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Abstract 
Mathematical models of migration processes that take into account non-local effects caused 

by media’s fractal properties often have an integro-differential nature. Numerical methods for 

solving problems for such models have a higher order of computational complexity compared 

to the corresponding classical methods. Therefore, for their effective practical application, the 

usage of high-performance computational techniques, particularly for shared memory 

systems, is critical. In this regard, here we study the efficiency of using a multi-threaded 

implementation of the TFQMR iterative algorithm for solving linear systems that arise after 

the discretization of the initial-boundary value problems for the non-isothermal fractional-

differential model of moisture transport in combination with the dynamic change of time step 

length based on the convergence characteristics of the TFQMR algorithm. The considered 

computation procedure is aimed at increasing the simulation speed without explicit 

consideration of the features of problem being solved. The conducted studies showed that the 

consideration of the temperature field, which is described by an integer-order differential 

model, leads to a decrease in the maximum acceleration of numerical scheme’s multi-

threaded implementation. It also leads to 8-10-times increase in simulation time due to the 

need to reduce time step length in accordance with different speeds of heat and mass 

transport processes. At the same time, the procedure for dynamical change of time step length 

allows performing adaptive solution of the problem without user intervention. 
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1. Introduction 

When taking into account non-local effects caused by medium’s fractal properties in mathematical 

models, it is often necessary to switch from differential to integro-differential models, particularly the 

models that contain the so-called fractional derivatives [1]. Numerical methods for solving problems 

for this class of models, such as the finite difference method [2] or spectral methods [3], have a higher 

order of computational complexity compared to the corresponding classical methods that are applied 

to integer-order differential models. Therefore, for their effective practical application, the 

development of high-performance computational techniques [4, 5], particularly for computational 

systems with shared memory, is highly important. 

Two factors are critical for the performance of computational algorithms and the accuracy of the 

obtained solutions when using finite-difference approximation of differential equations of integer and 

fractional order. The first factor is the performance of algorithms for solving systems of linear 

algebraic equations obtained after discretization and the second one is an approach for choosing 
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discretization steps with respect to the time and space variables that can be either fixed or dynamically 

changeable. 

Noting that the convergence of iteration algorithms for linear systems’ solution can depend on 

condition numbers of systems’ matrices, here we study the efficiency of a multi-threaded 

implementation of the iterative TFQMR algorithm [6] for solving linear systems in combination with 

a dynamic time step length change based on the convergence characteristics of this algorithm. Such 

approach does not take into account the properties of the underlying model and the behavior of its 

execution time along with its influence on solutions' accuracy should be studied for each particular 

model or class of models to which it is applied. 

The class of models we refer to in this study in the models of moisture transport. They form the 

basis for simulation of physical, chemical, and biological processes in soils and the results of such 

simulations and predictions can serve as inputs for making management decisions in agriculture and 

land reclamation.  

Among the areas of moisture transport modeling application, for which the accuracy of forecasts 

and the speed of their obtainment are critical, we can highlight irrigated agriculture. In this field, in 

order to support decision-making [7], models based on Richards differential equation [8] are widely 

used. Among large literature dedicated to the increase of the accuracy of modeling based on such an 

equation, primarily by involving additional factors that influence the movement of moisture, we can 

single out two directions: the use of fractional-order models [9-12] to take into account the fractality 

of soils [9, 13] and the consideration of the influence of such factors as non-isothermality [14] or 

salinity [15] on soils’ hydro-physical properties. The combination of these two directions is relevant 

for further development of mathematical basis and software tools for modeling migration processes in 

soils. 

In our previous study [12] the multi-threaded TFQMR with dynamic time step change procedure 

was applied to the case of isothermal fractional-differential moisture transport equation. The 

performance of the parallel computational scheme on different CPUs was studied without taking into 

account the behavior of dynamic time step change procedure. In the continuation of the studies 

presented in [12] the research question answered in this paper is how making the underlying model 

more complex combining fractional and integer-order equations will influence the acceleration of 

computation and will the dynamic change of time step in such case influence the accuracy of 

numerical method used for discretization. 

2. Multi-threaded TFQMR and dynamic time step change procedure 

We consider a multi-threaded implementation of the TFQMR algorithm [6] using the OpenMP 

framework that is based on the following [12]: all computations are performed in one parallel block; 

all summations are implemented in parallel using the reduction directive; scalar variables are updated 

in the single environment. The algorithm for solving a linear system , dim N N= = Ax b A  (vectors 

and matrices are here and further denoted in bold) considering as a black box the procedure of 

multiplication of the left-hand side matrix on vectors can be denoted as follows ( 0x  is the initial value 

of solution vector): 

(1) set , 0= = = − =0 0w y r b Ax d  using parallel for; 

(2) calculate  = w w  where “  ” denote the vector dot product using parallel for with reduction 

directive calculating square root in the single environment; 

(3) set rand(0,1)=r  where rand(0,1)  is a vector of random numbers in the range (0,1)  using 

parallel for; 

(4) calculate  = r r  using parallel for with reduction directive; 

(5) set = 0v Ay  using parallel for; 

(6) set 0 = =  in single environment; 

(7) for 1,2,....,n =  do 

 (a) calculate  = r v  using parallel for with reduction directive; 

 (b) set /  =  in the single environment; 



 (c) set = −1 0y y v  using parallel for; 

 (d) for 2 1,2 ,m n n= −  do 

  (d1) set (2 1)m n − − −w w Ay  using parallel for; 

  (d2) set ,   = =  in single environment; 

  (d2) calculate / = w w  using parallel for with reduction directive, calculating 

square root in the single environment; 

  (d3) calculate 2 21/ 1 , ,c c c    = +  =  in the single environment; 

  (d4) set 
2

(2 1) ,m n

 



− − + = +m m-1d y d x x d  using parallel for; 

  (d5) calculate ( ) ( ) /vr N= −  −m mb Ax b Ax  using parallel for with reduction 

directive, calculating square root in the single environment; 

  (d6) algorithm execution stops if 1vr   where 1  is the accuracy threshold; 

 (e) calculate 1 = r w  using parallel for with reduction directive; 

 (f) set 1 1/ ,    = =  in the single environment; 

 (g) set = +0 1y w y  using parallel for; 

 (h) set ( )  + +0 1v Ay Ay v  using parallel for. 

We apply the TFQMR algorithm in the case when an initial-boundary value problem for a 

differential or integro-differential model is discretized by a finite-difference technique and is solved 

using a time-stepping scheme. Thus, an initial value 0x  is set to a vector generated from problem’s 

solution on the previous step or from initial conditions.  

On each time step, after solving the linear system we propose to adjust the length of time step 

according to the technique described in [12]. It is based on the hypothesis about the existence of a 

correlation between time step length and the condition number of the matrix together with the 

correlation of the condition number with the number of iterations of the solution algorithm.  

Thus, the step is multiplied by the fixed value (which was assumed to be equal to 1.25) when the 

number of iterations of the TFQMR algorithm exceeds the specified maximum value (which was 

assumed to be equal to 30). The solution at the corresponding time step after the decrease of its length 

is repeated. If the number of iterations is less than 1/3 of the maximum value, the length of the next 

time step increases similarly. 

3. Mathematical model and numerical technique 

The influence of temperature in the fractional-differential with respect to spatial variables 

generalization of the Richards equation [9, 10, 12] can be described according to [14] in the form of a 

dependency between the hydraulic conductivity k  and the temperature T :  
0( )

0( , ) ( , )
a T T

k H T k H T e
−

=  

where 0T  and a  are the model’s parameters. Adding the heat transport equation and such a 

dependency to the model described in [12], we obtain the following non-isothermal fractional-order 

moisture transport model:  
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where xD
 is the Caputo fractional derivative with respect to the variable x  (derivative with respect to 

the variable z  is denoted and defined similarly), 
( , , )

( , , ) =
P x z t

h x z t
g

 is the water head, 

( , , ) = ( , , )H x z t h x z t z+  is the full moisture potential, ( , , )P x z t  is the suction pressure,   is the water 

density, g  is the acceleration of gravity, ( ) =C h
h




 is the differential soil moisture content, ( , , )x z t  

is the volumetric soil moisture content , ( )xk H , ( )zk H  are hydraulic conductivities in fractal 

dimension (we assume 
1( , ) = ( , )x xk H T k H T − , 1( , ) = ( , )z zk H T k H T −

, = = 2x z  ), ( , , )S x z t  is 

the source function, TC  is the volumetric heat capacity of soil,   is the thermal conductivity 

coefficient, vc  is the volumetric heat capacity of pore fluid. 

The boundary conditions for equation (1), the form of the source function, and the configuration of 

the solution domain are considered the same as for the integer-order model described in [16]. The 

initial water head distribution is assumed to be known. 

The water retention curve of the soil is described according to van Genuchten model [17] in the 

form  

( )
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and the dependency between the hydraulic conductivity and full moisture potential is described 

according to Averyanov model [18] in the form 

0
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where fk  is the saturated hydraulic conductivity,   is the fixed exponent. 

Regarding the heat transport equation (2) at the lower boundary of the solution domain we set a 

second order condition 0
T

z


=


, on the side faces we set the condition 0

T

x


=


, and on the upper 

face - 
0

( )az
T T t

=
=  where ( )aT t  is the temperature, which varies from the lowest night temperature nT  

to the highest daytime temperature dT  according to  

( )
1

( ) 1 sin 6 /12
2 3600

a n d n

t
T t T T T 

   
= + − + −   

   
. 

The initial condition has the form ( ,0) (0)aT x T= . 

As an example of practical application of the model (1)-(3) we consider the modeling of the 

subsurface drip irrigation process. In this case, the function S  simulates moisture extraction by 

plants’ roots and irrigation as described in [16]. By controlling the flow of irrigation water, the 

average moisture content of the root zone is maintained here in a given range [10, 16]. 

3.1. Numerical technique 

The numerical solution of the initial-boundary value problem for the model (1)-(3) can be obtained 

by the finite-difference scheme [19] on the grid 
1

0

= ( = , = , = ) : =1, , =1, , = 0,1,2,...
j

i x k z j l

l

x ih z kh t i m k n j 
−
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where = / , = /x x z zh L m h L n  are the steps with respect to the spatial variables, , 0,1,2...j j =  are the 

time steps’ lengths. Here and further, approximation of the function h  and, similarly, other functions, 

on the grid (4) is denoted as = ( , , )j

ik i k jh h x z t . 

On the grid (4), using the solutions at the previous time step to calculate the values of the 

derivative (3), we obtain the following 5-diagonal system of linear algebraic equations, presented here 

without the discretization of the boundary conditions: 
1 1 1 1 1 1
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Here 1

,

j

i k

−  describes the discretization of the "non-local" part of the fractional derivative and has 

the form 
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3.2. Features of parallel implementation 

Before the start of the solution procedure on one time step we perform parallel calculation of the 

values of 
1

, ,

j

xx l kh −
, 

1

, ,

j

zz i lh −
 with subsequent parallel calculation of the values of 

1

1, ,

j

i kA −
, 

1

2, ,

j

i kA −
, 

1

1, ,

j

i kB −
, 

1

2, ,

j

i kB −
, 

1

,

j

i kR −
, 

1

,

j

i k

− , and 
1

,
ˆ j

i k

− . Calculation of 
1

,

j

i k

−  here is performed using the previously calculated values of 

1

, ,

j

xx l kh −
, 

1

, ,

j

zz i lh −
. Multiplication on the left-hand side matrix of the system (5) on the iterations of the 

TFQMR algorithm is performed using the previously calculated values. Representing grid functions 

as vectors the cell ( , )i j  corresponds to the element j n i+ . 

We estimate the working time of the parallel computing scheme assuming that for the time 1( )t P  

spent on executing barrier synchronizations and non-parallelized blocks the estimate 1 2( )t P k P=  

holds. We also assume that in the software implementation there are additional sequential operations 

applied to the entire finite-difference grid. Then, the total working time can be estimated as 



1 2 3

( )
( , , ) =s it

n m n m
T n m P N k k P k n m

P

  + 
+ +   

 
 

 
(6) 

where 1k , 2k , 3k  are system’s performance coefficients, itN  is the number of iterations of the 

TFQMR algorithm. 

4. Qualitative features of solutions 

The initial data described in [16] were used to perform the following computational experiments. 

A single-layer soil model with a filtration coefficient of 15 cm/day was considered. The simulation 

domain was of 10 m in length and 1 m in depth. Irrigation was simulated when the average moisture 

content of the 0.5 m layer of soil decreased to 95% of field capacity and continued until it reached 

100% of field capacity. Evapotranspiration was considered equal of 5.1 mm/day. Within the 

simulation domain, we model the placement of 15 drip pipelines at the depth of 0.2 m directly under 

15 rows of plants. 

The values of the model’s (1)-(3) parameters related to the temperature field and its influence on 

hydraulic conductivity were as follows: 
62 10TC =  , 2.67 = , 

61.455 10vc =  , 0 10T = , 0.0345a = . 

The dynamics of the average moisture content of the root layer for the cases of the classical 

isothermal model containing only Equation (1) with 1 = = , classical non-isothermal model, 

isothermal and non-isothermal fractional-differential models with 0.97 = =  are shown in Fig. 1. 

Relative differences in the water head field in comparison with the solution according to the classical 

isothermal model at 5400, 5t x= =  are shown in Fig. 2.  

In the case of the dynamics of the average moisture content in the root layer, the solutions obtained 

using the fractional-differential models simulate its slower drying compared to the classical models. 

Consideration of the influence of soil temperature on hydraulic conductivity, on the contrary, leads to 

faster drying. Thus, the considered factors have an opposite in direction, but identical in behavior, 

effect on the integral indicator - the dynamics of average moisture content (Fig. 1). 

In the case of the changes in moisture content along the depth of soil massif (Fig. 2), their 

influence has different behavior. In comparison with the solutions obtained by the classical isothermal 

model, the consideration of the factor of spatial non-locality leads to the solutions with a decreased 

moisture content inside the zone moistened by emitters (0.08<z<0.3 in Fig.2) and an increased 

moisture content at the borders of these zones (z<0.08 and 0.3<z<0.5). Moreover, a greater influence 

is observed in the deeper layers of soil. Taking into account the non-isothermal nature of the process 

leads to an increase in the rate of moisture transport and an increase in moisture content in the entire 

moistened zone depending on pressure gradient. The new non-isothermal fractional-differential model 

describes moisture distributions that are a superposition of these influences. 

 
Figure 1: Dynamics of the average volumetric moisture content in the root layer of the soil 
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Figure 2: Relative differences in the water head field compared to the solution according to the 
classical isothermal model at 5400, 5t x= =  

5. Testing of the procedure for dynamic time step length change 

The considered problem was solved with fixed time step lengths ( 1 = , 5, 20, 30, 40, and 60) as 

well as with the application of the procedure for their dynamic change with the maximum number of 

TFQMR iterations equal to 10 and 30. The execution of the iterative procedure ended when residual 

becomes less than 10-12. Calculations were carried out until t=7000 on 50x500 cells grid in 4 threads. 

Irrigation was simulated in the whole considered time period to exclude the influence of 

discontinuities of the model’s coefficients. The solution at 1 =  was used as a base for comparison. 

As an accuracy criterion we used the average absolute difference between the solutions at a fixed 

moment of time (here - t=7000) in the form 

( )
2

(1)

1 1

1
( )

n m

ij ij

i j

h h h
nm


= =

= −  

where 
(1)

ijh  is the water head in the cell (i,j) calculated by the numerical method with 1 = , ijh  is the 

water head in the cell (i,j) for the numerical solution h , the accuracy of which is assessed. 

Accuracy estimates   in the performed computational experiments linearly depended on the time 

step length (Fig. 3, for the procedure of time step’s dynamic change here and in Fig. 4 its average 

value was used) in accordance with theoretical expectations arising from the used first-order 

approximation of the derivative with respect to the time variable. The time spent on obtaining the 

solution of the problem at one time step (Fig. 4) also increased linearly with the increase in the length 

of the step. In this case it can be explained by the linear increase of the number of TFQMR iterations 

required to solve the linear systems. Let us note that an increase in the number of iterations for the 

TFQMR algorithm indicates, according to the results of multiple studies (see, in particular, [20]), an 

increase in the condition number of the matrices. 

When the procedure of the dynamic change of time step with a restriction on 30 TFQMR iterations 

was used, the average step length was equal to 27.5 with the execution time of 6.14 s. With a 

restriction on 10 iterations, the average step length was equal to 9 and the execution time was equal to 

14.95 s. The considered solutions’ accuracy estimate when using the average step length corresponded 

to the linear dependency on the step length. 

Thus, the procedure of the dynamic change of time step has no influence on the order of accuracy 

of the numerical method. It increases the accuracy with the decrease of the restriction on the number 

of iterations of the TFQMR algorithm. 
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Figure 3: Average difference between the solutions subject to time step length 

 
Figure 4: Dependency of computation time on one time step on its length 

6. Performance testing of multi-threaded algorithm 

The total time of modeling procedure execution on the 100x1000 cells grid up to the moment of 

time 86400t =  for the classical and fractional-differential models in isothermal and non-isothermal 

cases when running on AMD Ryzen 3 5300U CPU are given in Table 1. 

For all models, the running time when executed in 8 threads was less than the time observed in the 

case of execution in 4 threads. This reflects the fact that the used CPU has 4 physical cores. The 

maximum speed-up of calculations was 1.37 for the integer-order models, 2.02 for the fractional-

differential model without taking into account the influence of temperature, and 1.72 for the non-

isothermal fractional-differential model. The higher acceleration in the case of the fractional-order 

models is explained by the need to calculate the value of fractional derivative’s "non-local" part 

present in the right-hand side of the linear systems, in particular, by the fact that this block of 

calculations is parallelized by data without additional synchronization or reduction operations. 

Linear system’s size in the case of the non-isothermal models is twice as large as in the case of the 

models that do not take the temperature factor into account. Also, different speeds of the heat and 

mass transport processes cause an increase in the condition number of linear systems obtained when 
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discretizing the non-isothermal models. This, in turn, leads to a decrease in the length of time steps 

when applying the procedure for their dynamic change. These two factors lead to a significant 

increase in execution times (~10 times in the case of the classical model and ~8 times in the case of 

the fractional-order model). The acceleration, which here is influenced by matrices structure, does not 

change significantly for the classical model and decreases in the case of the fractional-differential 

model, since, with a doubling of the size of the matrix, the time spent on the calculation of the “non-

local” part of the fractional derivative remains unchanged. 

 

Table 1 
Execution time, s, on 100x1000 cells grid up to the moment of time 86400t =  

Number of 

threads 

Classical isothermal 

model 

Fractional-

differential 

isothermal model 

Classical non-

isothermal model 

Fractional-

differential non-

isothermal model 

1 106 257 1320 1971 

2 106 189 1169 1481 

4 80 127 963 1144 

8 93 136 1084 1274 

 

Total execution times of the simulation procedure up to the moment of time 1000t =  for

100,150,200,250,300, 10n m n= =  and the case of the fractional-differential non-isothermal model 

(1)-(3) are given in Table 2. 

Using the least squares minimization technique, we obtained the coefficients’ values for the 

performance model (6), according to which it best describes the execution times given in Table 2 for 

the cases of running in 1, 2, and 4 threads. The largest estimation error here was 31% and the average 

error equaled to 11%. The errors increase (the largest was 58%, the average was 36%) when applying 

model (6) with the coefficients’ values determined in the above-described way to the data on the 

execution times in 8 threads due to the presence of only 4 physical cores on the CPU on which the 

computational experiments were performed. 

Let us note that the average value of the time step here decreases linearly with the decrease in the 

length of the step with respect to the spatial variables. 

 

Table2 
Total execution times when simulating moisture transport up to the moment in time 1000t =  using 

the fractional-differential non-isothermal model 

n 1 thread 2 threads 4 threads 8 threads 

The average value of 

the time step 

100 22 16 13 13 14.55 

150 152 101 66 68 7.45 

200 432 288 204 236 4.76 

250 2044 1183 689 641 3.05 

300 4633 2504 1486 1564 1.95 

7. Conclusions 

The development of the fractional-differential model of moisture transport in the direction of 

taking into account the influence of temperature on the relevant processes allows describing non-

classical distributions of the water head field, in particular, when applied to the modeling of 

subsurface drip irrigation. Compared to both integer- and fractional-order isothermal models, the new 



model describes situations of increased moisture content at the bottom of zones moistened by the 

emitters, which is caused by temperature field gradient. 

The use of parallel algorithms is important for fractional-differential models as in this case the 

order of computational complexity increases in comparison with integer-order models. However, the 

complexity of the considered non-isothermal model affects the characteristics of parallel algorithms 

for solving the respective initial-boundary value problem. 

The studied computational procedure, aimed at increasing the simulation speed without 

considering the features of the underlying model, consists of a combination of a multi-threaded 

parallelized version of the TFQMR algorithm and a procedure for the dynamic change of time step 

length based on the convergence characteristics of the TFQMR algorithm. The conducted studies 

showed that the consideration of temperature field’s influence leads to 8-10 times increase in 

simulation time due to the need to reduce time step lengths in order to ensure the specified accuracy 

of linear systems’ solution with a given restriction on the number of TFQMR iterations. The use of 

the integer-order heat transport equation together with the fractional-differential equation of moisture 

transport leads to a decrease in the maximum acceleration of the multi-threaded implementation of the 

numerical scheme. 

The procedure for the dynamic change of time step length, the application of which does not affect 

the order of accuracy of the numerical method used for the discretization of the initial-boundary 

problems, together with the obtained estimates of multi-threaded algorithm’s performance, make 

possible further development of a computationally efficient decision support system for modeling 

moisture transport under abnormal conditions. 
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