
Adaptive Metaheuristic Methods Based on the Covid-19 Virus’ 
Behavior and Measures for Fight It 
 

Eugene Fedorova, Olga Nechyporenkoa, Maryna Leshchenkoa, Tetyana Utkinaa, 

Kostiantyn Rudakova and Nataliia Ladaa 
 

a Cherkasy State Technological University, Shevchenko blvd., 460, Cherkasy, 18006, Ukraine 

 

 

Abstract  
The research proposes the numerical optimization methods are based on metaheuristic methods 

on the basis of COVID-19 virus' behavior and measures to fight it. The novelty of research is 
defined by the fact, that to increase the numerical optimization efficiency, the following issues 
were developed. The anti-coronavirus optimization, which uses the normalized distance 

between people in an explicit form and the dynamic Levy flight parameter to modify the vector 
of human health characteristics at the stage of social distancing was improved. A power-law 

parameter to calculate the dynamic number of the weakest people was proposed. A local search 
based on the number account of days in quarantine to modify the vector of human health 
characteristics at the quarantine stage, arithmetic crossover based on the number of days in 

isolation to modify the vector of human health characteristics at the isolation stage were 
developed. A coronavirus optimization algorithm that uses dynamic mutation probability to 
modify the virion vector and coronavirus herd immunity optimizer that uses dynamic mutation 

probability to modify an individual's characteristic vector were improved. The proposed 
methods improve the speed and accuracy of finding a solution. The created metaheuristic 

methods based on the behavior of the COVID-19 virus and measures to fight it can be used in 
general and special-purpose intelligent systems. 
 

Keywords  1 
COVID-19, social distancing, infection mechanism, biological metaheuristics, numerical 
optimization 

1. Introduction 

The COVID-19 epidemic is no longer spreading around the world so quickly today, but it has already 

harmed the health and well-being of the population in different countries [1-4]. In 2023, there are over 

700 million recovered cases, about 7 million deaths and over 200 thousand new cases of infection. The 

metaheuristics proposed in this research are based on COVID-19 control measures and the COVID-19 

infection mechanism. 

To reduce the probability of hitting a local extremum and more quickly find quasi-optimal solution 

metaheuristics (or modern heuristics) are used [5-6]. Metaheuristics are an extension of conventional 

heuristics and combine various heuristics [7-8]. Metaheuristics are used for continuous and discrete 

optimization [9-10]. 

2. Literature review 

Modern metaheuristics have one or more disadvantages: 
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• only a general method’s description is given without reference to the mathematical apparatus 

or the method’s description cannot be used for several tasks [11-12]; 

• the finding solution process is not adaptive [13-14]; 

• the method will not necessarily converge [15-16]; 

• the method is intended only for binary potential solutions [17-18]; 

• the identifying parameter values process is difficult [19-20]; 

• only unconditional optimization problems can be solved [21-22]; 

• low accuracy of the method [23-24]. 

The task of creating effective metaheuristic optimization algorithms arises in this regard [25]. One 

of the popular metaheuristics are biological metaheuristics, of whom are viral ones, which allows 

solving numerical optimization problems [26-28]. 

The goal of the research is to increase the efficiency of numerical optimization through the use of 

metaheuristic methods based on the COVID-19 virus behavior and measures to fight it. To achieve this 

goal, it is necessary to solve the following tasks: 

1. to create improved anti-coronavirus optimization; 

2. to develop an improved algorithm for coronavirus optimization; 

3. to create an improved coronavirus herd immunity optimizer; 

4. to conduct a numerical study of the proposed viral methods. 

3. Improved anti-coronavirus optimization 

Basic anti-coronavirus optimization (anti-coronavirus optimization, ACVO) was suggested by 

Emami [4] and is based on measures to fight the COVID-19 virus spread. The basic algorithm has three 

main stages: social distancing, quarantine and isolation. During the social distancing phase, the 

algorithm tries to maintain a safe distance between people and limit close contacts. The algorithm 

quarantines suspicious people to prevent the spread of the disease during the quarantine stage. 

Moreover, some people who did not follow the medical protocols and contracted the virus must be 

taken care of for their full recovery. The algorithm takes care of infected people to restore their health 

in the isolation phase. The decision is made by an individual who is trying to stay healthy and slow the 

spread of COVID-19 by following containment protocols. The healthiest person is the best solution. 

The improved method uses the normalized distance between people explicitly to modify the vector of 

human health characteristics during the social distancing stage. Dynamic Levy flight parameter are used 

to modify the human health characteristics vector during the social distancing stage, i.e., Levy 

distribution is close to the long-tailed distribution at the early method stages (the search is more global) 

and the Levy distribution is close to the short-tail distribution the at the later stages of the method (the 

search is more local). There is a power-law parameter to calculate the dynamic number of the weakest 

people quarantined in the current iteration; local search includes the number of days in quarantine, to 

modify the human health characteristics vector at the quarantine stage; arithmetic crossing over includes 

the number of days in isolation, to modify the human health characteristics vector at the isolation stage. 

3.1. The algorithm for numerical functions optimization 

1. Initialization 

1.1. To set the minimum and maximum values of the Levy flight parameter min , max ; the safe 

physical distance between people   and basic reproductive number 0R  (it shows the average 

number of secondary infection cases  caused by one primary infected person) are normalized; 

maximum duration of quarantine is QE ; maximum duration of isolation is IE ; power-law parameter 

is   to calculate the number of the weakest people; a parameter   uses to generate a new vector of 

human health characteristics, moreover 0 1  . 

1.2. To set the maximum number of iterations N , population size K , length of the human health 

characteristics vector M , minimum and maximum values for the human health characteristics 

vector 
min max,j jx x , 1,j M . 



1.3. To set the cost function (goal function) 

( ) min
x

F x → , 

where x  – is a human health characteristics vector. 

1.4. To create the initial population P . 

1.4.1. Person number is 1k = , P = . 

1.4.2. To generate the human health characteristics random vector kx  

1( ,..., )k k kMx x x= , 
min max min( ) (0,1)kj j j jx x x x U= + − , 

where (0,1)U  is a function returning a standard uniformly distributed random number. 

1.4.3. To initialize a person’s health status (healthy) 

1ks = . 

1.4.4. If ( , )k kx s P , then {( , )}k kP P x s= , 1k k= + . 

1.4.5. If k K , then go to step 1.4.2. 

1.5. To create the quarantine list Q= . 

1.6. To create the isolation list I = . 

1.7. The Levy Flight Parameter initialization 

0 = . 

1.8. To determine the best person by goal function 
* arg min ( )k

k
k F x= , 1,k K , *

*

k
x x= . 

2. Iteration number 1n = . 

3. Social distancing. 

3.1. Person number 1k = . 

3.2. Person number 1l k= + . 

3.3. To calculate the normalized distance between a person k and a person l : 

max min|| ||

k l

kl

x x
d

x x

−
=

−
. 

3.4. If kld  , then go to step 3.9. 

3.5. The calculation of the control parameter for the local distance between a person k  and a 

person l  in his neighborhood based on Lévy flight (random walk); the Mantegna algorithm is used 

to calculate the step size . 

1 j kl jd =  , 1,j M , 

1/ ( )

(0,1)

(0,1)

v
j n

u

N

N





 = , 

1u = , 
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(1 ( )) sin( ( ) / 2)

((1 ( )) / 2) 2

n

v n

n n

n





 


  −

  +
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 + 
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where (0,1)N  – a function returning a standard normally distributed number, ( )   – gamma 

function. 

3.6. To calculate the normalized distance between a person k  and the best person: 
*

max min

k

k

x x
d

x x

−
=

−
. 

3.7. The calculation of the global distance control parameter between a person k  and the best 

person based on Lévy flight (random walk), the Mantegna algorithm is used to calculate the step 

size   is: 

2 j k jd =  , 1,j M , 
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3.8. The modification of the human health characteristics vector: 

3.8.1. 
1 2klj kj j jx x= + + , 1,j M . 

3.8.2. 
minmax{ , }klj j kljx x x= , 

maxmin{ , }klj j kljx x x= , 1,j M . 

3.9. Status modification (healthy): 

1ks = . 

3.10. if l K , then 1l l= + , go to step 3.3. 

3.11. 
1,

arg min ( )k kl
l k K

l F x
 +

= , 
kk klx x= . 

3.12. If k K , then 1k k= + , go to step 3.2. 

4. Population reduction. 

4.1. To combine previous and new populations into one population 

P P P= . 

4.2. To sort P  by purpose function, i.e. 1( ) ( )k kF x F x + . 

4.3. To keep in the population only K  the first best people. 

5. The calculation of the weakest people number: 

0( ) 1Q n
K n R

N

  
= −     

. 

6. To add the weakest people to the quarantine list Q . 

6.1. 1k = , m Q= . 

6.2. Vector of human health characteristics before quarantine: 

0, ( )Q

Q

m k K K n k
x x+ − +

= . 

6.3. Vector of human health characteristics during quarantine: 

( )Q

Q

m k K K n k
x x+ − +

= . 

6.4. A person's health status (in quarantine) initialization: 

0Q

m ks + = . 

6.5. The initialization of the days number in quarantine: 

0Q

m ke + = . 

6.6. 
0,{( , , , )}Q Q Q Q

m k m k m k m kQ Q x x s e+ + + += . 

6.7. If ( )Qk K n , then 1k k= + , go to step 6.2. 

7. The population modification (the weakest people are quarantined): 

0ks = , ( ) 1,Qk K K n K − + . 

8. Quarantine. 

8.1. Number of persons in quarantine is 1k = . 

8.2. The calculation of the human health modifiable characteristics number:  

(1 ( 1) (0,1))M round M U= + − , 

where ()round  – function that rounds a number to the nearest integer. 

8.3. To generate a set of randomly selected human health characteristics numbers J . 

8.3.1. 1i = , J = . 

8.3.2. (1 ( 1) (0,1))j round M U= + − . 

8.3.3. If j J , then { }J J j= , 1i i= + . 

8.3.4. If i M , then go to step 8.3.2. 



8.4. If 0Q Q Q

k ks e E=   , then max min( )(2 (0,1) 1) 1
Q

Q Q k
kj kj j j Q

e
x x x x U

E


 
= + − − − 

 
, 

minmax{ , }Q Q

kj j kjx x x= , 
maxmin{ , }Q Q

kj j kjx x x= , j J , 1Q Q

k ke e= + , go to step 8.7. 

8.5. If 0( ) ( )Q Q

k kF x F x , to add a quarantined person to the population and removing from the 

quarantine list: 

8.5.1. 
1

Q

kP
x x

+
= . 

8.5.2. 
1

1
P

s
+
= . 

8.5.3. 
1 1

{( , )}
P P

P P x s
+ +

= . 

8.5.4. 0\{( , , , )}Q Q Q Q

k k k kQ Q x x s e= . 

8.6. If 0( ) ( )Q Q

k kF x F x , to add a quarantined person to the isolation list and removing from the 

quarantine list: 

8.6.1. Human health characteristics vector before isolation: 

0, 1

I Q

kI
x x

+
= . 

8.6.2. Human health characteristics vector during isolation: 

1

I Q

kI
x x

+
= . 

8.6.3. A person’s health status (in isolation) initialization: 

1
1I

I
s

+
= − . 

8.6.4. The number of days in isolation initialization: 

1
0I

I
e

+
= . 

8.6.5. 
1 1 1 1

{( , , , )}I I I I

I I I I
I I x x s e

+ + + +
= . 

8.6.6. 0\{( , , , )}Q Q Q Q

k k k kQ Q x x s e= . 

8.7. If k Q , then 1k k= + , go to step 8.2. 

9. Isolation. 

9.1. Number of a person in isolation 1k = . 

9.2. The calculation of the human health modifiable characteristics number: 

(1 ( 1) (0,1))M round M U= + − . 

9.3. To generate a set of randomly selected human health characteristics numbers J : 

9.3.1. 1i = , J = . 

9.3.2. (1 ( 1) (0,1))j round M U= + − . 

9.3.3. If j J , then { }J J j= , 1i i= + . 

9.3.4. If i M , then go to step 9.3.2. 

9.4. If 0I I I

k ks e E=   , then *( ) (0,1) 1
I

I I I k
kj kj j kj I

e
x x x x U

E


 
= + − − 

 
, 

minmax{ , }I I

kj j kjx x x= , 

maxmin{ , }I I

kj j kjx x x= , j J , 1I I

k ke e= + , go to step 9.6. 

9.5. If 0( ) ( )I I

k kF x F x , to add to the population and removing from the isolation list a person 

who has undergone isolation: 

9.5.1. 
1

I

kP
x x

+
= . 

9.5.2. 
1

1
P

s
+
= . 

9.5.3. 
1 1

{( , )}
P P

P P x s
+ +

= . 

9.5.4. 0\{( , , , )}I I I I

k k k kI I x x s e= . 

9.6. If k I , then 1k k= + , go to step 9.2. 



10. Population reduction. 

10.1. To sort P  by purpose function, i.e. 1( ) ( )k kF x F x + . 

10.2. To keep in the population only K  the first best people. 

11. The calculation of the Lévy flight parameter: 

min max min( ) ( )
n

n
N

   
 

= + −  
 

. 

12. To determine the best person by goal function: 
* arg min ( )k

k
k F x= , 1,k K , *

*

k
x x= . 

13. To determine the global best vector of human health characteristics. If *

*( ) ( )
k

F x F x , then 

*

*

k
x x= . 

14. If n N , then 1n n= + , go to step 3. 

The result is *x . 

4. The improved coronavirus optimization algorithm 

The basic Coronavirus Optimization Algorithm (COVIDOA) was proposed by Khalid, Hosny, 

Mirjalili [5] and is based on the mechanism of human cell capture by coronavirus. The virus genome 

finds a ribosome in the human cell, which synthesizes many virus proteins based on the virus mRNA 

(matrix ribonucleic acid) of the, i.e., replicates mRNA. A viral mRNA is translated into viral proteins 

by reading the nucleotide sequence (building blocks) of the mRNA during the process of replication. 

The reading frame of the mRNA nucleotide sequence is shifted to the left/right by one. Each group of 

created virus proteins combines to form a virion (viral particle). The improved method uses dynamic 

mutation probability to modify the virion vector, i.e., the search is global at the early stages of the 

method, the search is local at the later stages of the method. 

4.1. The algorithm for optimization of numerical functions 

1. Initialization. 

1.1. To set the minimum and maximum values of the mutation probability 
min max,p p ,   

parameter, s shift parameter,  parameter to generate a new human health characteristics vector, 

and 0 1  , { 1,1}s − , 0 1  . 

1.2. Setting the maximum number of iterations N , K  population size, M virion vector length, 

minimum and maximum values for the virion vector 
min max,x x . 

1.3. To set the cost function (goal function): 

( ) min
x

F x → , 

where x  – is a virion vector. 

1.4. To create the initial population P . 

1.4.1. A virion number 1k = , P = . 

1.4.2. Random virion vector kx  generation: 

1( ,..., )k k kMx x x= , 
min max min( ) (0,1)kjx x x x U= + − , 

where (0,1)U  – a function that returns a standard uniformly distributed random number. 

1.4.3. If kx P , then { }kP P x= , 1k k= + . 

1.4.4. If k K , then go to step 1.4.2. 

1.5. The mutation probability initialization: 
min( )p n p= . 



1.6. To determine the best virion according to its target function: * arg min ( )k
k

k F x= , 1,k K , 

*

*

k
x x= . 

2. Iteration number 0n = . 

3. The calculation of the goal function average value: 

1

1
( )

K
avg

k

k

F F x
K =

=  . 

4. The calculation of probabilities: 

( )
exp k

k avg

F x
p

F


 
= − 

 
, 1,k K . 

5. A virion number is 1k = . 

6. To select of the parent virion number l  based on a single application of roulette (proportional 

selection) and probabilities lp , 1,l K . 

7. Frameshift. 

7.1. If 1s = , then 
min max min

11 ( ) (0,1)kx x x x U= + − , 
1 , 1k j k jx x −= , 

min max min

21 ( ) (0,1)kx x x x U= + −

, 2 , 1k j k jx x −= , 2,j M . 

7.2. If 1s = − , when 
min max min

1 ( ) (0,1)k Mx x x x U= + − , 
1 , 1k j k jx x += , 

min max min

2 ( ) (0,1)k Mx x x x U= + − , 2 , 1k j k jx x += , 1, 1j M − . 

8. The crossing-over. 

8.1. 
2 1 2( )(2 (0,1) 1)kj k j k j k jx x x x U= + − − , 1,j M . 

8.2. 
minmax{ , }kj j kjx x x= , 

maxmin{ , }kj j kjx x x= , 1,j M . 

9. Mutation. 

9.1. (0,1)U = , (0,1)jr U= , 
, ( )

, ( )

j

kj

kj

r p n
x

x p n






= 


, 1,j M . 

9.2. 
minmax{ , }kj j kjx x x= , 

maxmin{ , }kj j kjx x x= , 1,j M . 

10. If k K , then 1k k= + , go to step 6. 

11. Population reduction. 

11.1. To combine previous and new populations into one population 

P P P= . 

11.2. To sort P  by purpose function i.e.,  1( ) ( )k kF x F x + . 

11.3. To leave only the K  first best virions in the population. 

12. The mutation probability calculation: 

min max min( ) ( ) 1
n

p n p p p
N

 
= + − − 

 
. 

13. To determine the best virion according to its target function: * arg min ( )k
k

k F x= , 1,k K , 

*

*

k
x x= . 

14. To determine the global best virion vector. If *

*( ) ( )
k

F x F x , then *

*

k
x x= . 

15. If n N , then 1n n= + , go to step 3. 

The result is *x . 

5. The improved coronavirus herd immunity optimizer 

The basic coronavirus herd immunity optimizer was proposed by Al-Betar, Alyasseri, Awadallah, 

Doush [6] and is based on the herd immunity concept and the social distancing concept as ways to 



combat the coronavirus (COVID-19) pandemic. The rate of spread of coronavirus infection depends on 

how infected humans come into direct contact with other members of society. Herd immunity is a 

population condition in which the majority of the population is immune to infection, thereby preventing 

transmission of the disease. Three types of human individuals are used: susceptible, infected, and 

immunized to achieve herd immunity. The goal function evaluates immunity. The dynamic probability 

of mutation to modify the human characteristics vector is using in the improved method, i.e., the search 

is global in the early stages of the method, the search is local in the later stages of the method. 

5.1. The numerical functions optimization algorithm 

1. Initialization. 

1.1. To set the minimum and maximum values of mutation probability 
min max,p p , the basic 

reproduction frequency   for consideration the spread of a virus pandemic between people, the 

maximum age of infected people   (when it is reached, individuals recover or die), and 0 1  . 

1.2. To set the maximum number of iterations N , population size K , length of the human 

characteristics vector M , minimum and maximum values for the human characteristics vector 
min max,j jx x , 1,j M . 

1.3. To set the cost function (goal function): 

( ) min
x

F x → , 

where x  – is a human characteristics vector. 

1.4. To create the initial population P . 

1.4.1. Person number 1k = , P = . 

1.4.2. Randomly creating a vector of human characteristics kx  

1( ,..., )k k kMx x x= , 
min max min( ) (0,1)kjx x x x U= + − , 

where (0,1)U  – is a function that returns a standard uniformly distributed random number. 

1.4.3. If kx P , then { }kP P x= , 1k k= + . 

1.4.4. If k K , then go to step 1.4.2. 

1.5. State vector initialization: 

1( ,..., )Ks s s= , 0ks = . 

1.6. Age vector initialization: 

1( ,..., )Ka a a= , 0ka = . 

1.7. An infected person identification: 

(1 ( 1) (0,1))l round K U= + − , 1ls = , 

where ()round  – is the function that rounds a number to the nearest integer. 

1.8. Initialization of mutation probability: 
min( )p n p= . 

1.9. To determine the best person by goal function: 
* arg min ( )k

k
k F x= , 1,k K , *

*

k
x x= . 

2. Iteration number 0n = . 

3. Person number 1k = . 

4. The evolution of herd immunity. 

4.1. 0kc = . 

4.2. { | 1, 1, }iE i s i K= =  . 

4.3. { | 0, 1, }i iB x s i K= =  . 

4.4. { | 2, 1, }iD i s i K= =  , argmin ( )i
i D

v F x


= . 

4.5. Person characteristics number 1j = . 



4.6. (0,1)r U= . 

4.7. If 
3

r


 , then (1 ( 1) (0,1))l round E U= + − , ( )(2 (0,1) 1)
lkj kj kj e jx x x x U= + − − , 1kc = . 

4.8. If 
2

3 3
r

 
  , then (1 ( 1) (0,1))m round B U= + − , ( )(2 (0,1) 1)

mkj kj kj b jx x x x U= + − − . 

4.9. If 
2

3
r


  , then ( )(2 (0,1) 1)kj kj kj vjx x x x U= + − − . 

4.10. If r  , then 
kj kjx x= . 

4.11. minmax{ , }kj j kjx x x= , maxmin{ , }kj j kjx x x= . 

4.12. If j M , then 1j j= + , go to step 4.6. 

5. Mutation. 

5.1. (0,1)U = , (0,1)jr U= , 
, ( )

, ( )

j

kj

kj

r p n
x

x p n






= 


, 1,j M . 

5.2. minmax{ , }kj j kjx x x= , maxmin{ , }kj j kjx x x= , 1,j M . 

6. Modification of herd immunity population. 

6.1. 
1

1
( )

K
avg

s

s

F F x
K =

=  . 

6.2. If ( ) ( )k kF x F x , then k kx x= , otherwise 1k ka a= + . 

6.3. If 
( )

( ) 0 1k
k k kavg

F x
F x s c

F
  =  = , then 1ks = , 1ka = . 

6.4. If 
( )

( ) 1k
k kavg

F x
F x s

F
  = , then 2ks = , 0ka = . 

7. Critical conditions. If ( ) ( 1)k ka s  = , then 0, 0k ka s= = , 
min max min( ) (0,1)kjx x x x U= + − , 

1,j M . 

8. If k K , then 1k k= + , go to step 4. 

9. To calculate the probability of mutation: 

min max min( ) ( ) 1
n

p n p p p
N

 
= + − − 

 
. 

10. To determine the best person by goal function: 
* arg min ( )k

k
k F x= , 1,k K , *

*

k
x x= . 

11. To determine the global best vector of human characteristics. If *

*( ) ( )
k

F x F x , then *

*

k
x x=  

12. If n N , then 1n n= + , go to step 3. 

The result is *x . 

6. Numerical research 

Numerical research of the proposed metaheuristic methods was carried out using the Python package 

in the Google Colab environment. 

The minimum and maximum value of the Levy flight parameter is min 1 = , max 2 = , safe 

normalized physical distance between people is 0.5 = , power-law parameter for the dynamic number 

of the weakest people calculating is 1.5 = , basic reproductive number is 0 2.5R = , maximum duration 

of quarantine is 5QE = , maximum duration of isolation is 10IE = , a parameter for generating a new 

human health characteristics vector is 0.1 = . All of them were used for anti-coronavirus optimization 

improving. 



The minimum and maximum probability value is 
min max0.1, 0.9p p= = , parameter is 0.5 = , shift 

parameter is 1s = , parameter for generating a new human health characteristics vector is 0.1 = . All 

of them were used for coronavirus optimization algorithm improving. 

The minimum and maximum probability value is 
min max0.1, 0.9p p= =  , basic reproduction rate is 

0.05 = , maximum age of infected people is 100 = . All of them was used for improving of the 

coronavirus herd immunity optimizer. 

The population size is 100K = , the length of the solution vector is 10M =  for all three methods. 

The Lévy flight parameter increasing function is determined by the formula: 

min max min( ) ( )
n

n
N

   
 

= + −  
 

 and it's linear. 

The Levy flight parameter increases with the iteration number increase according to the dependence 

of the increase in the Levy flight parameter on the iteration number (Fig. 1). 

The mutation probability decreasing function is determined by the formula: 

min max min( ) ( ) 1
n

p n p p p
N

 
= + − − 

 
 and it's linear. 

The probability decreases with increasing iteration number according to the dependence of the 

mutation probability decrease on the iteration number (Fig. 2). 

The solution search was carried out using the Rasstrigin test function 

2

1

( ) 10 ( 10cos(2 ))
M

j j

j

F x M x x
=

= + −  with a global minimum x = 0  for all three methods. 

The results of comparing between the proposed and traditional methods (which are based on 

measures to combat COVID-19 and the mechanism COVID-19 infection) are presented in Tables 1-3. 

Table 1 
The comparison between the proposed and traditional anti-coronavirus optimization 

The iterations number Standard derivation 

For the proposed 

method 
For the current method 

For the proposed 

method 
For the current method 

1000 2000 0.02 0.07 

 

Table 2 
The comparison between the proposed and traditional coronavirus optimization algorithm 

The iterations number Standard derivation 

For the proposed 

method 
For the current method 

For the proposed 

method 
For the current method 

500 1000 0.06 0.11 

 

Table 3 
The comparison between the proposed and traditional coronavirus herd immunity optimizer 

The iterations number Standard derivation 

For the proposed 

method 
For the current method 

For the proposed 

method 
For the current method 

750 1500 0.04 0.09 

7. Discussion of results 

1. The anti-coronavirus optimization method is more accurate and faster compared to the existing 

one due to: 

• the normalized distance between people explicitly for modifying the human health 

characteristics vector at the stage of social distancing (Table 1); 

• the dynamic Levy flight parameter to modify the human health characteristics vector at the 

stage of social distancing, i.e., the Levy distribution is close to the long-tailed distribution 



at the early stages of the method (the search is more global), the Levy distribution is close 

to the short-tail distribution at the later stages of the method (the search is more local) (Table 

1); 

• the power-law parameter for the calculating of the weakest people dynamic number 

quarantined at the current iteration (Table 1); 

• the local search, that considers the number of days in quarantine, to modify the human health 

characteristics vector at the quarantine stage (Table 1); 

• the arithmetic crossing over, that considers the number of days in isolation, to modify the 

human health characteristics vector at the isolation stage (Table 1). 

2. The coronavirus optimization algorithm makes it possible to use: dynamic mutation probability 

for modifying the virion vector, i.e., the search is global at the early method stages and the search is 

local at the later method stages. It makes the proposed method more accurate and faster compared 

to the existing one (Table 2). 

3. The coronavirus herd immunity optimizer allows to use: dynamic mutation probability to 

modify the human characteristics vector, i.e., the search is global at the early method stages and the 

search is local at the later method stages; it makes the proposed method more accurate and faster 

compared to the existing one (Table 3). 

8. Acknowledgements 

1. The anti-coronavirus optimization, that makes the proposed method more accurate and faster 

compared to the existing one was developed. The method uses the normalized distance between 

people in an explicit form, the dynamic Levy flight parameter to modify the vector of human health 

characteristics during the social distancing stage, a power-law parameter to calculate the dynamic 

number of the weakest people, a local search to modify the human health characteristics vector 

considering the number of days in quarantine at the quarantine stage, arithmetic crossing over to 

modify the human health characteristics vector considering the number of days in isolation at the 

isolation stage. 

2. The coronavirus optimization algorithm was created. The usage of the dynamic mutation 

probability to modify the virion vector makes the proposed method more accurate and faster 

compared to the existing one. 

3. The coronavirus herd immunity optimizer was developed. The usage of the mutation dynamic 

probability to modify the human characteristics vector makes the proposed method more accurate 

and faster than the existing one. 

4. The usage of the methods are the further research prospects.  The methods are based on 

measures to fight COVID-19 and the mechanism of COVID-19 infection for various general and 

special-purpose intelligent systems, for example, to train neural networks. 
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