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Abstract  
Decision making in medical diagnosis is tedious and very rigorous task, hence the 

requirement to use more advanced and intelligent medical imaging diagnostic support 

systems. The automation of the recognition of medical imaging modalities and human 

anatomical organs gives these systems the possibility of processing, in an automatic and 

adapted manner, different types of images in consideration of different medical imaging 

modalities. It also offers better support to clinicians and patients allowing them to access to 

more effective image analysis and diagnostic tools. In this context, three deep learning 

approaches were developed and tested on six different CNN models (VGG16, VGG19, 

ResNet-50, Xcpetion, Inception and NASNet). Two deep transfer learning modes and an 

ensemble deep learning algorithm based on stacking were used. The experiments carried out 

on two datasets of medium and high challenges show very interesting results with F-score 

reaching 99% for the classification of image modalities and 98% for the classification of 

anatomical organs.  
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1. Introduction 

The medical imaging field has undergone spectacular evolution in recent decades, offering 

unprecedented opportunities for the early and accurate diagnosis of various pathologies. However, 

manual or conventional interpretation of medical images and segmentation of anatomical organs or 

lesions remain complex and time-consuming tasks for radiologists and clinicians. In this context, the 

use of machine learning techniques, and in particular deep learning, has shown promise in improving 

the efficiency and accuracy of these processes. Today, the scientific community uses deep learning 

algorithms to improve diagnosis and help doctors in their work [1]. These algorithms offer more 

relevant automatic characterization and are capable of learning by developing broad knowledge on a 

large volume image datasets. The possibility of transferring learning in an incremental and scalable 

manner offers a great advantage to these algorithms in recognition, prediction or classification tasks 

with better precision. These properties are particularly interesting in the medical field, which is very 

demanding in terms of precision on datasets, which are often limited. By leveraging models already 

pre-trained on image classification tasks, we can capitalize on learned visual features to aid in the 

automatic identification of medical imaging modalities and anatomical organs. 

A large number of deep learning methods use deep convolutional neural networks (CNN). They 

are successfully applied in medical image analysis, giving promising results. The application area 
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covers the entire spectrum of medical image analysis, including detection, segmentation, classification 

and computer-aided diagnosis [2]. 

The automatic classification of medical imaging modalities and anatomical organs will enable the 

development of medical diagnosis support systems and the appropriate automatic processing of a 

large corpus of images. It also facilitates the research work of doctors and healthcare professionals, by 

automatically knowing the image modality, clinicians can correctly interpret the image and make 

precise medical decisions. For example, it allows clinicians to quickly find the medical images they 

need to make comparisons, diagnoses, plan treatments and track the progression of diseases. 

This work presents several original contributions by addressing the problem of recognition of 

medical imaging modalities and anatomical organs. A problem that is rarely addressed in the literature 

where public datasets are very rare. The main contributions of this work are as follows:  

- construction of a new dataset with different challenges, created from several sources, 

- comparisons of six existing CNN models with simple and complex architecture according to 

different transfer learning strategies (VGG 16, VGG 19, ResNet-50, Xcpetion, Inception and NASNet 

networks). We also studied the ability to transfer knowledge and features, learned initially on the 

basis of ImageNet dataset containing more than 14 million non-medical images to medical images 

constituting a set of images of relatively small size. Therefore, we chose to explore different levels of 

fine tuning allowing partial transfer of the learned features from ImageNet dataset to the images from 

our targeted dataset. This type of transfer can be very useful when deep neural networks are pre-

trained on datasets very different from the subject area and when we have a very small and 

insufficient image dataset. 

- Application of ensemble deep learning using the stacking of different CNN sub-models, for the 

combination of knowledge of different models and the pooling of their complementarity.   

The rest of this paper is organized as follows: Section 2 presents related works on classifications of 

medical image modalities and anatomical organs using deep learning. In the third section, we present 

the different proposed approaches. The experimental results are presented and discussed in the fourth 

section. 

2. Related works  
2.1. Overview of existing deep learning-based approaches for classification 
of medical imaging modalities 

The classification of medical imaging modalities is a very important preliminary step to bring 

more autonomy to intelligent medical diagnostic support systems and to help clinicians access the 

required medical imaging in the system. Among the existing works that focus on deep learning, we 

find the work of Yu et al. [3, 4], which focuses on the combination of two CNN architectures 

(VGG16 and ResNet-50), already pre-trained on ImageNet dataset, using deep transfer learning and a 

voting system. The experiments, which were carried out on two medical datasets (ImageCLEF2015 

and ImageCLEF2016), showed that the proposed combination approach offers the best accuracy 

(90.22% on the ImageCLEF2015 dataset and 88.40 on the ImageCLEF2016 dataset) in comparison 

with the VGG16 architectures (87.27% on ImageCLEF2015 and 85.13 on ImageCLEF2016) and 

ResNet-50 (89.34% on ImageCLEF2015 and 87.47 on ImageCLEF2016).  

Kim et al. [5] developed a new method called Class-selective Relevance Mapping (CRM), to 

locate and visualize RoI (regions of interest) in a medical image in order to improve the predictions of 

CNN models for medical imaging classification. In addition to this model, a pre-trained VGG16 was 

used to classify seven different types of image modalities. An accuracy of 0.98% is obtained on the 

Access Biomedical Image Search engine dataset from the United States National Library of Medicine 

(NLM) and on the ImageCLEF2013 dataset.  

In another study, Remedios et al. [6], explored a CNN architecture known as Φ-Net to classify 

MRI images into different categories according to the acquisition modality (T1, T2, FLAIR and 

subclasses T1 pre, T1 post, FLAIR pre and FLAIR post). This model was created by combining 

several CNN architectures with the concept of residual learning [7]. The experiments carried out on a 



dataset of 3418 MRI images showed that the Φ-Net model had an average accuracy of 97.57% for 

classification (T1, T2, FLAIR), compared to 95.47% obtained by the ResNet architecture.  

Chiang et al. [8] used a CNN model for the classification of 4 classes of medical imaging (CT of 

the abdomen, CT of the brain, MRI of the brain and MRI of the spine). The experiments carried out 

on the dataset from the Taiwanese Shuang-Ho hospital (700 images per class) showed an accuracy of 

99.5% and an F-score of 99%, in the same direction we find the work of Laribi and al. [9], where the 

authors developed a new progressive deep transfer learning approach to diagnose Alzheimer Disease, 

applied on the same dataset (Brain MRI dataset), and they achieved best results. 

Recent work of Atrey and al. [10], who developed a hybrid deep learning bimodal CAD algorithm 

for the classification of breast lesions using mammogram and ultrasound imaging modalities 

combined, A combined CNN and LSTM model was implemented using different images obtained 

from both mammogram and ultrasound modalities to improve the early diagnosis of Breast Cancer. 

The proposed bimodal approach achieved a 99.35% of accuracy for the classification. 

According to the literature, we notice the intensive need to explore new ways and approaches 

based on the transfer learning and on the ensemble deep learning in order to achieve better results in 

medical diagnostic support systems and especially in the context of classification of medical imaging 

modalities as well as for the classification of anatomical organs which represents the object of our 

study. 

2.2. Overview of existing deep learning-based approaches for anatomical 
organs classification  

Automated classification of anatomical organs is an important step and a prerequisite for many 

medical diagnostic support systems. Spatial complexity and variability of anatomy throughout the 

human body make classification difficult. In the literature we can find the review of Jiang and al. [11], 

where they reviewed in-depth and analyzed some deep learning-based methods utilized in multiple-

lesion recognition, they were interested to the multiple-lesion recognition in diverse body areas and 

recognition of whole-body multiple diseases. Holger and al. [12] trained a CNN model to identify 

anatomical organs (neck, lungs, liver, pelvis and legs) on axial tomography images. An accuracy of 

0.998% was achieved on images from Hospital PACS Dataset. 

Takiyama et al. [7] worked on the classification of endoscopic (esophagogastroduodenal) medical 

images to recognize the locations of anatomical organs. Images were categorized into four anatomical 

locations (larynx, esophagus, duodenum, and stomach) and three additional sublocations of the 

stomach (upper, middle, and lower), allowing for accurate anatomical classification of the images. 

The experiments were carried out on a dataset of 27,335 endoscopic gastroesophageal (EGD) images 

from a Japanese hospital. An accuracy of 97% was achieved using the GoogleNet model. In the study 

done by Kolbinger and al. [13], We see the combination of two well-known methods (DeepLabv3 and 

SegFormer) on a new dataset of 13195 laparoscopic images, in the aim to develop segmentation 

models for the anatomical structures, they concluded that ML methods can improve the assistance in 

anatomy recognition. Khan et al. [14] proposed a new CNN architecture (compared to three existing 

CNN architectures: LeNet, AlexNet and GoogLeNet) for the classification of images of different parts 

of the human body (head, neck, thorax, abdomen, pelvis, upper and lower limbs) coming from 

different medical imaging modalities, including CT, MRI, PET, ultrasound and X-rays. The proposed 

architecture gave a Test Accuracy rate of 81%, the best rate in comparison with three existing CNN 

architectures (LeNet 59%, AlexNet 74% and GoogLeNet 45%) on a dataset of 37,198 images of 

various anatomical organs. This work shows the interest of existing work in more powerful CNN 

architectures. 

Deep learning-based approaches have yielded promising results in the classification of anatomical 

organs. However, they often require large amounts of data, which can be difficult to obtain in the 

medical field. 

 

 

 



3. Proposed approaches 

As part of this work, we present different approaches based on deep transfer learning that we have 

developed for the classification of medical imaging modalities and anatomical organs. Such 

classifications present several challenges that should not be overlooked during development. The 

main difficulties are often posed by the intra-class variability of medical images, the diversity of 

imaging modalities used, the complexity of anatomical structures and the unavailability of datasets of 

sufficient size in the medical field. The use of deep transfer learning is a better choice to design a 

more robust approach to these constraints. This involves the use of pre-trained CNN models on 

generic image datasets of sufficient volume, to benefit from representations that focus on generic and 

low-level image features, learned on massive and diverse data. These models are thus re-trained (on 

our small dataset) and refined by seeking the best level of fine tuning, making it possible to complete 

the initial low-level representation, valid for all kinds of images, with a second high-level 

representation, specific to our problem of classification of image modalities and anatomical organs.  

In this context, we chose to develop six very popular CNN models (VGG16, VGG19, ResNet-50, 

Inception, Xception and NASNet) with performance already demonstrated in the medical field. Based 

on our previous study on CNN models combination [15] and it’s benefits, we also developed an 

ensemble deep learning which involves combining several CNNs to take advantage of their 

complementarities. With the stacking mechanism, we propose to use a softmax meta-model which 

learns the best weighting and combination of these sub-models. 

 

3.1. Proposed approaches for the classification of medical imaging 
modalities 

At this level, we have developed three different approaches to determine the best behavior to 

follow, the first two approaches concern the development of six CNN models using two transfer 

learning modes (features extractor and fine-tuning modes). Transfer learning makes it possible to 

solve the problem of the reduced size of a dataset. It consists of reusing a pre-trained model on 

another large dataset (even outside the medical field), preserving part of it for relevant extraction of 

generic characteristics and fine tuning the remaining part on our small target dataset to extract specific 

characteristics. This approach allows for faster learning and a more reliable model from a very small 

dataset. 

The third approach consists of seeking the best combination of different CNN models with the 

stacking technique in order to take advantage of the complementarity between them. This 

combination has the advantage of being able to aggregate very different classifiers and significantly 

improve the quality of the final prediction. The use of ensemble deep learning methods is necessary 

when we want to take a step forward in obtaining better prediction results of medical imaging 

modalities.  

 

• Approach 1: is based on transfer learning in features extractor mode. The convolutional part 

(features extractor) of the pre-trained CNN is completely frozen in order to preserve all the 

knowledge already acquired on the initial (very large) dataset. With this mode, only the classifier 

part (Softmax) will be adapted to the new image modalities classification task. The use of pre-

trained CNN models, aims to extract high-level characteristics from medical images. Then, these 

features were used to train modality-specific classifiers. This approach allows us to benefit from 

knowledge learned from large generic databases. Transfer learning with this mode is faster than 

that based on fine tuning, however, it requires the presence of certain similarities between the 

original dataset images and the target dataset images. Six CNNs are compared using this approach 

(see Figure 1). 

 



  

Figure 1: Approach 1 architecture 
 

Approach 2: is based on transfer learning in fine-tuning mode. In this mode, a pre-trained model 

is used as a starting point, but unlike the features extractor mode, a set of the last layers of the 

convolutional part of the model are fine-tuned during training on the new dataset, specific to medical 

imaging. The layers which are not refined are frozen (this concerns the layers closest to the input) to 

preserve certain generic knowledge of the pre-trained CNN model which has already learned on a 

large dataset to extract low level features (which concerns all kinds of images). For the convolution 

part, the number of frozen blocks must be fixed empirically in order to have a better score. Since the 

number of classes is different in the target dataset compared to that of the original dataset, the 

structure of the classifier part (Full connected layers) must be adapted to recognize the new classes of 

different image modalities. This method is composed of three steps, the first one concern the fine-

tuning of the parameters of the non-fixed layers, secondly extraction of image features, finally, the 

last step consists of the generation of predications for the classification using the Softmax classifier. 

 

 
 

 Figure 2: Approach 2 architecture 
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• Approach 3: is based on the combining mode of different CNN models with the stacking 

technique. In this mode, several pre-trained models are used as a starting point, we train the 

models on a database which only contains MRI images of different types (ex. Flair, T1w, T1wCE 

and T2w), we will thus obtain trained models, then we combined them with stacking. 

 

  
Figure 3: Synoptic diagram of approach 3, based on stacking of CNNs 

 

Stacking process consists of training several CNN models independently on the same dataset. Each 

sub-model may have a different architecture with different settings. Once the sub-models are trained 

individually, a meta-model is added to the output of these models. It receives predictions from 

different CNNs as input and learns to combine these predictions to produce a final prediction. This 

meta-model can be based on any machine learning model. In our method, a softmax classifier is used 

as a stacking meta-model. It receives as input the different prediction probabilities coming from the 

output of different stacked CNN sub-models. The objective of this step is to train a new model 

(softmax) to learn how to best combine the contributions from each CNN sub-model.  

Stacking process allows you to take advantage of the diversity of individual models by combining 

their strengths and mitigating their weaknesses. This approach can result in better predictive 

performance than any single contributing model.  

It is also important to note that it is possible to distribute this approach in a real-time framework 

and make the CNN sub-models work in multitasking, multiprocessors, multicores or parallelism. This 

allows better management of the complexity generated by the stacking of sub-models. 

3.2. Anatomical organs classification 

For the classification of anatomical organs, we will use the transfer learning in feature extractor 

mode. We used it by the same idea as that of the approach 1 to the classification of medical imaging 

modalities. 

4. Experiments and results 

In this section, we will present the experiments that we carried out as part of our study, as well as 

the results obtained. First, we will present the evaluation metrics used. Then we will present in detail 

the datasets used with samples of each of them. After that, a description of the data augmentation 

technique used. Then, the results of our experiments for each approach illustrated in tables followed 

by comparisons and comments. 

4.1. Evaluation metrics 

In the literature, there are several evaluation metrics, in our case, and to evaluate the different 

proposed approaches, we used the following metrics: Accuracy, Precision, Recall and F1-score. 

• Confusion matrix: Confusion matrix or error matrix is one of the key concepts when we talk 

about classification problems. This matrix is a two-dimensional array (“actual” and “predicted”) 



and sets of “classes” in both dimensions. Our actual classifications are columns and the predicted 

ones are rows as shown in the table below: 

 

Table 1 
Confusion Matrix 

  Actual 

  Positive (1) Negative (0) 

Predicted 
Positive (1) TP FP 

Negative (0) FN TN 

 
Almost all performance measures are based on the confusion matrix and the numbers it contains. 

• True positive (TP): Real class = True and the prediction=True. 

• True negative (TN): Real class = False and the prediction = False. 

• False positive (FP): Real class =False and prediction =True. 

• False negative (FN): Real class = True and the prediction=False. 

 

•  Accuracy: Number of correct predictions divided by the total number of samples. Is a good 

measure when the classes of target variables in the data are almost balanced. 

 

• Precision: 

 

• Recall: 

 

•  F1-score: 

The difference between Precision and Recall in the classification problem is that Recall gives us 

information about the performance of a classifier against false negatives (how many did we miss), 

while precision gives us information about its performance versus false positives (how many did we 

catch). 

4.2. Datasets used 

Our experiments were carried out on two different datasets with different sizes and challenges. 

• First dataset: called MC4_Dataset (Size and average challenges):  

This image dataset was created by us from nine public image datasets (size of 35150 images). 

Then, we divided this dataset into 4 classes depending on the imaging modality used (MRI 7023 

images, ultrasound 2116 images, CT-Scan 12988 images, X-ray: 12023 images). Each class is 

divided into subclasses according to the different anatomical organs (see Table 2). This dataset is 

created from different datasets and image sources presenting different degradations, resolutions, 

complexities, etc. This increases the challenges of our dataset which will be confronted with the 

developed models. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

(1) 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2) 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

(3) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑅

𝑃 + 𝑅
 

(4) 



Table 2 
List of public datasets combined for each medical imaging modality  

IRM 
7023 images 

Ultrasound 
2116 images 

CT-Scan 
12988 images 

X-ray 
12023 images 

- Public Dataset 
“Brain Tumor MRI 

Dataset” [16] 
7023 Images 

Combination of two 
datasets: 

1) 780 medical images 
of women's 
breasts.[17] 

2)1336 ultrasound 
images of the fetal 

head [18]  

Combination of two 
datasets: 

1) 988 images of the 
torso [19]. 

2) 12,000 medical 
images of the kidneys 

[20]. 

Combination of three 
datasets: 

1) Chest X-ray Dataset: 5856 
images [21]. 

2) Chest Xray Masks and 
Labels: 1600 images of 

human torsos [21]. 
3) Figure-detection: 5567 

hand images [21] 

 

This table contains an unbalanced dataset, ex. the Ultrasound subset (2116 images) is a minority 

class compared to the CT-scan class (12988 images). The significant difference between the sizes of 

the classes can destabilize the model, limit its generalization and/or cause overfitting. To reduce these 

problems, we balanced the dataset by oversampling each minority class to give it the same weight as 

the majority class, using data augmentation: image rotation, zooming, shifting, scaling and shearing 

(see section 4.3). 

  
Figure 4: Example of MRI images [16] 

 
Figure 5: Example of X-ray images, a) medical image of the torso, b) medical image of the hand [21] 



 
Figure 6: Example of ultrasound images a) medical image of a woman's chest, b) medical image of 
the fetal head by ultrasound [18] 

  
Figure 7: Example of CT-Scan image a) Medical image of the torso, b) medical image of the kidney 
acquired by CT scan [19]. 

• Second RSNA-MICCAI dataset (high size and challenges) 

The second used dataset, presents more challenges and more diversity compared to the first 

dataset. This is the public dataset “RSNA-MICCAI Brain Tumor Radio-genomic Classification” (size 

= 290923 images) [22]. It is used to test CNN combination in approach 3. The latter is divided into 

four classes of modalities (FLAIR, T1w, T1wCE and T2w). The following table summarizes the 

image distribution in this dataset according to the different classes. This dataset is balanced like the 

first dataset using data augmentation. 

Table 3 
RSNA-MICCAI Brain Tumor Radio-genomic Classification dataset table [22]. 

Dataset Repartition Class 
Number of 

images 
Size of resized 

images 

RSNA 
MICCAI 

PNG 

Train 

FLAIR 50682 

224x224x3 
T1w 55440 

T1wCE 68012 
T2w 67722 

Total 241856 

Valid 

FLAIR 3000 

224x224x3 
T1w 3000 

T1wCE 3000 

T2w 3000 

Total 12000 



Test 

FLAIR 7926 

224x224x3 
T1w 8791 

T1wCE 10482 
T2w 9863 
Total 37067 

Total 290923 

4.3. Data Augmentation 

To improve deep learning on small datasets, there is a technique called data augmentation. It 

consists of creating new training data samples by applying simple transformations to existing data, 

which increases the size of the available dataset in the aim to improve model training. It has several 

advantages for deep learning, it allows generalization of models, by exposing the model to a variety of 

transformations, it becomes more resilient to variations such. The transformations used in our study 

for the data augmentation are rotation, zooming, shifting, scaling, cropping, etc. By using data 

augmentation, it is possible to improve the performance of deep learning models in an extraordinary 

way. Data augmentation makes it possible to avoid overfitting on complex CNN architectures (with a 

large number of parameters) applied to a small dataset. It also makes it possible to offer better 

stability and model generalization on an unbalanced dataset like the MC4_Dataset. 

4.4. Experiments and results: Classification of medical imaging modalities 

In order to study the relevance of deep learning for the classification of medical imaging 

modalities, we tested the three proposed approaches using different CNN models with transfer 

learning on our datasets. 

4.4.1. Results of approach 1: Features extractor mode 

This approach was applied on each of six CNN models (VGG16, VGG19, ResNet-50, Inception 3, 

Xception and NASNet) already pre-trained on the ImageNet dataset. The dataset used is 

“MC4_Dataset” with data augmentation technique to overcome the problem of the small size in this 

dataset. The features extraction mode is applied with the adaptation of the Softmax classifier part to 

classification in 4 modalities (MRI, ultrasound, CT-scan and X-ray). 

The following table summarizes the results obtained by the six CNNs: 

Table 4 
Comparative table of the results of different models in features extraction mode for the 
classification of modalities on the first MC4_Dataset dataset. 

Model Accuracy Precision Recall F1-Score 

VGG16 0.96 0.96 0.96 0.96 
VGG19 0.94 0.95 0.94 0.95 

ResNet-50 0.81 0.82 0.80 0.81 
Inception 0.97 0.97 0.97 0.97 
Xception 0.976 0.976 0.976 0.976 
NASNet 0.99 0.99 0.99 0.99 

 

According to this table, we see the effectiveness of the NASNet model compared to all the other 

models with a value of 0.99 for each of the evaluation metrics, then comes the Xception model with 

values less than the NASNet but very convincing values. 



4.4.2. Results of approach 2: Fine Tuning mode 

The goal of this experiment is to determine whether the performance of the first five CNNs (VGG 

16, VGG 19, ResNet50, Inception 3, XCeption) will be enhanced by the fine-tuning mode and make 

them also competitive compared to the NASNet CNN.  

Still working on the MC4_Dataset dataset with four output classes (MRI, ultrasound, CT-Scan and 

x-ray), we trained these five CNN models (already pre-trained on ImageNet) in fine-tuning mode on 

our medical image dataset. Each model is trained in 5 epochs with a batch-size of 100, where we have 

frozen a certain percentage of layers (the leftmost layers which are closer to the initial image), this 

process can be described as follows: 

• VGG16: By default, this model contains 5 convolution blocks, but in our case, we generated 

two models from the base model, the first was fixed at 80% (4 blocks out of 5) and the second 

was fixed at 60 % (3 blocks out of 5).  

• VGG19: In the same way as the VGG16 model, we generated two models from this model 

where the first was fixed at 80% and the second one at only 60%. 

• ResNet-50: This model contains 50 layers, while we generated only one single model from it, 

with a percentage of 80%. 

• Inception 3: We thus generated two models from this model which contains 48 layers, the 

first one was fixed at 90% (43 layers) and the other at 80% (38 layers). 

• XCeption: Based on its number of layers which is 71 layers, we thus generated two models 

from the base model, the first one we frozen 90% (64 layers) of its layers and the other at 80% 

(57 layers).  

The obtained results are displayed in this table: 

Table 5 
Comparison of the results of the different models in fine-tuning mode for the classification of image 
modalities. 

Model Accuracy Precision Recall F1-Score 

VGG16 (60%) 0.42 0.37 0.47 0.41 

VGG16 (80%) 0.94 0.95 0.94 0.94 

VGG19 (60%) 0.46 0.46 0.46 0.46 

VGG19 (80%) 0.96 0.96 0.96 0.96 

Resnet 50 (80%) 0.84 0.87 0.82 0.84 

Inception 3 (80%) 0.99 0.99 0.99 0.99 

Inception 3 (90%) 0.99 0.99 0.99 0.99 

XCeption (80%) 0.99 0.99 0.99 0.99 

NASNet (100%) Features extraction mode 0.99 0.99 0.99 0.99 

 

According to these results, we can see the effectiveness of the fine-tuning approach, and especially 

for the two models Inception 3 and XCeption which gave very high values in terms of accuracy, 

precision, recall and F1-Score (0.99) and which are also competitive with the NASNet architecture. 

 

 

 



4.4.3. Results of approach 3: Stacking mode 

Given that the performance of the CNNs (approaches 1 and 2) on the MC4_Dataset dataset 

(average challenges) was 0.99, we considered that it was unnecessary to use the third approach 

(combination of CNNs) which was dedicated on all to higher challenge datasets. This is why we 

tested approach 3 only on the second dataset ("RSNA-MICCAI Brain" with 4 classes Flair, T1w, 

T1wCE, T2w) which presents greater diversity and difficulties. 

Initially we tested each of the six CNNs separately (using approach 2). Subsequently we combined 

three best architectures (Inception 3, XCeption and NASNet), relying on Stacking mode in order to 

achieve a more efficient model with very promising and convincing results which are displayed in the 

following table: 

Table 6 
Comparison of the results of the different models in fine-tuning mode for the classification of 
modalities and combination of models. 

Model Accuracy Precision Recall F1-Score 

VGG16 0.58 0.75 0.24 0.37 

VGG19 0.50 0.73 0.24 0.36 

Resnet 50 0.63 0.70 0.41 0.51 

Inception 3 0.84 0.89 0.81 0.85 

XCeption 0.88 0.89 0.87 0.88 

NASNet 0.86 0.91 0.82 0.87 

Stacking Model 0.91 0.95 0.89 0.92 

 

As we see in the table, the combination of models is efficient and gave us better results comparing 

to other models separately. 

4.5. Experiments and results: Classification of anatomical organs 

For the classification of anatomical organs, we tested on the six CNN models, which are already 

pre-trained based on ImageNet dataset. The transfer learning technique was adopted in features 

extraction mode in order to increase the learning results, and to take advantage of the power of the 

ImageNet dataset. In this case, the MC4_Dataset dataset is subdivided into 8 classes of anatomical 

organs: human torso acquired by scanner, human kidney acquired by scanner, brain acquired by MRI, 

torso acquired by MRI, female chest acquired by ultrasound, fetal head acquired by ultrasound and 

finally of the torso and hand both acquired by x-ray. 

Table 7 
Comparative table of the results of the different models in features extraction mode for the 
classification of anatomical organs 

Model Accuracy Precision Recall F1-Score 

VGG16  0.94 0.94 0.93 0.95 
VGG19  0.64 0.51 0.38 0.78 

Resnet 50  0.66 0.54 0.39 0.89 
Inception 3  0.98 0.99 0.96 0.97 
XCeption  0.98 0.99 0.97 0.98 
NASNet 0.98 0.99 0.96 0.98 

 

The obtained results mentioned in this table, showing the effectiveness of the three models 

(NASNet, Inception 3 and XCeption) well recognized in the literature, giving very convincing values. 



4.6. Discussion  

In order to select the best architecture among the six architectures seen precisely, we adopted the 

F1-Score as the best performance comparison criterion, due to the costs of false positives and false 

negatives which differ in number, which leads to obtaining additional false positives (false alerts) 

rather than saving false negatives. 

In the first approach, we saw that the NASNet model outperformed the other models with an F1-

score of 0.99, but it should be noted that the NASNet in features extraction mode did not have a high 

challenge dataset. 

In the second approach, we noticed that the results increased or decreased, depending on the 

number of layers frozen by the fine-tuning mode. The XCeption architecture beat the other models in 

fine-tuning by 80% where it improved its F1-score compared to the first approach in features 

extraction mode, this shows that the choice of fine-tuning levels had a significant impact to overcome 

the problem of the small size of the image database. 

The third approach which serves to combine the three CNN architectures (Inception 3, XCeption 

and NASNet) where the choice was justified by the best results obtained by these models on the basis 

of medical imaging of different types of MRI, this approach gave us very good results on a very high 

challenge dataset. The model that combines the three models improved the F1-score of the best 

performing model (XCeption) by 5%. This leads us to the conclusion that the deep learning stacking 

approach is very powerful on high challenge datasets. 

For the classification of anatomical organs, we noted the effectiveness of the two models 

(XCeption and NASNet) with the softmax classifier which had a score of 0.98. Considering the 

sufficient results, the application of approach three was not necessary.  

5. Conclusion 

This work focuses on the classification of medical imaging modalities and the classification of 

anatomical organs. For this, six CNN architectures were tested and compared according to three 

different approaches, which we proposed. The objective was to explore deep transfer learning in two 

modes (features extraction and fine-tuning) and ensemble deep learning using the stacking technique 

which combines and complements several models (the best) CNNs. The experiments were carried out 

on two datasets with different challenges: unbalanced MC4_Dataset (created from nine existing 

datasets, medium size and challenges) and RSNA-MICCAI Brain (very high size and challenges). 

The experimental results showed that the NASNet architecture is very powerful compared to the other 

five models on small or medium challenge datasets. Its performance on challenges datasets with 

larger sizes is significantly increased when using combinations with other models. 

Overall, our approach represents a significant advancement in the classification of medical image 

modalities and anatomical organs via the use of deep transfer learning. These results open new 

perspectives for the automation and improvement of medical image analysis tools, thus contributing 

to the improvement of healthcare and medical decision-making. 

In future work, we plan to test stacking on higher challenge datasets by combining CNN models 

with ViT model.  
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