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Abstract  
The advantages of hybrid intelligent systems are the common objective of the exploited model, 

the possibility of extension, and adaptation to loads through scaling. A smart system and 

algorithm for hybrid implementation of criterion evaluation and probabilistic dynamics of 

slobostructured geopolymer basic characteristics in real time are proposed based on the 

coupling of Markov chains and multicriteria optimization methods. The advantages of hybrid 

intelligent systems lie in the overall objective of the proposed model, scalability, and 

adaptability to workloads through scaling. The computational basis of calculations was the 

digitalization of technology study and analysis of physical-mechanical properties of 

geopolymers. The optimal composition of geopolymer structure elements for the given 

technology of their production was determined. The results of modeling the parameters of 

target functions have shown the advantages of the digitalization of technologies in the analysis 

of the physical and mechanical properties of geopolymers. The use of the analytical apparatus 

of Markov chains allowed us to rank the coefficients of multicriteria optimization and to 

increase the accuracy of calculations. 
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1. Introduction 

Geopolymers are a new class of building material designed to replace Portland cement. High carbon 

dioxide emissions accompany the production process of Portland cement. Modern cement plants 

worldwide emit about 1.5 billion tons of CO₂ annually. Geopolymers are becoming an environmentally 

friendly alternative to Portland cement. The properties and applications of geopolymers depend on their 

chemical structure and the ratio of components.  

The search for the optimum composition of geopolymers with high strength and performance 

properties is becoming an urgent problem in construction, architecture, and noise protection structures. 

The practical application of the results of studies on estimating geopolymer mixtures with given 

physical and mechanical properties is limited to the empirical selection of the composition of 

geopolymer components and the establishment of their variation ranges [1-4]. Reaching an extremum 

of one of the properties is accompanied by a decrease in the other properties by a particular value. 
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However, even in this case, the point of optimum formulation is determined with a large margin of 

error.  

Information processing based on mathematical modeling of the composition of geopolymer 

compositions is related to the selection of solutions in weakly structured problems with quantitative and 

qualitative parameters used as input variables and unstructured with qualitative description only. 

Considering their significance, collective decision-making based on quantitative and qualitative criteria 

is the main direction of research on creating an intelligent system of geopolymer characteristics to 

determine the ranking of criteria using Markov chains and subsequent multicriteria optimization. Such 

a hybrid model begins as a system using one autonomous method and ends up as a system using another 

way. The coupling of experimental results on geopolymer mixture formulation with their processing by 

methods of multicriteria optimization and Markov chains form the basis of the present work.  

The authors' main contributions are the following: 

• the methodology of complex use of Markov chains for determination of weight coefficients of 

multicriteria optimization was proposed; 

• modeling of target function parameters was performed, the results of which revealed the 

advantages of digitalization of technologies in the analysis of geopolymers properties;  

• based on the results of modeling, a scheme of hybrid implementation of criterion evaluation 

and probabilistic dynamics of weakly structured data was proposed. 

The aim of the work is not only to investigate the physical and technological parameters of different 

geopolymer compositions but also to simulate these properties using multicriteria Optimisation and 

Markov chains. 

2. Literary review 

The scientific field of intelligent material characterization systems using a hybrid implementation of 

Markov chains and criteria methods includes a synergistic combination of semantically integrated 

technologies defining the architecture and information exchange process and developing 

communication between the components.  

In [5-7], discrete Markov chains have been used for strategy development in various industries, 

in [8] medical research, [9] coronavirus control, [10] navigation systems, [11] international 

relations, [12] student performance evaluation, in [13] in structural transformations.  

Criterion methods are ways of describing alternative solutions in quantitative terms. Each decision 

leads to a particular outcome and therefore expresses the effectiveness of the process and its overall 

value. In [14] an evaluation of the composition of the main power chains of an asphalt concrete mixture 

based on discrete element methods is presented. In [15], a model for quantitative risk assessment of a 

structural hierarchical system used in the petrochemical industry is described. The use of fuzzy sets 

theory and genetic algorithms for the composition of communication services is presented in [16]. An 

optimality criterion-based algorithm for efficient optimization of laminated composite design using 

simultaneous resizing and scaling is presented in [17]. An assessment of the weighted effectiveness of 

lattice criterion methods is presented in [18]. A hybrid firefly-inspired approach for optimal web 

composition is described in [19]. Modeling the use of Markov chains covers a wide class of probabilistic 

dynamics, allowing one to trace trends and causes of changes in the properties of one's subject domain. 

However, it should be noted that the presented arsenal of Markov chain implementation tools lacks 

methodological unity and represents only some aspects that are treated separately and used for different 

purposes. Markov chains represent an integrated element of forecasting mechanics based on an 

integrated approach with criteria methods. 

The influence of material structure on the mechanical properties of geopolymers obtained using 

additive technologies is presented in [20]. Comparative studies using atomic force microscopy, X-ray 

spectroscopy, and Fourier transform infrared spectroscopy in [21], the influence of structure on the 

strength properties of geopolymer characteristics in [22]. Optimization of matrix compositions affecting 

the mechanical properties of geopolymer composites with short carbon fibers in [23], development of 

hybrid geopolymers for structural materials in [24]. The problem of optimizing the composition of 

geopolymer mixtures with the help of an intelligent system of multicriteria optimization and Markov 

chains is relevant and timely. 



The main multicriteria optimization techniques used in the cited sources are criterion convolution, 

main criterion optimization, and sequential concession method. The practical applications of criterion 

methods are wide and varied. The main disadvantage of global optimization for all geopolymer 

parameters is the high computational complexity of target functions. For most practical optimization 

problems, analytical expressions of limiting functions are unknown. Their general patterns, trends, and 

possibilities are considered and used in developing the hybrid implementation method.  

The unsolved part of the general problem of building intelligent systems of multicriteria 

multiobjective optimization is their equivalence when replacing the original criteria with general 

aggregated criteria, i.e., the exclusion of ranking of private criteria by their importance. This 

significantly reduces the accuracy of multicriteria optimization evaluation. 

3. Material and Method  

Geopolymers' physical-mechanical and technological properties were used as research materials: their 

quantitative values and priority probabilities of the main characteristics that ultimately determine the 

weight composition of the mixture components. The technology of geopolymers production, their 

formulation properties, chemical composition, and structure are presented, which are the basis of input 

information for the study of investigated properties. 

The main constituents of geopolymer are calcined clay, aluminosilicate materials, bentonite, and 

kaolin. The local concrete industry in the Czech Republic uses aggregates in the form of fine and coarse 

sand. The aggregates smaller than 4.75 mm are considered fine sand, and coarse sand larger than 4.75 

mm. The totals in the present work were obtained in crushed form. Most of the particles were gravel-

type with particle sizes ranging from 4.0 to 8.0 mm and fine sand with particle diameters of 0.063 mm 

to 2.0 mm [3]. Binder is provided České lupkové závody, a.s by commercial name Lk. In preparing the 

binder mixture based on the inorganic polymer, five parts by weight of cement and four pieces of 

activator are usually used. 

The mixtures were prepared by two following steps: (1) To begin with starting materials, a 

geopolymer mortar was prepared by mixing metakaolin-based geopolymer materials with an alkaline 

solution in a predetermined ratio (liquid to solid) by mechanical stirring for five minutes; (2) afterward, 

the aggregates were added to the geopolymer mortar mixture and the mixture was homogenized by the 

mechanical stirring with five minutes. Directly after mixing, the fresh mortar and concrete were poured 

into the plastic molds and vibrated for 2 minutes on the vibration table to remove air voids. Specimens 

were covered with a plastic bag for 24 hrs after casting. There are two ways to cure these samples: 

(i) These samples were cured at room temperature for 3 days after casting. Next, the pieces were 

removed from the molds and left in laboratory ambient conditions until the day of the test. The sample 

ages for the latter tests were 7, 14, and 28 days. 

(ii) All the mixtures were cured in an oven without delay at the specific curing temperature for 24 

hr and 48 hr ranging from 60 oC ÷ 90 oC. Samples were molded in the oven after the curing process and 

continued at ambient conditions for 2 days. 

The samples prepared with different mixing ratio aggregate content are presented in Table 1.  

4. Methodology 

The algorithm of implementation of multicriteria evaluation and probabilistic dynamics of weakly 

structured data developed according to the described methodology is presented in Fig.1. 

The algorithm has a cross-sectional structure and consists of a transient probability matrix algorithm 

using Markov chains and a criterion approach for determining the optimal geopolymer composition. 

Two aspects determine the dynamics of the process: the initial probability distribution and the transition 

probability matrix. Markov chains allow prioritizing each physical and mechanical parameter analyzed. 

Based on the calculations performed in the first part of the algorithm, we obtain the values of weight 

coefficients for each physical-mechanical parameter of the geopolymer. The use of Markov chains 

reveals the essence and interrelation of the main physical and mechanical parameters of geopolymers 

with the probability of their manifestation under various manifestations of the external environment. 

The novelty of Markov chains application is the replacement of equal-step time intervals by a discrete 



sequence of states. Markov chains are a powerful tool that provides fundamental reasoning of a decision 

on the basis of processing a large number of experimental data, some of which constitute a database of 

data obtained with one or another probability. Criterion evaluations are carried out based on Laplace, 

Wald, and Hurwitz criteria and additive, multiplicative and complementary multiplicative convolution. 

The general cross-validation algorithm takes into account the necessary operations and building blocks 

for constructing a hybrid model for determining the optimal geopolymer composition. Hybrid 

implementation of Markov chains combined with quantitative multicriteria optimization evaluations 

were used as research methods. 

 

Table 1  
Composition of fresh geopolymer concrete mixes 

Starting Materials (g) Aggregates(g)  

Fly ash Cement 
Alkaline 
solution 

Fine 
sand 

Coarse 
aggregate 

Water 
Samples 
names 

200 100 85 190 380 45 No. 1 
150 130 110 190 380 40 No. 2 
150 130 150 190 380 - No. 3 
100 150 180 190 380 - No. 4 
100 150 180 90 480 - No. 5 
100 90 140 90 580 - No. 6 

 

The conceptual model of multicriteria decision-making with fuzzy input data provides equality of 

weight coefficients of used criteria. The range of mechanical, thermal, and technological properties 

variation is determined by setting the extremum of the boundaries of the target values of the 

requirements. In this case, the existing methods have not considered the additional values found through 

empirical observation of the characteristics, which significantly reduces the effectiveness of 

optimization methods for multiple criteria since decision-making occurs under conditions of uncertainty 

and risk. Therefore, it is necessary to modernize the multicriteria optimization methods, which consist 

of the transition from vector to scalar optimization. This operation manifests convolution functions of 

qualitative criteria into a single generalizing one. 

The need to rank the weight coefficients of criteria requires the creation of an intelligent system in 

which the weight coefficients of criteria will be determined through the apparatus of Markov chains. 

The technology of intelligent systems is considered as an information-computing system with 

intelligent support. From these positions, the intelligent system of geopolymer characteristics is 

presented as a technical system capable of solving creative problems belonging to this subject area, 

which are stored in the knowledge base in the form of a functional semantic network. 

When building an intelligent system of geopolymers characteristics, the ability to solve problems by a 

declarative description of the condition, control the processes of computation in the dialogue mode, and 

synthesize computational algorithms capable of solving poorly formalized problems were taken into 

account. The main stages of building an intelligent system of geopolymer characteristics were: work 

with quantitative information, mathematical calculations, storage and exchange of information, and 

interpretation of results. The sequence of models underlying the intelligent system of geopolymers 

characteristics included Markov chains for determining the ranking of criteria, multicriteria 

optimization models, and cross-algorithms of their hybrid implementation. When ranking criteria using 

Markov chains each state of the parameters characterising the information situation of determining the 

mechanical properties of geopolymers for a given recipe for their preparation is assigned a certain 

probability, which is written as a line of the state matrix. The matrix of intensities or transitions of the 

system describes the wandering of the system over its states. The matrix is compiled so that the sum of 

the probabilities in the rows of the matrix is always equal to 1. In analysing the state matrix, all possible 

states of the parameters are enumerated with their probabilities, i.e. we are dealing with a stochastic 

transition matrix, the set of vectors inside which reflects the values of probabilities between gradations. 

These iterations are made for various combinations of parameters. Since the processes of obtaining the 

mechanical properties of geopolymers by changing their formulations do not have a constant time 



reference, we will use the stages that characterise the successive approximation of the states' approach 

to achieving the intended goal as time. In this case, we will replace the time with the step number. 

 

 
Figure 1: Hybrid implementation of criterion-based estimation and probabilistic dynamics of weakly 
structured data 

 

Making decisions under uncertain and risky conditions begins with constructing a payoff matrix. The 

payoff matrix is a simplified formal model of an actual conflict situation. Mathematically, formalisation 
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means that certain rules for the interaction of parties, choices of actions, and specific outcomes for the 

selected actions have been developed, and the necessary information is available. The term "payoff 

matrix" is synonymous with the term "performance matrix" [25]. 
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 (1) 

where q1,…,qi,…,qm – weight composition of sample components, Π1,…,Πi,…,Πn – analysed 

parameters (physical and mechanical, thermophysical, chemical, operational and technological, 

economic), δyij – relative deviation of the j-th parameter from the target. 

To determine the element of the matrix, one of the methods used is the estimation of a scalar vector 

– the method of selection by arranging objects according to the model. In this case, converting from 

estimating a vector to a scalar of the objects is necessary. The functions used in solving the multicriteria 

problem as convolution functions of the vector arguments yi = (yi1,…,yij,…, yin) into scalars δyij = f(yi). 

Vector argument convolution serves to reduce the number of criteria. Its purpose is to replace the 

original criteria with common criteria. The convolution operation is also called aggregation of partial 

criteria. The method is applied if private criteria can be ranked in descending order of their importance 

so that the importance of each pair of neighboring criteria does not differ significantly. Their 

normalization is applied to compensate for the small values of some criteria with large values in other 

criteria. The most straightforward scalar function that provides a linear order of objects is the penalty 

function, which is formed to the extreme importance of features. 
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where: Under the deviation Δyij from the ideal target by the j-th feature, we understand the absolute 

value of the difference Δyij = |yj – cj,extr|, where the ideal target when maximizing the j-th feature is 

denoted as cj,extr = yj,max, and when minimizing the j-th feature, as cj,extr = yj,min. The condition to correctly 

use function (9) is to employ a general absolute scale to measure all features. 

As for the sample, we want to refer to a class of objects characterized by a general target h = (c1,…, 

cj,…, cn). Let us introduce a measure of the overall deviation from the target, which allows finding the 

object closest to the sample and ranking the objects based on their distance to the target. Consider a 

sample with attributes formed by equality constraints (yj = cj). The deviation of the j-th feature in any 

direction from the specified point cj(cj ± Δyj) indicates the extent to which an object deviates from the 

target concerning this attribute. Then, the relative deviation of the j-th feature from the target is 

determined as, 
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where i – line number; j – matrix column number. 

As parameters, the best values of the analyzed parameters need to be chosen according to the 

perspective of the problem being addressed - these can be maximum, minimum, or average values from 

the experimental sample. With this approach, the formula will shift the integer quantities about the scale 

(0.1). However, with such parameter selection, the corresponding elements of the matrix coincide with 

the necessarily observed values, leading to. Using the convolution sum results in the corresponding 

feature being lost from the overall evaluation of the object, and using the convolution product will lead 



to a reduction to 0. A clear way to avoid such situations is to extend each feature's upper (maximum) 

or lower (minimum) limits by the same percentage. Below, each analyzed parameter's maximum 

(minimum) values have been increased (decreased) by 1%. 

Scalar optimization requires additional knowledge about the properties of the generalized objective 

functions, characteristics scale, and weighting coefficients. Since this knowledge is domain-specific, 

the order of objects in an n-dimensional space cannot be explicitly determined. Therefore, it is crucial 

to study the influence of the properties of the generalized objective functions, characteristic scales, and 

weighting coefficients on the optimization results. 

The following generalizing multicriteria utility functions have been used in theoretical analysis. 
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Additional multiplicative convolution 
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The best object is considered to have the minimum values of functions. 

Savage (Wald) criterion (minimum-maximum) 
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Laplace criterion (minimum-minimum) 
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Hurwitz criterion 
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where 0 ≤ ρ ≤ 1 – the indicator of pessimism, in the calculations, was taken equal to 0.5. 

The generalized additive function synthesizes the mass index of an object. It reflects the total value 

of individual characteristics, taking into account their importance. The direct product function 

prioritizes objects with consistent estimates for all indices, reflecting individual indices' homogeneity. 

The complementary product function has the opposite property. The advantage of a complementary 

product function over other product functions is its ability to accept zero feature values. With direct 

product functions, special care is needed to avoid scalar estimates of vectors with a component value 

of zero. 

The Savage criterion is a safety criterion, used to achieve maximally guaranteed results under the 

worst conditions. It accepts the maximum negative development of the situation, where a selected 

strategy avoids both excessive wins and losses. The worst-case option (the strategy of destiny) is taken 

into account. It can use when strategy selection errors could lead to catastrophic consequences when 

decisions are made only once and cannot be changed in the future. 

The Laplace criterion determines the strategy that maximizes gains in an uncertain state of the 

environment. The one with the lowest score according to the Laplace criterion is the best option. This 



criterion represents extreme optimism, not taking into account any negative outcomes except for the 

best one. This risk level from the negative impact of changes in the external environment is not 

considered. It should be noted that situations requiring the application of such a criterion are not limited 

only to optimists, who cannot be corrected but also to those who are trapped and must adhere to the 

principle of "do or break". The main drawback of this criterion relates to the fact that when finding the 

average payoff level, the offsetting effect of small payoffs can occur. 

The Hurwitz criterion guides the selection of recommended solutions based on a range of 

characteristic average outcomes between extreme pessimism and unrestrained optimism. The Hurwitz 

criterion is related to introducing a weight parameter 0 ≤ ρ ≤ 1, called the pessimism index. The 

assumption about the environment's behavior is that for any alternative choice, the worst choice is made 

with probability ρ, and the best choice is made with probability (1 – ρ). When ρ = 0 the Hurwitz criterion 

coincides with the Laplace criterion at maximum, and when ρ = 1 – with the Wald criterion at 

maximum. By using the Hurwitz criterion, we apply more significant information under the conditions 

of Wald, Savage, and Laplace. The main drawback of this criterion is that it only considers two 

outcomes – the worst and the best. 

Additionally, there is difficulty in specifying a pessimism index, ρ. The assumption is that every 

rational decision-maker must select appropriate maximum or minimum strategies. Caution is required. 

The hybrid intelligent system is a set of statistical simulation models in which the qualitative side of 

loosely structured problems and performance evaluation of processes for determining the mechanical 

properties of geopolymers are solved using Markov chains, while criterion methods are used for 

quantitative inference, and the final result best adapts the results of both applications. The quantitative 

side of loosely structured tasks and process performance evaluation is solved using Markov chains, 

while criterion methods are used for quantitative conclusions, and the final result best adapts the results 

of both applications.  

5. Experiment 

Compressive strength testing of mortar was performed as per AS 1012.9 using (Ø46 x 92) mm diameter 

cylindrical molds. ASTM C39 was conducted for compressive strength tests of hardened concrete, using 

(Ø100 × 200) mm cylinder molds. Three sample cylinders were tested, with the experimental values 

averaged. 

The density of geopolymer composite materials was measured according to standard CSN EN 1936 

and was estimated by dividing the mass of the sample by its volume. The testing samples with (Ø100 x 

200) mm dimensions were used to measure the density after 28 days. 

The compressive strength is measured on a VEB Werktoff Prufmaschinen Leipzig, 500 kN, ambient 

condition temperature 23 ± 2 oC, and relative humidity 65 %. The samples are cured and tested by the 

standard ASTM C 31/C 31M. Values are the averages of four separate tests. Data that deviated by more 

than 10 % were eliminated. The loading was displacement-controlled at a constant rate of 2.4 mm/min 

for all the tests. At least two cylinders are tested at the same age and the average strength is reported as 

the test result to the nearest 0.1 MPa. 

The modulus of elasticity by the equation: 

𝐸𝑐 = 2707√𝑓𝑐𝑚 + 5300, 
(10) 

where fcm is compressive strength, MPa. 

In order to obtain different mechanical properties of geopolymers, necessary for multicriteria 

optimization of their composition, the conditions of their curing were changed from the beginning of 

the process of formation of the geopolymer mixture structure after 7, 14, 28, 90 days. The obtained 

results of mechanical properties of geopolymers are presented in Table 2. 

6. Result and Discussion  

The presented methods and results of determining the mechanical properties of geopolymers through 

their relationship with the mechanism of structure formation were used as a basis for the construction 



of the transition probability matrix in Table 3, in which the current initial value of the probabilities of 

mechanical properties is represented as the first row of the matrix, and the subsequent ones - as rows 

denoting transitions to subsequent states. The sum of probabilities in each row is equal to 1. Processing 

of this matrix by the method of Markov chain calculation allows determining values of weighting 

coefficients j. 

 
Table 2  
Mechanical properties of geopolymer concrete 

Samples Density, 

, kg/m3 

Compressive strength,  

c, MPa 

Modulus of Elasticity 
in compression, GPa 

Splitting tensile 
strength, MPa 

7M1 2112 6.58 12.24 1.03 
14M1 2073 7.13 12.53 1.07 
28M1 2057 8.94 13.39 1.20 
90M1 1999 9.09 13.46 1.21 
7M2 2135 7.25 9.76 0.68 

14M2 2104 9.12 11.52 0.85 
28M2 2093 9.75 12.03 0.90 
90M2 2033 10.05 12.27 0.92 

7M3 2195 20.85 17.89 1.46 

14M3 2168 24.76 19.21 1.59 

28M3 2146 29.76 20.63 1.73 
90M3 2003 29.96 20.68 1.73 
7M4 2222 19.23 17.27 1.40 

14M4 2230 26.44 19.72 1.64 
28M4 2167 28.11 20.19 1.69 
90M4 1984 28.41 20.27 1.69 
7M5 2250 26.61 19.77 1.64 

14M5 2153 28.03 20.17 1.68 
28M5 2164 31.49 21.06 1.77 
90M5 2035 31.97 21.18 1.78 
7M6 2250 22.18 18.36 1.51 

14M6 2233 27.76 20.09 1.68 
28M6 2176 28.61 20.32 1.70 
90M6 2104 29.88 20.66 1.73 

Note: 7M1 means 7 is day curing, and M1 is mixture number 1. 

 
Table 3  
Transition probability matrix 

Current state 
 

Subsequent state 

Compressive 
strength 

Density 
Young's 
modulus 

Splitting 
tensile 

strength 

Compressive strength 0,4000 0,3000 0,2000 0,1000 
Density 0,5000 0,2500 0,1600 0,0900 

Young's modulus 0,5500 0,1500 0,1100 0,1900 
Splitting tensile strength 0,3500 0,1000 0,2000 0,3000 

 
The initial state vector in accordance with Table 3 can be written in the form: 

( )  1000.0,2000.0,3000.0,4000.00 =P  (11) 

The transition probability matrix has the following form: 





















=

3000.02500.01000.03500.0

1900.01100.01500.05500.0

0900.01600.02500.05000.0

1000.02000.03000.04000.0

T  (12) 

Multiplying the initial state vector P(0) by the matrix of transition probabilities T, we obtain the 

probability distribution at the first stage of decision-making P(1). In accordance with the methodology 

for calculating Markov chains, this probability will be equal to: 

( ) ( )  1350.0,1750.0,2350.0,4550.001 == TPP  (13) 

Multiplying the state vector P(1) by the matrix of transition probabilities T, we obtain the probability 

distribution at the next decision-making stage P(2): 

( ) ( )  1404.0,1816.0,2350.0,4430.012 == TPP  (14) 

Multiplying the state vector P(2) by the matrix of transition probabilities T, we obtain the probability 

distribution at the next decision-making stage P(3): 

( ) ( )  1421.0,1813.0,2329.0,4437.023 == TPP  (15) 

We repeat similar calculations until constant stationary values of the state vector are reached: 

( ) ( )  1424.0,1815.0,2327.0,4434.034 == TPP  (16) 

( ) ( )  1425.0,1814.0,2327.0,4434.045 == TPP  (17) 

( ) ( )  1425.0,1814.0,2327.0,4434.056 == TPP  (18) 

Starting from the fifth step, the values of the state vector stop changing. Thus, we have the following 

set of weight coefficients for the mechanical parameters of geopolymers: 

• compressive strength  = 0.4434 

• density  = 0.2327 

• Young's modulus  = 0.1814 

• Splitting tensile strength  = 0.1425 
The method of criteria convolution consists in transformation of vector criterion into scalar one and 

manifests itself in assigning coefficients of initial criteria of its subsequent ectremization on the set of 

admissible variants. In its sense, the convolution is a weighted average of the initial criteria. The 

condition for using convolution of criteria is their reduction to a single scale, i.e. normalisation. In 

single-criteria or scalar optimisation, a single objective function is defined over a set of decision options. 

In multicriteria optimisation there are several such functions at once, forming a vector criterion. 

The solution to a scalar optimisation problem is considered to be the element that maximises or 

minimises the target function. In the case of multicriteria vector optimisation, there is maximisation for 

one criterion and minimisation for the rest. The set of solutions is represented as a set of selectable 

vectors. 
 

  



Table 4.  
Matrix of dimensionless values of deviations of mechanical parameters from optimal values 

Samples 
Density, 

 =0.2327  

Compressive 
strength, 

 =0.4434 

Young's 
modulus, 

 =0.1814 

Splitting tensile 
strength, 

 =0.1425 

7M1 0.5171 1.0000 0.7868 0.6868 
14M1 0.3806 0.9786 0.7618 0.6511 
28M1 0.3247 0.9082 0.6879 0.5348 
90M1 0.1217 0.9023 0.6819 0.5258 
7M2 0.5976 0.9739 1.0000 1.0000 

14M2 0.4891 0.9012 0.8486 0.8479 
28M2 0.4506 0.8767 0.8048 0.8031 
90M2 0.2407 0.8650 0.7842 0.7852 
7M3 0.8075 0.4449 0.3010 0.3022 

14M3 0.7130 0.2928 0.1875 0.1859 
28M3 0.6361 0.0984 0.0655 0.0606 
90M3 0.1357 0.0906 0.0612 0.0606 
7M4 0.9020 0.5079 0.3543 0.3558 

14M4 0.9300 0.2275 0.1437 0.1411 
28M4 0.7095 0.1625 0.1033 0.0964 
90M4 0.0692 0.1509 0.0964 0.0964 
7M5 1.0000 0.2209 0.1394 0.1411 

14M5 0.6606 0.1656 0.1050 0.1053 
28M5 0.6990 0.0311 0.0285 0.0248 
90M5 0.2477 0.0124 0.0182 0.0159 
7M6 1.0000 0.3932 0.2606 0.2574 

14M6 0.9405 0.1762 0.1119 0.1053 
28M6 0.7410 0.1431 0.0921 0.0874 
90M6 0.4891 0.0937 0.0629 0.0606 

 
The methodology of calculations of parameters of target functions based on multi-criteria analysis using 

Laplace, Hurwitz, and Wald criteria requires consistent use and finding experimental values of 

deviations from the priority location of targets. The results of calculations and values of convolutions 

and criteria for determining the optimality of mechanical parameters of geopolymers are presented in 

Table 5 

The calculations were carried out in the Maple computer mathematics system. Table 4,5 presents 

the results of calculations by formulas (3–9) for each group of mechanical parameters. Based on expert 

assessments, the optimal values of the parameters were established (maximum or minimum values from 

Table 2): density - minimum; compressive strength, splitting tensile strength, Young's modulus - 

maximum; 

Table 5 uses the following designations: ya — additive convolution (4); yms - multiplicative 

convolution (5); ymd - additional multiplicative convolution (6); Vald - Wald criterion (7); Laplace - 

Laplace criterion (8); Hurwitz - Hurwitz criterion (9). The optimal values of the criteria and 

convolutions are highlighted in bold and in color. 

  



Table 5.  
Values of convolutions and criteria for determining the optimality of mechanical parameters of 
geopolymers 

Samples min max (max+min)/2 ya yms ymd 

7M1 0.5171 1.0000 0.7585 0.8043 0.7784 0.6213 
14M1 0.3806 0.9786 0.6796 0.7534 0.7083 0.5966 
28M1 0.3247 0.9082 0.6164 0.6792 0.6303 0.5535 
90M1 0.1217 0.9023 0.5120 0.6270 0.4982 0.5274 
7M2 0.5976 1.0000 0.7988 0.8948 0.8767 0.6566 

14M2 0.4891 0.9012 0.6951 0.7882 0.7666 0.6042 
28M2 0.4506 0.8767 0.6636 0.7540 0.7302 0.5862 
90M2 0.2407 0.8650 0.5528 0.6937 0.6223 0.5567 
7M3 0.3010 0.8075 0.5543 0.4828 0.4506 0.4102 

14M3 0.1859 0.7130 0.4494 0.3563 0.3114 0.3175 
28M3 0.0606 0.6361 0.3483 0.2121 0.1317 0.2018 
90M3 0.0606 0.1357 0.0982 0.0915 0.0875 0.0887 
7M4 0.3543 0.9020 0.6282 0.5501 0.5169 0.4562 

14M4 0.1411 0.9300 0.5356 0.3635 0.2714 0.3276 
28M4 0.0964 0.7095 0.4030 0.2697 0.1958 0.2502 
90M4 0.0692 0.1509 0.1101 0.1142 0.1089 0.1104 
7M5 0.1394 1.0000 0.5697 0.3760 0.2709 0.3389 

14M5 0.1050 0.6606 0.3828 0.2612 0.1973 0.2423 
28M5 0.0248 0.6990 0.3619 0.1852 0.0612 0.1814 
90M5 0.0124 0.2477 0.1300 0.0687 0.0277 0.0680 
7M6 0.2574 1.0000 0.6287 0.4910 0.4269 0.4185 

14M6 0.1053 0.9405 0.5229 0.3323 0.2227 0.3051 
28M6 0.0874 0.7410 0.4142 0.2651 0.1806 0.2474 
90M6 0.0606 0.4891 0.2749 0.1754 0.1203 0.1676 

 
Vald 

0.1357 
Laplas 
0.0124 

Hurwitz 
0.5062 

   

 

An analysis of the results obtained allows us to state that the depreciation of convolutions (additive, 

multiplicative, and additional multiplicative) gives an unambiguous conclusion - the optimal 

composition of 90M5. The Laplace criterion also indicates the composition of 90M5. The optimum 

composition of geopolymer mixtures was determined: 100 g of fly ash, 150 g of cement, 180 g of 

activator solution, 90 g of fine sand, 480 g of coarse aggregate. 

The Wald criterion gives the optimal composition 90M3, while it should be noted that the values of 

the convolutions and the Laplace criterion (minimum) for this composition are also close to the 

minimum values. Therefore, the 90M3 composition can be put in second place in terms of optimal 

mechanical properties. 

The Hurwitz criterion significantly depends on the pessimism coefficient  (see formula (9)), the 

choice of which is subjective and greatly changes the result. Therefore, the Hurwitz criterion should be 

considered an auxiliary one and its discrepancy with the general trend should not be considered. 

7. Conclusions  

The proposed intellectual system of multi-criteria evaluation using Markov chains has been developed 

in the hybrid implementation of structured and unstructured problems of obtaining optimal 

characteristics of geopolymers. Combining subjective and objective elements of decision selection this 

approach represents a new way of information processing based on mathematical modelling and 

probabilistic dynamics. 



The simulation of target function parameters has shown the advantage of evaluating the 

digitalization of technologies in the analysis of geopolymer properties, where the qualitative side of 

loosely structured problems is solved with the help of Markov chains, while for quantitative conclusions 

criterion methods are used, and the final result best combines the results of both applications.  

The methodology of the complex use of Markov chains in combination with optimization criteria is 

the basis for the application of the target functions to increase the reliability of the parameter estimation 

for determining the optimal composition and structure of geopolymers when changing their 

manufacturing technologies.  

Prospects for further research of the authors consist in the creation of hybrid models of quantitative 

and qualitative methods of experimental data processing in combination with prediction methods, where 

the method presented in the article can be used at the stage of data preprocessing 
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