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Abstract
Given a directed graph 𝐺 = (𝑉,𝐸), we present a heuristic based algorithm to tackle the general
Minimum Feedback Arc Problem with the goal of finding good (and often optimal) Feedback Arc Sets
which are minimal, i.e. such that none of the arcs can be reintroduced in the graph without disrupting
acyclicity. Our algorithm has a good polynomial upper bound which makes it suitable even when dealing
with applications on large graphs useful on Big Data problems such as in Social Networks.
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1. Introduction

The Minimum Feedback Arc Set Problem, along with the related Minimum Feedback Vertex Set
Problem, is one of the historical 𝒩𝒫-hard problems, specifically 𝒩𝒫-complete, listed in the
historical paper written by Karp in 1972 [1]. The problem can be formalized as follows: given a
directed graph 𝐺 = (𝑉,𝐸) find a subset of its set of edges, i.e. a subset 𝐹 ⊆ 𝐸, whose removal
from 𝐺 makes the graph acyclic. An equivalent formulation of the problem is called the Linear
Arrangement problem. In this case, we take as input a directed graph 𝐺 and we look for an
ordering of the vertices of the graph such that the number of forward (respectively backward)
arcs, i.e. arcs directed from left to right (respectively right to left) is minimum. The forward
arcs or backward arcs make up a Feedback Arc Set, since their removal makes the graph acyclic.
Moreover, such a property of forward and backward arcs, proves that any minimum feedback
arc set has certainly size at most 1

2 |𝐸| (see also the algorithm presented in [2]).
The literature on the problem is very vast and lots of heuristics and approximation algorithms

have been produced over the span of more than 50 years, ranging from purely mathematical
problems to applications in various fields, including, as an example of application to Big Data,
large-scale biological systems [3].

We will refer to Kudelic’s recent monography [4] for a thorough and quite interesting review
on the problem, including a description of the cases for which we do have a polynomial time
algorithm, such as for instance planar graphs [5].
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In our work, we will make use of the idea of finding good linear arrangements of the vertices.
Such an idea was exploited quite successfully in [6], where the authors developed a linear time
algorithm to find a good ordering so to put all backward arcs in the feedback arc set.

We found, in particular, two published papers quite inspirational.
The first one is [7], where the authors investigate and compare several approximation

algorithms. Their goal is to compare their efficiency, especially when dealing with Big Data
problems such as misinformation removal in Social Networks.

They perform their comparison of a many different approximation algorithms on very large
online networks including Twitter, and they conclude that the above mentioned greedy algorithm
in [6] performs quite well.

The second is [8] where the authors propose a 𝒪(|𝑉 ||𝐸|4)–heuristic for the directed FASP,
and by empirical validation they achieve an approximation rate of 𝑟 ≤ 2 with 𝑟 ≈ 1.3606 being
a lower bound for the APX–hardness. The computational time is quite high, but the results in
terms of optimization are often optimal.

Our goal is to develop a heuristic which is comparable to the one presented in [8] in terms of
optimality of results and it is still polynomially fast enough to be applied to Big Data problems
such as, for example, the ones discussed in [7].

2. Computing a Feedback Arc Set

We will now describe our approach to the problem. In Section 4 we will show the obtained
results and compare them to the results obtained in [8] and [6].

Given a directed graph 𝐺 = (𝑉,𝐸) with |𝑉 | = 𝑛 and |𝐸| = 𝑚 and no self loops, we
know that the vertices which participate in any cycle, belong to the same Strongly Connected
Component (SCC) of 𝐺. It follows that when searching for a Feedback Arc Set (FAS) for the
given graph, we can ignore all the edges going from a vertex in one component to a vertex in a
different component. Once we find a FAS for each SCC, the union of the found FAS’s is a FAS
for the entire graph.

To find a FAS for a strongly connected graph or a strongly connected component of a graph,
we follow the simple idea to pick a permutation of the set of vertices and delete all the forward
edges (1st case) or alternatively (2nd case) all the backward edges, since both sets of arcs so
obtained, are a Feedback Arc Set. Algorithms 1 and 2 show how to compute, respectively, the
forward edges and backward edges of a vertex, given a permutation of the set of vertices. Both
procedures are linear in the size of the graph, i.e. 𝒪(|𝑉 |+ |𝐸|), since for each vertex we can
simply go trough its adjacency list and search for all the vertices which follow (or precede) in
the ordering.

Three questions naturally arise from such an approach:

Q1: Is it possible to stop before reaching the last vertex?

Q2: Which particular permutation to choose?

Q3: Is the FAS produced minimal, i.e. is it the case that none of its arcs can be reintroduced
into the graph without disrupting acyclicity?



Algorithm 1: Forward edges:
𝐹𝐸(𝐺,𝐿, 𝑖)

Inputs :Directed graph 𝐺 = (𝑉,𝐸),
permutation of vertices 𝐿,
vertex position 𝑖

Output :Subset 𝐸𝑓 of 𝐸, forward edges
out of vertex 𝐿[𝑖]

1 𝐸𝑓 = []
2 for 𝑗 = 𝑖+ 1 to |𝐿| do
3 if (𝐿[𝑖], 𝐿[𝑗]) ∈ 𝐸 then
4 add ((𝐿[𝑖], 𝐿[𝑗]) to 𝐸𝑓

5 end
6 end
7 return 𝐸𝑓

Algorithm 2: Backward edges:
𝐵𝐸(𝐺,𝐿, 𝑖)

Inputs :Directed graph 𝐺 = (𝑉,𝐸),
permutation of vertices 𝐿,
vertex position 𝑖

Output :Subset 𝐸𝑏 of 𝐸, backward
edges in vertex 𝐿[𝑖]

1 𝐸𝑏 = []
2 for 𝑗 = 𝑖+ 1 to |𝐿| do
3 if (𝐿[𝑗], 𝐿[𝑖]) ∈ 𝐸 then
4 add ((𝐿[𝑗], 𝐿[𝑖]) to 𝐸𝑏

5 end
6 end
7 return 𝐸𝑏

2.1. Question 1: Checking acyclity

The answer to question 𝑄1 is obviously yes. It is not necessary to eliminate all the forward (or
backward) edges in order to obtain a FAS. We could check for acyclicity after all the forward or
backward edges of a vertex are eliminated and stop when the graph is acyclic. Such a check
changes the computational cost and, in particular, since acyclicity can be tested in 𝒪(|𝑉 |+ |𝐸|),
an upper bound for the overall cost is 𝒪(|𝑉 |(|𝑉 |+ |𝐸|)). Such an asymptotic extra cost might
be compensated by the fact that we may stop, in general, much earlier in the search of a FAS.
For instance, it could be the case that eliminating all the edges exiting the first vertex, or the
first few vertices, the graph is already acyclic.

2.2. Question 2: Sorting the vertices

In our approach, we do not pick a random permutation of the vertices but we order them
according to the 2 most intuitive criteria: out-degree of a vertex, in-degree of a vertex. In turn,
considering the two possibility of having increasing or decreasing order, we will have 4 different
orderings: decreasing out-degree (do), increasing out-degree (io), decreasing in-degree (di),
increasing in-degree (ii). Such ordered lists of vertices, as we experimentally noted, help in
stopping much sooner the process of finding a FAS.

For each ordering, in turn, we can produce then 2 different FAS, one eliminating forward
edges and the other eliminating backward edges. The initial asymptotic cost of ordering the
vertices is 𝒪(|𝑉 | log |𝑉 |). If the graph is not sparse, and so |𝐸| ∼ |𝑉 |2 such an extra cost is
absorbed into the 𝒪(|𝑉 |+ |𝐸|) cost of computing all the in and out-degrees of the vertices.

2.3. Question 3: Producing a Minimal Feedback Arc Set

Given a directed graph 𝐺 and a set of edges 𝐹 whose removal makes 𝐺 acyclic how can we
check if 𝐹 is minimal and, in case it is not, how can we add back some of the edges in the graph?



The simplest way is to go through the edges in 𝐹 and, one by one, add them to the graph. If,
after adding one edge, the graph is no longer acyclic, we remove it again. Every edge needs
to be tested only once, since the insertion of other edges will not change the fact that the
edge introduces a cycle. Finally, since 1 ≤ |𝐹 | ≤ |𝐸|, the overall cost of this procedure is
𝒪(|𝐸|(|𝑉 |+ |𝐸|)).

We can, however, improve its effectiveness, by taking into consideration that the edges in 𝐹
follow the ordering of the vertices. So, if for instance the vertices were ordered in decreasing
order of out-degree (do), we know that the first, say 𝑘, edges in 𝐹 are all edges exiting the first
vertex and so on.

Experimentally, we saw that the way to add back as many edges as possible is to avoid to
reinsert all the edges from a vertex, but try, instead, to reinsert edges from many vertices as
possible. More in details, we will go through the list 𝐹 in many rounds, but at step 𝑖, if in
that round, ℎ edges were added to the graph, we go from the edge in position 𝑖 to the edge
in position 𝑖 + ℎ. Such a heuristic for adding edges, which we called smartAE and which is
formally described in Algorithm 3, ensures that no more than half of the edges related to a
specific vertex can be added at any round, and, experimentally, it has given us excellent results.

Algorithm 3: Algorithm smartAE
Inputs :Acyclic graph 𝐺 = (𝑉,𝐸), list of arcs 𝐹 , not in 𝐺
Output :Subset 𝐸 of 𝐹 , which is a minimal feedback arc set for graph 𝐺 which, when extended

with all the arcs in 𝐹 ∖ 𝐸, is still acyclic
1 𝐴𝐴 = [] ; /* Initialize list of added arcs */
2 𝐸 = [] ; /* Initialize list of eliminated arcs */
3 𝑐𝑜𝑢𝑛𝑡 = 0 ; /* Number of added arcs */
4 while 𝐹 not empty do
5 𝑐𝑜𝑢𝑛𝑡 = 0
6 for 𝑖 = 1 to |𝐹 | do
7 pick edge 𝑒 = 𝐹 [𝑖+ 𝑐𝑜𝑢𝑛𝑡] and add it to 𝐺
8 if 𝐺 is acyclic then
9 add 𝑒 to 𝐴𝐴

10 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡+ 1

11 else
12 remove 𝑒 from 𝐺 and add 𝑒 to 𝐸
13 end
14 end
15 end
16 return minimal feedback arc set 𝐸

Finally, let us briefly comment on a different approach to the problem of finding a minimal
FAS, given the set of edges that were removed from the graph to make it acyclic.

Clearly, given an acyclic graph we can find a topological sort of its vertices, i.e. a sorting such
that all edges of the graph go from left to right (forward edges). So, it seems quite logical that
the first approach to add back edges to the graph, is to find a topological sorting of its vertex
and add all the edges which are forward edges. None of these edges will create a new cycle.

We did test this approach and found out that, although it is faster than smartAE, its perfor-
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Figure 1: Example graph.

mance is quite poor. In order to add more edges, we had to call smartAE on the remaining set
of edges, not added because of the ordering in the topological sort.

A small advantage, as we just mentioned, is the fact that it reduces the size of the set on
which to call smartAE, but a disadvantage, which causes poor results, is due to the fact that the
topological sort approach ignores the order in which the edges were eliminated, which is the
reason why smartAE gives us very good results.

2.4. Simple Example

Before describing our set of heuristics, let us work through a simple example and consider the
graph in Figure 1. The graph contains a simple cycle 1− 2− 4− 5− 8− 7− 9− 6− 3− 1
which involves all the vertices, so it is strongly connected. Moreover, it has 2 edge disjoint
cycles, namely 1− 2− 4− 3− 1 and 5− 7− 6− 4− 5, thus any minimum FAS must contain
at least 2 arcs. Indeed, if we remove the arcs (1, 2) and (4, 5) we obtain an acyclic graph.

If we sort the vertices following the 4 orderings, we have (degree between parentheses):

𝑑𝑜 : 2(3), 5(3), 4(2), 6(2), 7(2), 8(2), 1(1), 3(1), 9(1)

𝑖𝑜 : 1(1), 3(1), 9(1), 4(2), 6(2), 7(2), 8(2), 2(3), 5(3)

𝑑𝑖 : 6(3), 7(3), 3(2), 4(2), 5(2), 9(2), 1(1), 2(1), 8(1)

𝑖𝑖 : 1(1), 2(1), 8(1), 3(2), 4(2), 5(1), 9(2), 6(3), 7(3)

For each of those 4 orderings, the algorithm will compute the two lists of forward edges and
backward edges and it will pick the shortest one.

In particular, following the order io, and eliminating all the forward edges we have:

• the arcs exiting 1, 3, and 9 are eliminated, obtaining the graph in Figure 2, case (a);

• since the graph is not acyclic, we eliminate the arcs exiting 4, i.e. (4, 3), (4, 5).

The graph is now acyclic and the list of eliminated arcs, in the order of elimination, is 𝐸𝑓 =
[(1, 2), (3, 1), (9, 6), (4, 3), (4, 5)].

The algorithm smartAE will try to insert them into the graph again, so that the ones remaining
will be a minimal feedback arc set, i.e. no other arc could be inserted without disrupting acyclicity.

At step 1, smartAE adds the first edge (1, 2) to the graph and it remains acyclic. So, (1, 2) is
added to the list 𝐴𝐴 and the value of count is now 1.
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Figure 2: Following the io ordering.

At step 2, smartAE picks the edge in position 2 + 𝑐𝑜𝑢𝑛𝑡 = 3, i.e. the edge (9, 6). The edge is
added to the graph which remains acyclic. So, (9, 6) is added to the list 𝐴𝐴 and 𝑐𝑜𝑢𝑛𝑡 = 2.

At step 3, smartAE picks the edge in position 3 + 𝑐𝑜𝑢𝑛𝑡 = 5, i.e. the edge (4, 5). It adds it to
the graph and now the graph is no longer acyclic. So (4, 5) is added to the list 𝐸𝐴. We have
reached the end of the for loop, the arcs in 𝐴𝐴 and 𝐸𝐴 are removed from 𝐸𝑓 which now has
2 arcs left, i.e. 𝐸𝑓 = [(3, 1), (4, 3)]. The for loop restarts with 𝑐𝑜𝑢𝑛𝑡 = 0, smartAE picks the
arc (3, 1), it adds it to the graph and it creates a cycle. So, it removes it from the graph and
adds it to the list 𝐸𝐴 and now 𝐸𝐴 = [(4, 5), (3, 1)]. The variable 𝑐𝑜𝑢𝑛𝑡 remains equal to 0,
so smartAE moves to the next and last element (4, 3). It adds it to the graphs and the graph
remains acyclic (Figure 1 (b) is exactly the graph obtained after smartAE adds the edges).

3. Our heuristics Ordered Feedback Arc Set (OFAS)

We will now give a complete description of our approach to the problem.
Given a directed graph 𝐺 = (𝑉,𝐸) our overall reasoning is the following:

• compute all the Strongly Connected Components (SCC) of 𝐺, and concentrate just on
the components with at least 2 vertices.

For each SCC,

• we sort the vertices in 4 different ways: decreasing order of out-degree (do), increasing
order of out-degree (io), decreasing order of in-degree (di), increasing order of in-degree
(ii),

• for each of the above orderings and following the vertices in the ordering, we have 2
possible stopping criteria which characterize our 2 different heuristics:

0) Stopping criterion is "end of the list of vertices", i.e. we go through the list and vertex
by vertex we delete all forward edges and store them into a list 𝐸𝑓 . Analogously,
we go through the list again and delete all backward edges and store them into a
list 𝐸𝑏.

1) Stopping criterion is "the graph acyclicity", i.e. we go through the list and vertex by
vertex we delete all forward edges and store them into a list 𝐸𝑓 . However, vertex



by vertex, we remove its forward edges from the graph and check whether or not
the graph has become acyclic, in which case we stop. Again, removed edges are
stored into the list 𝐸𝑓 . Analogously, for the backward edges. When we stop, all the
removed backward edges are stored into the list 𝐸𝑏.

• For each of these two cases, which will give us two different heuristics OFAS0, OFAS1, the
smallest of the two sets 𝐸𝑓 and 𝐸𝑏 (they are both Feedback Arc Sets) will be passed on to
the procedure smartAE, which will try to add back to the component as many edges as
possible and return a minimal Feedback Arc Set.

In Section 4 we will compare the obtained results to the results obtained in [8] and [6].

3.1. The basic minimal ordered FAS

The pseudo-code for the basic heuristic Ordered Feedback Arc Set OFAS0, is described formally
in Algorithm 4.

In Table 1, we can see that OFAS0 produces always better results than GR, but it clearly is
more computationally expensive, due the computational cost of smartAE, and thus globally is
𝒪(|𝐹 |(|𝑉 |+ |𝐸|)) where 𝐹 is the smallest between the set of forward edges and the set of back-
ward edges. Thus, worst case scenario gives us the asymptotic complexity 𝒪(|𝐸|(|𝑉 |+ |𝐸|)).
Algorithm 4: Heuristic OFAS0
Inputs :Strongly connected graph 𝐺 = (𝑉,𝐸), permutation 𝑃 of vertices in 𝑉
Output :Minimal FAS

1 𝑛 = |𝑉 |, 𝑚 = |𝐸|, 𝑃 = {𝑝1, . . . , 𝑝𝑛}
2 𝐸𝑓 = [], 𝐸𝑏 = [] ; /* Initialize lists */
3 𝐿 = []
4 for 𝑖 = 1, 2, . . . , 𝑛 do
5 𝐿 = 𝐹𝐸(𝐺,𝑃, 𝑖) append 𝐿 to 𝐸𝑓

6 𝐿 = 𝐵𝐸(𝐺,𝑃, 𝑖) append 𝐿 to 𝐸𝑏

7 end
8 if |𝐸𝑓 | < |𝐸𝑏| then
9 Remove edges in 𝐸𝑓 from 𝐸

10 return 𝑠𝑚𝑎𝑟𝑡𝐴𝐸(𝐺,𝐸𝑓 )

11 else
12 Remove edges in 𝐸𝑏 from 𝐸
13 return 𝑠𝑚𝑎𝑟𝑡𝐴𝐸(𝐺,𝐸𝑏)

14 end

3.2. Acyclicity test and the heuristic OFAS1

The pseudo-code of the improved version of Ordered Feedback Arc Set OFAS1, is for-
mally described in Algorithm 5. To figure out its computational complexity we start from
𝒪(|𝐸|(|𝑉 |+ |𝐸|)) which is the complexity of OFAS0 and add to it the complexity of checking
if the graph is acyclic after each vertex which is taken into consideration. Thus, worst case
scenario, is 𝒪(|𝐸|(|𝑉 | + |𝐸|) + |𝑉 |(|𝑉 | + |𝐸|)) which gives us, again, 𝒪(|𝐸|(|𝑉 | + |𝐸|)).



Algorithm 5: Heuristic OFAS1
Inputs :Strongly connected graph 𝐺 = (𝑉,𝐸), permutation 𝑃 of vertices in 𝑉
Output :Minimal FAS

1 𝑛 = |𝑉 |, 𝑚 = |𝐸|, 𝑃 = {𝑝1, . . . , 𝑝𝑛}
2 𝐺1 = (𝑉1, 𝐸1) copy of 𝐺 = (𝑉,𝐸)
3 𝐸𝑓 = [], 𝐸𝑏 = [] 𝐿 = [] ; /* Initialize lists */
4 for 𝑖 = 1, 2, . . . , 𝑛 do
5 𝐿 = 𝐹𝐸(𝐺,𝑃, 𝑖)
6 append 𝐿 to 𝐸𝑓 and remove its edges from 𝐸
7 if 𝐺 is acyclic break
8 end
9 for 𝑖 = 𝑛, . . . , 1 do
10 𝐿 = 𝐵𝐸(𝐺1, 𝑃, 𝑖)
11 append 𝐿 to 𝐸𝑏 and remove its from 𝐸1

12 if 𝐺1 is acyclic break
13 end
14 if |𝐸𝑓 | < |𝐸𝑏| then
15 return 𝑠𝑚𝑎𝑟𝑡𝐴𝐸(𝐺,𝐸𝑓 )
16 else
17 return 𝑠𝑚𝑎𝑟𝑡𝐴𝐸(𝐺1, 𝐸𝑏)
18 end

3.3. Putting it all together: minOFASx

We can now put together the two different heuristics and produce our main Algorithms to
produce a Minimal Feedback Arc Set. We have 2 different algorithms, according to the choice we
make: minOFAS0, minOFAS1. Algorithm 6, shows the way they both work, by simply referring
to minOFASx where, obviously, 𝑥 = 0, 1. From what discussed in Subsection 3.2, we clearly
have that the overall asymptotic complexity of Algorithm 6 is also 𝒪(|𝐸|(|𝑉 |+ |𝐸|)).

4. Results

In order to understand the efficacy of our algorithm, we ran it on the same test cases used in [8].
The Minimum FAS Problem has been extensively applied to circuit testing [9] and to this end

an ISCAS circuit testing dataset is available at https://github.com/alidasdan/graph-benchmarks.
The results and comparisons are shown in Table 1.

Another very interesting and useful set of tests, was introduced and described in [10], also
available at the url above cited, where one can find much larger graphs. Following [8], we ran
our algorithms on three of them, and the relative results and comparisons are shown in Table 2.

In both tables, GR refers to the Algorithm in [6] and Tight to the Algorithm [8]. For all the
tests, except for 1 in Table 1 and 2 in Table 2, the size of the minimum FAS is known and it is
shown in column "Min". Column SCC refers to the number of Strongly Connected Components
of size at least 2. By inspecting both tables, we can see that minOFAS1 outperforms GR in all
instances.

https://github.com/alidasdan/graph-benchmarks


Algorithm 6: Algorithm minOFASx
Inputs :Directed graph 𝐺 = (𝑉,𝐸)
Output :Minimal Feedback Arc Set

1 Compute set 𝑆𝐶𝐶 = {𝐻1, 𝐻2, . . . ,𝐻𝑘} of Strongly Connected Components of 𝐺 with at least 2
vertices.

2 𝑇𝑜𝑡𝑎𝑙 = 0 ; /* Total amount of removed edges */
3 𝑚𝐹𝐴𝑆 = [] ; /* Minimal Feedback Arc Set */
4 for 𝑖 = 1, 2, . . . , 𝑘 do
5 Let 𝑉𝑖 be set of vertices of 𝐻𝑖 and 𝐸𝑖 the set of edges of 𝐻𝑖

6 Compute:
7 𝐿𝑑𝑜 ; /* list 𝑉𝑖 sorted in decreasing order of out-degree */
8 𝐿𝑖𝑜 ; /* list 𝑉𝑖 sorted in increasing order of out-degree */
9 𝐿𝑑𝑖 ; /* list 𝑉𝑖 sorted in decreasing order of in-degree */

10 𝐿𝑖𝑜 ; /* list 𝑉𝑖 sorted in increasing order of in-degree */
11 𝐸𝑑𝑜 =OFASx (𝐻𝑖, 𝐿𝑑𝑜)
12 𝐸𝑖𝑜 =OFASx (𝐻𝑖, 𝐿𝑖𝑜)
13 𝐸𝑑𝑖 =OFASx (𝐻𝑖, 𝐿𝑑𝑖)
14 𝐸𝑖𝑖 =OFASx (𝐻𝑖, 𝐿𝑖𝑖)
15 𝑀 = 𝑚𝑖𝑛(|𝐸𝑑𝑜|, |𝐸𝑖𝑜|, |𝐸𝑑𝑖|, |𝐸𝑖𝑖|)
16 Total=Total+M
17 𝐹 = smallest of {𝐸𝑑𝑜, 𝐸𝑖𝑜, 𝐸𝑑𝑖, 𝐸𝑖𝑖}
18 append 𝐹 to 𝑚𝐹𝐴𝑆

19 end
20 return 𝑚𝐹𝐴𝑆

Let us now compare the results of minOFAS1 to the results obtained by the Algorithm Tight.
We remind that, asymptotically, minOFAS1 is 𝒪(|𝐸|(|𝑉 |+ |𝐸|)) whereas Tight is 𝒪((|𝑉 ||𝐸|)4).
The columns with the results of our two methodology also include, for completeness of infor-
mation, the execution time on an Intel Core i7, 2.8 GHz, with 16 GB of RAM. All tests were
performed in Python 3 language. Moreover, the best of the two methodologies is in boldface
and, when they both give the same result, only the faster one is in boldface.

Out of the first 33 cases, we can see that in 5 cases Tight has a better result, in 1 case minOFAS1
has a better result. In all other 27 cases the results are the same. In other words, even though
our algorithm has a much lower asymptotic cost, it almost always reaches the same results.

As a final note, although not shown in the results table, the ordering which in the majority
of the cases gave us the best result was do, i.e. decreasing order of out-degree. We intend to
perform a full statistical analysis of the contributions of the 4 orderings in future work.

5. Conclusions and future work

We have proposed a fast algorithm to find approximate (if not optimal) solutions to the Minimum
FAS Problem, even for very large graphs, and producing a minimal FAS, i.e. a minimal set of
arcs whose removal renders the graph acyclic and such that no other arc can be added to the
graph without violating the aciclycity property. We also showed how our algorithm is very
much competitive with the algorithm presented in [8] and loses slightly only in very few cases.



Table 1
Comparing algorithms

ISCAS Code Vertices-Edges SCC Min GR Tight minOFAS0 minOFAS1

1 s27 55-87 1 2 2 2 2: 610ms 2: 832ms
2 s208 83-119 5 5 5 5 5: 267ms 5: 193ms
3 s420 104-178 1 1 1 1 1: 265ms 1: 182ms
4 mm4a 170-454 2 8 16 8 8: 296ms 8: 196ms
5 s382 273-438 6 15 29 15 16: 317ms 15: 257ms
6 s344 274-388 6 15 23 15 16: 362ms 15: 254ms
7 s349 278-395 6 15 24 15 16: 1.5s 15: 241ms
8 s400 287-462 6 15 28 15 17: 327ms 15: 221ms
9 s526n 292-560 15 21 29 21 21: 336ms 21: 247ms
10 mult16a 293-582 1 16 23 16 20: 482ms 16: 362ms
11 s444 315-503 6 15 20 15 18: 884ms 15: 242ms
12 s526 318-576 15 21 31 21 22: 363ms 21: 309ms
13 mult16b 333-545 15 15 22 15 15: 335ms 15: 232ms
14 s641 477-612 1 11 16 11 12: 498ms 11: 325ms
15 s713 515-688 1 11 16 11 11: 556ms 11: 303ms
16 mult32a 565-1142 1 32 45 32 45: 1.2s 32: 1.15s
17 mm9a 631-1182 11 27 29 27 27: 590ms 27: 546ms
18 s838 665-941 32 32 37 32 32: 450ms 32: 520ms
19 s953 730-1090 1 6 11 6 8: 606ms 7: 550ms
20 mm9b 777-1452 10 26 31 27 28: 1.25s 26: 798ms
21 s1423 916-1448 6 71 112 71 79: 7.34s 71: 2.9s
22 sbc 1147-1791 5 17 21 17 19: 557ms 17: 500ms
23 ecc 1618-2843 57 115 137 115 120: 1.22s 115: 1.39s
24 ph_decoder 1671-3379 31 55 64 55 56: 1.98s 55: 1.93s
25 da_receiver 1942-3749 30 83 123 83 87: 4.86s 83: 6s
26 mm30a 2059-3912 2 60 62 60 61: 5.35s 60: 2.29s
27 parker1986 2795-5021 33 178 313 178 195: 1m 20s 178: 1m 36s
28 s5378 3076-4589 1 30 75 30 35: 20.2s 34: 8.62s
29 s9234 3083-4298 21 90 163 91 92: 27.3s 91: 37.4s
30 bigkey 3661-12206 112 224 224 224 224: 1.51s 224: 1.57s
31 dsip 4079-6602 2 - 165 153 176: 22.7s 159: 24.1s
32 s38584 20349-34562 1 1080 1601 1080 1178: 1h18m44s 1089: 1h21m52s
33 s38417 24255-34876 437 1022 1638 1022 1074: 6m9s 1023: 23m8s

Table 2
Comparing algorithms

IBM Code Vertices-Edges SCC Min GR Tight minOFAS0 minOFAS1

1 ibm01 12752-36048 6 - 3254 1761 1917: 1h24m28s 1840: 53m13s
2 ibm02 19601-57753 1 - 5726 3820 3922: 2h44m20s 3837: 2h41m21s
3 ibm05 29347-98793 93 4769 5979 4769 4770 2h8m10s 4769 2h49m53s



So, we think that our minOFAS1 represents a very good balance between the ability to reach a
minimum value (or close to it) and the possibility of application to problems of high dimensions,
like the ones described in [7].

One of the weaknesses of our algorithm, which we intend to address in the future, is that it
performs a lot better when dealing with scale free graphs. Obviously, for graphs whose vertices
have all the same degree, such as for instance tournament graphs, our ordering based solely
on both in-degrees and out-degrees might not give us good results, except when either just
in-degrees or just out-degrees in the overall distribution differentiate significantly the vertices.

By recalling the steps of our algorithms described in Section 3, it is clear that to speed up the
computation time, we could have 8 parallel threads working on each SCC and the minimum of
the 8 results would be taken into account. We did not perform any tests on it but it is clear how
our algorithm lends itself easily to a parallel/distributed implementations.

As a future research project, we also intend to work on extending our algorithm by considering
Strongly Connected Components during the arc elimination phases. We know that edges
connecting vertices in different Strongly Connected Components, do not participate in any
cycle. Therefore, if, after having eliminated for instance all the forward edges of the first 𝑖
vertices, the initial strongly connected graph (or component) has been broken into several
Strongly Connected Components, any edge exiting from the (𝑖+ 1)-th vertex and entering a
vertex in a different Strongly Connected Component remains in the graph. Thus, after having
eliminated all the edges outgoing from (or incoming to) the first vertex in the permutation,
instead of checking whether or not the graph is acyclic, as suggested in Subsection 2.1, we
could compute from that moment on the Strongly Connected Components of the graph and
only eliminate the edges connecting vertices within the same component. The asymptotic cost
of such a check is still 𝒪(|𝑉 |+ |𝐸|) as for the acyclicity check, however, the constant factor
involved is certainly higher and for graphs with thousands or more vertices and edges, as it is
the case for graphs representing Big Data relations, the heuristic, in this simple form, becomes
very slow. We have already tested it and obtain some slight improvements. For instance, for
test case ibm01 we were able to obtain a minimal FAS of size 1803, which is a significant
improvement with respect to the 1840 obtained the minOFAS1. So, we are planning to pursue
such an extension, try to optimize its running time and generate test cases of known minimum
FAS using the algorithm introduced in [11].

Another line of research we intend to follow, is related to the work done in [12, 13, 14], where
the Minimum Feedback Vertex Set was tackled by means of population based, evolutionary
metaheuristics, even in the case of very large instances. We are confident that such an approach
could lead to very good results for the Minimum FAS Problem as well.
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