CEUR-WS.org/Vol-3604/paper2.pdf

C

CEUR
Workshop
Proceedings

Jarkko Lagus’,

Patent Classification on Search-Optimized Graph-Based

Representations

!IPRally Technologies Oy, Helsinki, Finland

Fkaterina Kotliarova’ and Sebastian Bjérkqvist?

Abstract

Patent documents can be effectively represented using embeddings derived from graphs. These graph-based representations
capture the intricate relationships and contextual information within the documents. By leveraging the power of graph
embeddings, we can create rich document representations that can be further fine-tuned to enhance their performance for
specific tasks.

In this paper, we aim to address the fundamental question if search-optimized graph-based document embeddings can be
directly used for classification. Traditionally, different training pipelines and storage mechanisms were required for each
distinct task, resulting in increased complexity and resource consumption. However, by establishing whether the same
representations can be effectively used for both search and classification, we can streamline the process and eliminate the
need for maintaining multiple sets of embeddings.

Our results provide evidence that embeddings optimized for search tasks can be directly employed to perform classification
tasks, offering a promising solution that significantly improves efficiency and resource utilization. By repurposing the same set
of optimized embeddings for both search and classification, we not only achieve data efficiency but also reduce computational
overhead. This approach allows us to leverage the benefits of existing search-optimized embeddings without sacrificing the
accuracy or effectiveness of classification tasks. As a result, we present a novel and efficient classification method that reduces

the complexity of maintaining separate training pipelines and storing multiple representations.

Keywords

classification, patents, document embeddings, patent search

Introduction

The categorization of patent documents plays a crucial
role in various aspects of strategic decision-making, such
as competitor monitoring, portfolio management,
and patent landscaping. Document classification itself
is a foundational task in natural language processing
and a vast amount of research has been done both using
tradi-tional machine learning approaches and deep
learning-based approaches [1]. Specifically, in the
domain of patent classification, approaches using
methods such as convolutional neural networks [2]
and transformers [3, 4, 5] have been used. Performing
document classifica-tion for patents manually can be
very time-consuming and often requires domain
expertise. This means that the amount of labeled data
available for training may be small.

As patent documents are already categorized by the
patent offices using the International or Cooperative
Patent Classification (IPC/CPC) standards, it may be
tempting to try mapping these classes directly to the
classification task of interest. These classes however
rarely correlate with the actual business tasks, so simple

PatentSemTech'23: 4th Workshop on Patent Text Mining and
Semantic Technologies, July 27th, 2023, Taipei, Taiwan.

kkoQiprall L Katerina@iprall
B o teom dasuy chaodngiprallysom

eI © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
— Attribution 4.0 International (CC BY 4.0).

=== CEUR Workshop Proceedmgs (CEUR-WS.org)

33

mapping from these classes to classes of interest does not
often work [6].

Due to the discrete nature of certain metrics, direct
optimization becomes challenging. Consequently, in var-
ious machine learning tasks, a common approach is to
solve the main objective by optimizing a substitute target
instead. An illustrative case of such a task is ranking,
where instead of directly solving the discrete ranking
problem, we turn it into a problem of optimizing pair-
wise distances. Inspired by this concept, we investigate
the approach of performing classification directly on doc-
ument embeddings that have been optimized for a search
task.

The work presented here is based on the hypothesis
that graph-based embeddings optimized for a search task
contain rich enough information to be directly applied to
a classification task with no additional fine-tuning steps.
Only training a lightweight classification model on top of
the embeddings is needed. This approach results in a very
efficient way to perform classification as such models
scale well to larger datasets and in the usual problem
scale can be trained in a few seconds. This enables online
training of new classification models on the fly, allowing
for quick verification of results and multiple iterations if
needed.

mailto:jarkko@iprally.com
mailto:ekaterina@iprally.com
mailto:sebastian@iprally.com
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

1. A snowthrower, comprising:
a motor;
an auger driven by the motor to rotate;
a handle device for a user to operate;
an auger housing for containing the auger; and
a frame for connecting the handle device and the auger housing;

wherein the auger housing is made of at least two different materials.

—

snowthrower
motor
handle device
handle device for a user to operate
auger housing
auger
auger driven by motor to rotate
at least two different materials
frame

frame for connecting handle device and auger housing

Figure 1: An example of a patent claim describing a snowthrower and the corresponding graph created from the claim. When
used in the downstream classification task, these graphs are further encoded as d-dimensional vectors using a graph neural

network model.

2. Methodology

Representations for text documents can be made in vari-
ous ways. In this work, our main focus is to investigate
the usability of a search-optimized graph-based embed-
ding method, where the patent document is first parsed
into an intermediate graph representation that is then
turned into an embedding. This is then compared to
other common document embedding methods.

2.1. Graph-based representations
optimized for search

In contrast to traditional methods, such as word embed-
ding or transformer-based approaches, where the whole
document is directly encoded into a vector format with-
out task-specific regularization, the graph format adds
additional prior information about the relations between
the elements in the document. The idea of the graph is to
describe all the relevant technical features of a patent in
a concise form that is easily understandable by humans
and efficient to process by machines. An example of a
patent claim converted to a graph can be seen in Figure
1.

The details of how the graphs and embeddings are
created are described in [7]. In short, the process is the
following:

1. Turn the text of a patent document into a graph
using a specialized parser, resulting in a collection
of nodes and edges.

2. Embed the graph into a vector space using a graph
neural network model trained to perform prior
art searches for patents.

The parser that converts text to graphs uses the spaCy
[8] library to do a linguistic analysis of the text and to

detect all nouns and noun chunks in the text. The nouns
in the text describe the features of the invention and
become the nodes of the graph. In Figure 1, examples
of nouns and noun chunks are snowthrower, motor, and
handle device. After this, the parser detects, using hand-
crafted rules, words indicating relationships between
the features of the invention (e.g. comprising, having,
containing). These words will create edges to the graph.
The endpoints of the edges are found using the output of
the linguistic analysis done previously. For instance, in
Figure 1 the term comprising will result in, among others,
an edge between snowthrower and motor.

The graph neural network model is trained in a super-
vised manner using citations reported by patent office ex-
aminers, resulting in documents having similar technical
content being placed close to each other in the embed-
ding space. The model is trained using triplet loss, where
a patent application acts as the anchor and a patent cited
by the application is the positive sample. The negative
sample is chosen to be some other patent document that
is not cited by the application. This results in a model that
is useful for searching for prior art for new inventions.
The embeddings used for the later classification stage are
created from the description graph of the patent docu-
ment, the description graph including both the claims
and the description text of the document.

2.2. Other document embedding models

In order to comparatively measure the effectiveness of
our embedding method, we conduct the experiments us-
ing a few additional models to provide meaningful base-
lines. For the baseline evaluations, we create document
embeddings using five different methods: TF-IDF em-
beddings, two different GloVe [9] embeddings and two
different BERT-based [10, 4, 11] embeddings (see Table

34

Embedding model Dimensionality Dataset Labels Train size Test size
Ours [7] 150 Qubit [6] 2 1,124 282
TF-IDF ~ 33,000 Mechanical eng. 10 3,768 943
GloVe (Stanford) [9 300

oVe (Stanford) [9] Table 2
GloVe (patents) 300 o .
BERT (base uncased) [10] 768 Dataset statistics for the datasets used for training and evalu-
BERT (patents) [11, 4] 1.024 ation. In both datasets only one document per patent family

Table 1

The set of different embeddings used in the experiments. BERT
(patents) is the large BERT and GloVe (patents) is the standard
GloVe model trained with patent data.

1 for more details). All the embedding models chosen
represent conceptually different ways of forming the doc-
ument embeddings. The embeddings are created using
the full text of the patent document, including both the
claims and the description of the document.

For TF-IDF embeddings we use scikit-learn [12]
library. To form the document embeddings out of the
GloVe embeddings, we use the spaCy [8] library. For the
BERT models we use HuggingFace [13] library. Because
of the limitations of input layer size and the length of
patent documents, to form the BERT-based document
embeddings, we split the documents into chunks of 100
tokens, and embed each chunk individually. After this,
we extract all the separate embeddings and form a mean
vector representation out of these.

2.3. Classification models

As one of the goals is to minimize the training cost for
the classification model, we employ simple classification
models instead of heavy deep learning models. The only
requirement we impose on the model is the ability to
output a probability estimate for the input sample be-
longing to a specific class. For the classification, we use
ready-made implementations from the scikit-learn
[12] library. The specific models chosen are the basic lo-
gistic regression and k-nearest-neighbors classifiers using
the default parameters.

2.3.1. Model training

We train each model using a training set separated from
the full dataset. The input for the models is the document
embedding and the output is the probability for each label.
In the case of the binary dataset, we train one classifier.
In the case of the multi-label dataset, we train one binary
classifier for each class following the one-versus-rest
strategy leading into a collection of m separate binary
classifiers.

For the experiments with full data, we train one clas-
sifier for each dataset-model pair. As the outputs are
probabilities, we need to find the optimal cut-off thresh-
old that maximizes the F1 score. This threshold is selected

35

is preserved to avoid overrepresenting certain families.

using stratified 5-fold cross-validation. In both, binary
and multi-label cases, only one threshold is selected. For
the multi-label case, the threshold that maximizes the
micro-averaged F1 score of all classifiers is chosen.

For the experiments where we limit the data amount,
we first randomly sample p percent of data points (with
p varying from 0.5 to 75) and then follow the same pro-
cedure as with the full data case. The sampling is done
so that all the models are trained using the same fixed
subset. When training on a subset of data, we repeat the
training process n times in order to reduce the amount
of noise caused by poor train-validation split, where n
varies from 2 for the largest subsets to 10 for the smallest
subsets.

2.3.2. Model evaluation

Evaluations are done using a separate holdout test set
independent of training data. For evaluation, we calcu-
late the standard F1 scores. In the case of the multi-label
dataset, micro averaging is used. We conduct the eval-
uation on two different datasets, one binary, and one
multi-label. The binary dataset is the gold-standard Qubit
patent dataset [6] and the multi-label dataset is a pro-
prietary dataset from a mechanical engineering patent
domain (see Table 2 for details).

The same holdout test set is used for all evaluations,
both for the experiments with the full data and the exper-
iments with subsets of the data. To convert the predicted
probabilities to binary predictions we use the optimal
threshold selected using the training phase.

3. Experiments

We experiment with how different choices of embedding
the documents (see Table 1 for the list of methods) affect
the performance. Our main interests are classification
accuracy (measured using the F1 score), sample efficiency,
and training time. When measuring the training time, we
do not consider the time required to create the document
embeddings or include the hyperparameter search but
assume that the embeddings are readily available and the
optimal hyperparameters are known.

Model performance using Ir

0.8
0.6 -
e
o
&
-
& 0.4
0.2
0.0 T T - T . T . . . T
0 20 40 60 80 100
Percentage of data used
Model performance using knn
0.8 -
0.6 q
<
o
&
-
04
0.5 —— BERT (patents)
044 BERT (base uncased)
024 ’ —— GloVe (Stanford)
’ 0.34 —— GloVe (patents)
024 —— Ours
—— TF-IDF
0.0 T T . T . T . .' T
0 20 40 60 80 100

Percentage of data used

Figure 2: The effects of the amount of training data on the
Qubit dataset on model performance over different embed-
dings.

3.1. Experiments on embedding
performance

To measure the overall embedding performance, we look
into two factors, overall accuracy measured in F1 score
and required training time following the process de-
scribed in Section 2.3.1. The results are summarized in
Table 3.

The F1 scores on the Qubit dataset show much vari-
ability between models and embedding methods: For
instance, the GloVe (Stanford) embeddings perform the
best when using the k-nearest-neighbors (knn in the fig-
ures) model but the second worst when using the logistic
regression (Ir in the figures) model. This suggests that
the results on the Qubit dataset do not give much infor-
mation about which model or embedding method works
the best. For the multi-label dataset, however, the results
are more consistent, with our approach reaching the top
performance with both models.

From the training times, we can see a direct correla-

36

QUBIT DATASET (BINARY)

Embedding type Model F1 Time (s)
BERT (base uncased) knn 0.854 0.049
BERT (patents) knn 0.856 0.065
GloVe (Stanford) knn 0.873 0.003
GloVe (patents) knn 0.851 0.003
Ours knn 0.860 0.011
TF-IDF knn 0.860 1.216
BERT (base uncased) Ir 0.860 0.135
BERT (patents) Ir 0.912 0.184
GloVe (Stanford) Ir 0.844 0.035
GloVe (patents) Ir 0.842 0.021
Ours Ir 0.865 0.021
TF-IDF Ir 0.868 1.792

MECHANICAL ENGINEERING DATASET (MULTI-LABEL)

Embedding type Model F1 Time (s)
BERT (base uncased) knn 0.655 1.215
BERT (patents) knn 0.664 1.561
GloVe (Stanford) knn 0.691 0.041
GloVe (patents) knn 0.645 0.040
Ours knn 0.775 0.261
TF-IDF knn 0.698 53.909
BERT (base uncased) Ir 0.719 4.448
BERT (patents) Ir 0.770 5.734
GloVe (Stanford) Ir 0.681 0.595
GloVe (patents) Ir 0.717 0.750
Ours Ir 0.770 0.374
TF-IDF Ir 0.752 80.881
Table 3

Evaluation results for models trained on the full train set
for the Qubit and mechanical engineering datasets for all
embedding types and classification models.

tion between the training time and the embedding size.
Especially the TF-IDF embeddings show an extreme case
of this requiring over ten-fold time compared to any
other embedding type. The main reason for poor train-
ing speed with TF-IDF is, however, that the models used
do not support sparse training.

3.2. Experiments on sample efficiency

To experiment with how well the models perform when
data is scarce, i.e. how much data is actually needed
to gain reasonable performance, we limited the amount
of training data to smaller subsets of specific percent-
ages. The same test set was used here as in the previous
experiment on full data.

From Figures 2 and 3, we can see that most models
start to plateau already when around 30% of full data is
included. On the Qubit dataset, the same effect of no
clear separation seems to be present as well when using
smaller subsets of the data, similar to what was seen with
the full data case. The curves fluctuate over each other,

Model performance using Ir

0.8
0.7 { _— —
0.6 -
05 0.7
e
3 04 0.6
s
0.5
0.3
0.4
0.2
0.3
0.1 0.21
0.0 1~ — O ——— -
0 20 40 60 80 100
Percentage of data used
08 Model performance using knn
0.7 1
0.6
0.5 074
<
3 0.4 0.6 1 .
-
H
0.51
0.3
04l —— BERT (patents)
i BERT (base uncased)
0.2 4 034 —— GloVe (Stanford)
—— GloVe (patents)
0.1 0.2 —— Ours
—— TF-IDF
0.0 T T 0. T . T . .' T
0 20 40 60 80 100

Percentage of data used

Figure 3: The effects of the amount of training data on the
multi-label mechanical engineering patent dataset on model
performance over different embeddings.

and no clear distinction can be seen between models.
In the multi-label case, however, clear differences
show up: When using 0.5% of the data there is almost a
20-percentage-point difference between the best (Ours)
and the worst (TF-IDF with Ir and BERT (patents) for
knn). The performance difference between the models
decreases when the number of samples is increased, but
the rankings of the different models mostly stay the same
regardless of the amount of data used, with our method
reaching the highest scores on virtually all subset sizes.

4. Conclusions

In this paper, we showed that patent classification can be
done efficiently on rich graph embeddings optimized for
a search task. We evaluated the performance on both a
binary and a multi-label dataset and demonstrated that
search-optimized embeddings work well with a very lim-
ited amount of labeled samples in the multi-label case.

37

In the binary dataset case, the results were inconclusive.
We showed that training of the classification models can
be done in less than a second, enabling users to train clas-
sifiers in an online fashion. Due to the limited amount of
datasets available, nothing conclusive can be said about
the generalization capabilities of the method, but we
believe this result generalizes to any rich-enough embed-
dings optimized for a search task. Further investigations
are needed to say anything conclusive, however.

References

[1] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa,
S. Mendu, L. Barnes, D. Brown, Text classification
algorithms: A survey, Information 10 (2019) 150.
S.Li, J. Hu, Y. Cui, J. Hu, Deeppatent: patent clas-
sification with convolutional neural networks and
word embedding, Scientometrics 117 (2018) 721—
744.
[3] J.-S. Lee, J. Hsiang, PatentBERT: Patent classifica-
tion with fine-tuning a pre-trained BERT model,
arXiv preprint arXiv:1906.02124 (2019).
R. Srebrovic, J. Yonamine, Leveraging the BERT
algorithm for Patents with TensorFlow and Big-
Query, 2020. URL: https://services.google.com/fh/
files/blogs/bert_for_patents_white_paper.pdf.
H. Bekamiri, D. S. Hain, R. Jurowetzki, Patentsberta:
a deep nlp based hybrid model for patent distance
and classification using augmented sbert, arXiv
preprint arXiv:2103.11933 (2021).
S. Harris, A. Trippe, D. Challis, N. Swycher, Con-
struction and evaluation of gold standards for
patent classification—a case study on quantum com-
puting, World Patent Information 61 (2020) 101961.
S. Bjorkqvist, J. Kallio, Building a graph-based
patent search engine, in: 46th International
ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval (SIGIR’23), to
appear, 2023. doi:https://doi.org/10.1145/
3539618.3591842.
M. Honnibal, I. Montani, S. Van Landeghem,
A. Boyd, spacy: Industrial-strength natural lan-
guage processing in python, zenodo, 2020, 2020.
[9] J. Pennington, R. Socher, C. D. Manning, Glove:
Global vectors for word representation, in: Em-
pirical Methods in Natural Language Processing
(EMNLP), 2014, pp. 1532-1543.
[10] J. Devlin, M. Chang, K. Lee, K. Toutanova,
BERT: pre-training of deep bidirectional trans-
formers for language understanding, = CoRR
abs/1810.04805 (2018). URL: http://arxiv.org/abs/
1810.04805. arXiv:1810.04805.
F. Cariaggi, BERT for Patents, 2023. URL: https:
//huggingface.co/anferico/bert-for-patents.

(2]

(4]

(8]

(11]

https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf
https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf
http://dx.doi.org/https://doi.org/10.1145/3539618.3591842
http://dx.doi.org/https://doi.org/10.1145/3539618.3591842
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
https://huggingface.co/anferico/bert-for-patents
https://huggingface.co/anferico/bert-for-patents

(12]

(13]

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, E. Duch-
esnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011)
2825-2830.

T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. De-
langue, A. Moi, P. Cistac, T. Rault, R. Louf, M. Fun-
towicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, A. M. Rush, Transformers:
State-of-the-art natural language processing, in:
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, Association for Computational
Linguistics, Online, 2020, pp. 38—45.

38

	1 Introduction
	2 Methodology
	2.1 Graph-based representations optimized for search
	2.2 Other document embedding models
	2.3 Classification models
	2.3.1 Model training
	2.3.2 Model evaluation

	3 Experiments
	3.1 Experiments on embedding performance
	3.2 Experiments on sample efficiency

	4 Conclusions

