
A web application to demonstrate the properties of
Label Propagation algorithms⋆

Paolo Ceravolo1,∗, Samira Maghool1,∗ and Andrei Georgiani Talpalaru1

1Department of Computer Science, Università degli Studi di Milano, Via Celoria 18, Milano, Italy

Abstract
Vector Label Propagation (VLP) is a machine learning technique used for tasks like semi-supervised
learning and graph-based analysis. It is valuable in various fields, including social network analysis
and recommendation systems, where each data point has multiple attributes. This paper discusses the
development of a web application aimed at demonstrating the Agent-based vector-label propagation
algorithm’s (AVPRA) operation. Prior to this application, AVPRA execution and visualization were
challenging for non-experts, relying on scripts. The web app offers a user-friendly, graphical interface,
enabling real-time tracking and transparent visualization of the algorithm’s iterations.

Keywords
Social Network Analysis, Vector Label propagation, Agent-based simulation, Web Application

1. Introduction

Social Network Analysis (SNA) explores social structures through networks and graph
theory. Thanks to an abstract representation, elements of a system are considered as nodes
(or agents when they are capable of making choices or active actions) of a graph while the
connections between these nodes are edges. Using this representation, a multitude of structures
and relationships such as community structure, which represents the tendency of nodes to be
aggregated into distinct groups, can be described [1].
Label Propagation represents a family of algorithms used to predict the labels of nodes in a

network and potential communities. Differently from other SNA algorithms, instead of taking
a global view of the network, the decisions made by the algorithm are made with respect to
local properties, thus Label Propagation algorithms take a local view of the network [2]. In
an extended version, called Vector Label Propagation, the algorithms have been generalized
to allow the identification of overlapping communities [1].Agent-based propagation considers
semi-intelligent agents acting with respect to the encountered situation supposing that they are
located on a structured underlying network spreading the features through the edges. This way,
the algorithm can control global effects, such as the termination condition using basic rules.
The update rule defines how the labels are updated at each iteration.

CoopIS 2023 Demo Track
∗Corresponding author.
Envelope-Open paolo.ceravolo@unimi.it (P. Ceravolo); samira.maghool@unimi.it (S. Maghool); andrei.talpalaru@unimi.it
(A. G. Talpalaru)
Orcid 0000-0003-4473-6258 (P. Ceravolo); 0000-0001-8310-2050 (S. Maghool)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:paolo.ceravolo@unimi.it
mailto:samira.maghool@unimi.it
mailto:andrei.talpalaru@unimi.it
https://orcid.org/0000-0003-4473-6258
https://orcid.org/0000-0001-8310-2050
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


Agent-based vector-label propagation algorithm (AVPRA) is an algorithm that allows the
implementation of the update rule with respect to multiple factors, such as domain properties.
Each agent is labeled with a d-dimensional vector where d is the number of the unique labels
in the network ℒ. The output of the algorithm is a vector compatible with the input format
used in most of the Machine Learning algorithms. The membership coefficient in the case of
the AVPRA algorithm is a diffusion/accumulation of node labels, dependent on the distance
to other nodes and their frequency. To avoid conflicts in the updates, the agents’ statuses are
updated synchronously. In AVPRA, the update function is as follows:

VL𝑖[𝑙](𝑡) = 𝑤1VL𝑖[𝑙](𝑡) + 𝑤2 ∑
𝑗∈Γ(𝑖)

VL𝑗∈Γ(𝑖)[𝑙](𝑡 − 1) (1)

At each time step 𝑡, theVL𝑖[𝑙](𝑡) can be updated by aggregating the 𝑘 neighbors’VL𝑗∈Γ(𝑖)[𝑙](𝑡 −
1), where the 𝑤1 and 𝑤2 are the weights of current and previously assigned labels. The iterations
continue till reaching a stationary state which implies that the changes in the membership
coefficients must be smaller than a parameter p which is called the neglect threshold [3].
This paper is divided into the following sections. In Section 2, we discuss the application

development and used technologies. In continuation, the application’s properties are discussed
in Section 1. Using a real dataset, the usability of the application is evaluated. In the last section,
this paper is concluded with some final remarks and future plans.

2. Application Development

The Social Networks Viewer is a web application that allows the user to run and view the
results of the algorithm in an interactive way in the web browser. The development phase of
this application contains two parts: frontend and backend. The frontend component allows
the user to interactively visualize the situation, at the current iteration, of the network and its
vector labels. The backend component of the application with which the frontend interacts and
is responsible for exposing an API that performs the required functionality. Backend should be
able to execute the given AVPRA algorithm through a Python script and expose the results on
the API. For the development of the frontend part of the application, containing user interaction
and communication with the backend, several technologies and libraries are used which are
presented as follows:
React.js1: The main components of this library are the parts that allow the user interface to be
organized in React and are defined in two modes: The component functions and the component
classes.UI2 state updates in basic JavaScript happen by finding the element in the DOM and
updating it manually.3) Hooks3 also are added to allow state and other functions that existed in
Component Classes to be used in Component Functions as well.JSX4 represents an extension of
JavaScript that allows HTML to be written directly within JavaScript.

1https://it.reactjs.org/docs/react-component.html
2https://it.reactjs.org/docs/state-and-lifecycle.html
3https://it.reactjs.org/docs/hooks-intro.html
4https://it.reactjs.org/docs/introducing-jsx.html



Also we have taken advantage of other libraries such as Type-
script5,Next.js6,D3.js7,Katex8,Tailwind CSS9. For developing the backend part of
the application, containing the API that has the ability to respond to frontend requests, several
technologies and libraries are used. Flask10, Sympy11, and CDlib12 are the important ones.

2.0.1. Application Presentation

In this section, we present some of the principal features of the implemented web application.
Main Page is used to allow the user to choose between two different modes of testing and
viewing the results of the algorithm (Fig. 1. a).

(a) (b)

Figure 1: The screenshots of the application, in a) the main page and in b) the page with the control
bar are presented respectively.

Colors Example can be reached by pressing the ”Visualize Example” button next to ”Colors
Example” on the main page (Figure 1. a).
The control bar contains all the modes that can be used to control the network display and
the iteration. It also contains the node selection mode and displays layout and some buttons for
capturing the configuration of the interface, downloading the algorithm results file, downloading
the file containing the graph details, and downloading a file containing the comparison of two
selected nodes (Figure 1. b).
The VL View represents the view that visualizes the network from the perspective of the label
vectors. All coefficient belongings sum to 1 and thus each label is represented by a color that
occupies the specific percentage on the node (Fig. 2. a).

5https://www.typescriptlang.org/
6https://nextjs.org/learn/foundations/about-nextjs/what-is-nextjs
7https://d3js.org/
8https://www.npmjs.com/package/katex
9https://tailwindcss.com/
10https://flask.palletsprojects.com/en/2.1.x/
11https://www.sympy.org/en/index.html
12https://cdlib.readthedocs.io/en/latest/



(a) (b)

Figure 2: The possible view of the web application, a) the VL view and b) the community view.

Figure 3: The information bar extracted for nodes of example network at timestamp = 2.

The Community View represents the view that visualizes the network from the perspective
of the communities that make up the network (Fig. 2. b).
The Information Bar displays general information regarding the network, such as network
type, number of nodes, number of edges, and diameter. Once a node is selected, it displays the
degree, the community belonging to it, its color, and the vector of labels with the belonging
coefficients of each label (Figure 3).
Taking advantage of Custom Social Networks Upload Page feature, the user can upload the
datasets from the main page, view AVPRA results, and customize several options.

As a case scenario, we have used the POPULITE (POPUlist Language in ITalian political Elites)
dataset in which each node represents a politician who belongs to one party. Implementing
the AVPRA on this data set, Figure 4 demonstrates nodes aggregate into different communities.
The network diameter of this dataset is 5 equal to the number of iterations needed to arrive at
the stationary state. A neglect threshold of 0.1 is used in the presented case [4].

3. Conclusion

The Social Networks Viewer for AVPRA is a web application that allows the user to run
and view the results of the algorithm in an interactive way in the web browser. It is capable of
receiving many parameters permitting the user to control the behavior of the algorithm and
input. Moreover, through this application is possible to export the network and present the
information on the screen in PNG format and in JSON format. Individual nodes can be selected
in order to compare and export more details and measurements regarding that specific node
even between two different nodes in the network. It supports the display in Vector Label View



Figure 4: Community representation of the POPULITE dataset using the AVPRA implemented by the
web application in different iterations.

and Community View. Through the application, it is possible to monitor the iteration’s outcome.
The color palette is also changeable using an additional file in the loading phase of the network.
Besides the capabilities of this platform, it also has some limitations such as keeping the user
datasets and the results of algorithm executions on the application server, albeit for a limited
time. Also, low performance while using very large networks.

References
[1] S. Gregory, Finding overlapping communities in networks by label propagation, New journal of

Physics 12 (2010) 103018.
[2] U. N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to detect community structures in

large-scale networks, Physical review E 76 (2007) 036106.
[3] V. Bellandi, P. Ceravolo, E. Damiani, S. Maghool, Agent-based vector-label propagation for explaining

social network structures, in: International Conference on Knowledge Management in Organizations,
Springer, 2022, pp. 306–317.

[4] V. Bellandi, E. Damiani, V. Ghirimoldi, S. Maghool, F. Negri, Validating vector-label propagation
for graph embedding, in: M. Sellami, P. Ceravolo, H. A. Reijers, W. Gaaloul, H. Panetto (Eds.),
Cooperative Information Systems, Springer International Publishing, Cham, 2022, pp. 259–276.

4. Online Resources

Github: https://github.com/georgiani/AVPRANetworkVisualizer/tree/main/Frontend


	1 Introduction
	2 Application Development
	2.0.1 Application Presentation

	3 Conclusion
	4 Online Resources

