that dynamic
aggregates employed in domain-specific heuristics can
considerably improve solving performance.

In futurework, we plan to develop further the prototyp-
ical implementation to incorporate standard semantics of
aggregate elements and terms. Additionally, exploring in-
corporating sign set semantics in query-driven heuristics
would further enhance expressiveness. Efforts should
also be made to utilize query-driven and regular domain-
specific heuristics concurrently. Finally, we recommend
evaluating the feasibility of applying the query-driven
approach to specific aggregates in normal rules as an
alternative to resource-intensive normalization.
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