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Abstract  
With the growing amount of genomic data, finding efficient compression methods is crucial 

for both storing and analyzing this data. This article discusses the importance of genome data 

compression, especially in large genomic projects. It introduces program synthesis as a 

powerful tool for data compression. Program synthesis can create programs that efficiently 

represent and reproduce data, making it a promising approach for compressing genomes. 

Readers will learn about program synthesis, how it works, and how it can be used for genome 

data compression. The article shows how we can use program synthesis to compress genome 

sequences better. Although the focus is on genomic data, the methods and insights shared in 

this article can also be applied to compressing other types of data, offering a novel perspective 

to the current discourse on data compression strategies.  
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1. Introduction 

With the rapid progression of high-throughput sequencing technologies, the amount of genomic data 

available has surged exponentially, necessitating the development of efficient genome compression 

methods. As the deluge of genomic data continues, the importance of devising innovative and effective 

genome compression techniques cannot be overstated. 

Recent literature unfolds various approaches to genome compression. Reference-based compression 

algorithms, such as CRAM [1] and RENANO [2], present a noteworthy approach to genome data 

compression. These methodologies achieve substantial compression rates by utilizing a reference 

genome to represent individual sequences efficiently. While promising in their compression efficacy, 

these algorithms carry the significant drawbacks of extended compression time and considerable 

memory requirements, aspects that are detrimental in scenarios demanding swift data processing and 

limited computational resources. These limitations highlight the necessity for novel strategies to balance 

compression efficiency, speed, and resource consumption to facilitate more feasible and practical 

applications in large-scale genome sequencing projects. 

Alternative methods, such as CMIC [3], opt for a different balance, slightly relinquishing the 

compression ratio to gain random access functionality, a feature indispensable for a wide array of tasks. 

This type of approach is intriguing; it provides a distinct perspective on tackling genome compression 

challenges, offering a mix of functionality and efficiency. In light of this, our work introduces an 

alternative approach, discussed in section 4.2.2, that guarantees a fixed compression ratio of 3x. This 

proposed method not only preserves the vital characteristic of random access but also stands out for its 

simplicity and unprecedented speed in the compression process, making it an attractive option for tasks 

that require rapid and efficient handling of genomic data. 

Another category of approaches, such as the one elucidated in "Genome Compression Against a 

Reference" [4], concentrates on batch compression of genomes. These methodologies leverage the 

inherent similarities among human genomes, as the genetic variation between individuals is relatively 

minimal. Hence, these techniques primarily focus on compressing only the sections of the genome data 
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that exhibit differences. By doing so, these approaches efficiently handle the voluminous data 

associated with multiple genomes, ensuring that the redundancy in the information is effectively 

minimized, leading to efficient storage and management of genomic datasets. 

A distinct method is presented in "Cryptography and Reference Sequence Based DNA/RNA 

Sequence Compression Algorithms" [5], where the authors ingeniously apply principles from one 

domain to another. In this novel approach, techniques traditionally used in cryptography are employed 

for the purpose of genome compression. This cross-domain application opens up new possibilities, 

offering a unique perspective and methodology in addressing the challenges of genome data 

compression. Through the integration of cryptographic principles, the proposed approach ensures 

efficient compression. It introduces innovative mechanisms for securing and managing genomic data, 

thereby broadening the horizon of genome data compression strategies. 

The surveyed approaches underscore the swift advancement unfolding within the genome 

compression research sector. Observing this rapid progression, it is pivotal to introduce innovative 

strategies that further the field’s capabilities. In response to this imperative, we put forward a novel 

approach in our study that incorporates a technique hitherto unexplored in the realm of genome 

compression. This innovative method centers on program synthesis, particularly emphasizing equality 

saturation for compression tasks. The employment of program synthesis, and more specifically, the 

equality saturation approach, is posited to offer commendable performance in genome compression 

endeavors, opening new avenues for efficient and effective genomic data handling and analysis. 

2. Background 

Data compression is pivotal for minimizing data size, facilitating efficient storage, and expediting 

transmission. It's essential for reducing costs and quickening the pace of data analysis and sharing. Data 

compression methodologies fall into two categories: lossless and lossy. Lossless compression ensures 

that the original data's integrity is maintained upon decompression, whereas lossy compression results 

in some data loss but often attains higher compression rates 1. 

Shannon’s entropy [6] is integral to data compression, providing a theoretical limit to the best 

possible lossless compression ratio achievable by any compression algorithm. Grasping the concept of 

Shannon's entropy is vital as it provides insights into data's compressibility, steering the creation of 

more efficient algorithms. Shannon’s entropy is calculated using the formula: 

𝐻(𝑋) = − ∑ 𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)

𝑛

𝑖=1

 (1) 

Traditional compression algorithms, including Huffman encoding [7], Arithmetic encoding [8], 

Run-Length Encoding (RLE) [9], and dictionary-based methods like LZW algorithm [10] or GZIP [11], 

serve as foundational knowledge for this discussion. Huffman encoding generates variable-length codes 

for each symbol based on their frequencies, while Arithmetic encoding represents a sequence of 

symbols as a single number. Both RLE and ZIP exploit redundancy in data for compression. 

2.1. Genome compression challenges 

Genome data compression is daunting due to the genomic dataset's unique and voluminous nature.  

Here are some of these challenges: 

 Volume: A single human genome encompasses billions of base pairs, resulting in substantial 

data volumes, necessitating effective compression algorithms5. 

 Diversity: The inherent diversity in genomic data means that variations between genomes are 

vast, necessitating algorithms that can efficiently handle a broad data spectrum without losing crucial 

information6. 

 Noise: Sequencing errors and N's (unknown nucleotides) in the data introduce noise, 

complicating the compression process7. 

 Accessibility: The compressed data should be easily retrievable for further analysis and 

research without imposing significant computational overheads8. 



Addressing these challenges is crucial for devising effective genome data compression algorithms. 

2.2. Program synthesis overview 

Program synthesis is the process of automatically generating programs based on a given 

specification. Instead of manually crafting algorithms, developers can provide requirements, and a 

synthesizer outputs a program matching these criteria [7]. Program synthesis, in essence, facilitates 

automating parts of the programming process. 

There are multiple approaches to program synthesis: 

1. Deductive Synthesis: Starts with a high-level specification and refines it step-by-step into a 

full-fledged program [12]. 

2. Stochastic Synthesis: Uses probabilistic methods to explore the program space, often making 

use of genetic algorithms [13]. 

3. Syntax-Guided Synthesis (SyGuS): Defines the semantic constraint the desired function must 

satisfy and a syntactic constraint restricting the space of allowed implementations [14]. 

A fundamental concept tied with program synthesis is Kolmogorov complexity [15], which 

quantifies the computational resources needed to specify a string or piece of data. For a string s, its 

Kolmogorov complexity 𝐾(𝑠) is the length of the shortest possible program (in some fixed 

programming language) that, when run, produces s as output [16]. 

𝐾(𝑠) = 𝑚𝑖𝑛𝑝∈𝑈(𝑝) = |𝑝| (2) 

Where U is a universal Turing machine, and p is a program such that 𝑈(𝑝) = 𝑠. 

Equality saturation is an approach wherein a given program's many equivalent forms are explored 

simultaneously. It employs e-graphs to represent a large set of programs compactly. E-graphs allow for 

finding rewrites in parallel, enabling the synthesizer to search for the most optimal (shortest or fastest) 

program that satisfies the same specification as the original [17]. 

3. Methodology 

The Methodology chapter outlines the research design, detailing the specific methods and 

procedures for data collection, analysis, and experimentation. This chapter serves as a blueprint for the 

entire research process, providing readers with a comprehensive understanding of the approach to 

addressing the research questions. 

3.1. Analysis of Entropy in Human Genome Data 

The data under consideration in this research is the human genome, primarily composed of four 

nucleotides: Adenine (A), Cytosine (C), Guanine (G), and Thymine (T). However, it's crucial to note 

that biological data acquisition, particularly the digitalization of DNA genome sequences, is not entirely 

error-free. As a result, certain parts of the genome are marked as 'N' to indicate uncertainties or errors 

in sequencing. These 'N' markers introduce additional complexity when analyzing the genomic data. 

The entropy of the human genome is evaluated through the following steps: 

1. Average Frequency Calculation: For each nucleotide s ∈ {A, C, G, T, N}, the average frequency 

fs is calculated based on its occurrences in the entire dataset. 

2. Average Probability Calculation: The average probability 𝑃(𝑠) of each nucleotide is then 

determined by normalizing its frequency fs by the total number of nucleotides in the dataset. 

3. Entropy Calculation: Using Shannon's entropy formula (Shannon, C.E., 1948), the entropy H 

is then calculated as 

𝐻 = ∑ 𝑃(𝑠)𝑙𝑜𝑔2𝑃(𝑠)

𝑠∈{𝐴,𝐶,𝑇,𝐺,𝑁}

 (3) 

Based on the analysis conducted, the average probabilities for each of the nucleotides in the dataset 

demonstrated in Table 1: 

 



Table 1 
Calculated probabilities of each symbol in the human genome based on their frequencies in a dataset. 

Nucleotide A C G T N 

P(X) 0.279 0.194 0.195 0.280 0.048 

Using these probabilities, Shannon's entropy H can be calculated using the formula: 

𝐻 = −(𝑃(𝐴)𝑙𝑜𝑔2𝑃(𝐴) + 𝑃(𝐶)𝑙𝑜𝑔2𝑃(𝐶) + 𝑃(𝐺)𝑙𝑜𝑔2𝑃(𝐺) + 𝑃(𝑇)𝑙𝑜𝑔2𝑃(𝑇)
+ 𝑃(𝑁)𝑙𝑜𝑔2𝑃(𝑁)) 

(4) 

Substituting the given probabilities: 

𝐻 = −(𝑃(0.279)𝑙𝑜𝑔2𝑃(0.279) + 𝑃(0.194)𝑙𝑜𝑔2𝑃(0.194) + 𝑃(0.195)𝑙𝑜𝑔2𝑃(0.195)
+ 𝑃(0.280)𝑙𝑜𝑔2𝑃(0.280) + 𝑃(0.048)𝑙𝑜𝑔2𝑃(0.048)) 

(5) 

𝐻 ≈  2.162 𝑏𝑖𝑡𝑠 (6) 
Therefore, the calculated entropy of the dataset based on the given probabilities is approximately 

2.162 bits. This value serves as a theoretical lower limit for the average number of bits required to 

represent each nucleotide in the human genome for the given dataset. It provides a benchmark for 

evaluating the effectiveness of different compression algorithms applied to this specific genomic data. 

By understanding the entropy inherent in the human genome, particularly with the considerations of 

data errors denoted by 'N', we can better gauge the challenges and limits of compressing this form of 

biological data. It sets the stage for exploring advanced compression algorithms tailored for genomic 

data. 

3.2. Reducing Entropy Through Data Transformation 
3.2.1. Entropy Calculation for Combination-based String 

One of the pivotal ideas in data compression is that entropy can change based on how data is 

represented. For instance, consider a simple transformation where consecutive identical symbols are 

replaced with an integer representing the length of the sequence which is also important with low 

technical characteristics of the system [18] and optimization algorithms using parallel computing [19]. 

The entropy H′ of this new data would typically be greater than the entropy H of the original data due 

to the increased number of unique symbols (combinations) in the transformed string. However, because 

these new unique symbols represent 2-symbol combinations from the original string, the effective bits 

per original symbol would be 
𝐻′

2
, which could be more efficient for compression. 

3.2.2. Focusing on Programmatic Representations 

This article aims to shift the spotlight from conventional transformations to an alternate paradigm: 

representing data as a program. Here, the concept of Kolmogorov complexity comes into play, which 

posits that the complexity of a data string can be defined as the length of the shortest possible program 

that can generate that string. Thus, if we can find a shorter programmatic representation, we can 

effectively lower the complexity and, thereby, the entropy of the original data. 

To illustrate this, let's consider the string "AAAAAAAACCCCCCCC". The entropy of this data 

string, considering its highly repetitive nature, would be: 

𝐻 = −(𝑃(𝐴)𝑙𝑜𝑔2𝑃(𝐴) + 𝑃(𝐶)𝑙𝑜𝑔2𝑃(𝐶)) = 1 𝑏𝑖𝑡 (7) 

Compression algorithms that focus solely on entropy, like Huffman encoding, would be highly 

effective here, compressing the data to just 16 bits: "0000000011111111". 

Now, consider a Python representation of the same string: 

      'A' + 'A' + 'A' + 'A' + 'A' + 'A' + 'A' + 'A' + 

'C' + 'C' + 'C' + 'C' + 'C' + 'C' + 'C' + 'C' 
(8) 

By applying mathematical axioms, we can rewrite this program into a shorter one: 

'A' * 8 + 'C' * 8 (9) 
Going further, this can be rewritten as: 

('A' + 'C') * 8 (10) 
This can then be further reduced to its Reverse Polish Notation (RPN): 



AC+8* (11) 
When we apply Huffman encoding to this RPN representation, we get a string with an average code 

length L of  
12

16
= 0.75 𝑏𝑖𝑡𝑠, which is indeed less than the original entropy H = 1 bit of the original 

string.  

This example vividly demonstrates that by shifting our focus to different data representations—in 

this case, programmatic representations—we can achieve even more efficient compression than what 

would be suggested by the original data's entropy. This opens up a new frontier for data compression 

techniques, especially in specialized fields like genomic data compression. 

3.3. Program Synthesis for Data Transformation 
3.3.1. Introduction to the Problem Space 

We have established that altering data representations can reduce entropy, enhancing the 

compression ratio. Program synthesis, particularly focusing on the method of equality saturation, offers 

a powerful means to discover optimal programs capable of regenerating the original data. Tools like 

EGG (E-Graphs Good) [20] provide robust data structures designed for efficient exploration of possible 

rewrites for such programs. 

However, the naive approach of converting an entire genomic sequence into a complex mathematical 

construct—as illustrated in the previous section—is computationally untenable. This method would 

require enormous processing power and time, rendering it practically useless for large-scale genomic 

data. 

3.3.2. The Challenges of Sequence Length 

One could consider a more feasible approach, where all possible combinations of a fixed length n 

nucleotides are identified, and an optimal program is sought for each combination. Yet this approach 

presents its own set of challenges, the most formidable of which is computational complexity. 

 

Figure 1: Visualization of exponential growth of all possible combinations of nucleotides of length n. 

 

The total number of such combinations would be 5n, where n is the length of the nucleotide sequence 

under consideration (Fig. 1). Because the number of combinations increases exponentially with n, we 

would quickly hit a computational ceiling. This is a significant issue because longer sequences generally 

offer greater opportunities for effective compression, making it imperative to find a strategy that allows 

us to consider long sequences without prohibitive computational costs. 

 



3.3.3. Toward a More Scalable Approach 

Given these challenges, it becomes evident that a different strategy must be devised. One that enables 

us to explore longer nucleotide sequences without overwhelming computational resources while also 

effectively lowering the entropy of the genomic data to achieve a high compression ratio. 

To develop a more efficient method, we can capitalize on the similarities between different 

nucleotide combinations in the context of program synthesis. Consider sequences like "AAAA" and 

"CCCC"; their programmatic representations would be quite similar, e.g., ‘A’ × 4 and ‘C’ × 4. These 

similarities hint that we might not need to consider every possible combination in the search space, 

offering a potential route to computational savings. 

3.3.4. Run-Length Encoding as a Metric 

One effective metric for gauging the similarity between sequences is Run-Length Encoding (RLE) 

(Tsukiyama, 1996). When we apply RLE to a sequence, we reduce it to a series of counts representing 

each distinct element's lengths of runs. For example, the sequence "AAAA" would be transformed into 

the count (4), and "CCCC" would also yield (4). 

By analyzing the sequences using RLE, we begin to notice that many combinations share identical 

or similar counts. These counts effectively serve as "fingerprints" that allow us to cluster similar 

sequences together, significantly reducing the search space for program synthesis. 

By employing a metric like RLE to identify and group similar sequences, we can substantially reduce 

the number of unique combinations that must be analyzed. This provides a two-fold benefit: first, it 

allows the computational resources to focus only on distinct "classes" of sequences, making the process 

more tractable. Second, it still allows us to consider longer sequences without incurring exponential 

computational costs, thereby offering the potential for more effective compression. 

3.3.5. Tailoring the Search Space with Subset Sum 

To achieve even greater computational efficiency, we can move beyond merely reducing the search 

space of similar sequences and directly focus on sequences most pertinent to our objective. A 

compelling avenue for this targeted approach is to examine the unique Run-Length Encoding (RLE) [4] 

counts that could occur for any combination of nucleotides of size n. 

To generate these unique RLE counts, we can adapt the well-known Subset Sum problem—a 

combinatorial problem that aims to find a subset whose sum matches a given target number. In our case, 

the target number is n, the length of the nucleotide sequence. 

The standard Subset Sum problem seeks to find a subset of numbers that sum up to a given target. 

However, for our application, we need to introduce a slight modification: in addition to finding the 

subset that adds up to n, we also need to consider the permutations of this subset. This is critical because 

different permutations of the same subset can correspond to different length-equivalent nucleotide 

sequences. For instance, the RLE counts (2, 1, 1) and (1, 2, 1) will correspond to different sequences, 

for instance, "AACG" and "CAAG". 

This modified Subset Sum approach allows us to efficiently generate all unique RLE counts that 

could exist for sequences of length n. By synthesizing programs only for these unique counts, we can 

dramatically cut down on the computational resources needed, as we are now focusing solely on the 

'representative' sequences that capture all possible RLE patterns for the given length. 

The benefit is twofold: first, it narrows down the search space to only those sequences that are 

absolutely necessary for program synthesis, making the approach far more computationally efficient. 

Second, it does so without compromising the integrity of the analysis, as these unique RLE counts still 

provide a comprehensive overview of all the possible sequence patterns for a given length. 

In conclusion, this targeted computation method that utilizes a modified Subset Sum problem to 

focus on unique RLE counts offers a highly efficient and effective way to apply program synthesis for 

genomic data compression. By selectively focusing on relevant sequences, we can achieve high 

compression rates while significantly reducing computational costs. 



3.4. Implementing Program Synthesis for Compression 

In the context of our genome compression task, we concentrate primarily on sequences represented 

through Run-Length Encoding (RLE) [9]. RLE produces tuples of values and counts, where values 

denote nucleotides, and counts represent their consecutive repetitions. With our focus narrowed down 

to these RLE sequences, the complexity of the task is significantly reduced. 

3.4.1. Value Encoding 

Given that RLE sequences inherently lack consecutive identical symbols, we allocate a mere two 

bits to encode each nucleotide value, effectively representing {'A', 'C', 'G', 'T', 'N'} \ {previos symbol}. 

This minimalist encoding strategy offers simplicity and efficiency, aiding the overall compression 

process without adding unnecessary computational overhead. 

3.4.2. Count Encoding through Program Synthesis 

The count component in the RLE sequences presents a more dynamic and diverse range of values, 

necessitating a thoughtful approach for efficient encoding. In response to this challenge, our 

methodology employs program synthesis—specifically, the technique of equality saturation utilizing 

E-Graphs. 

Equality saturation through E-Graphs [13] provides a robust platform for exploring various 

equivalent forms of a given count, facilitating the identification of the most efficient representation. 

The process involves the generation of multiple program alternatives, with each variant being a potential 

candidate for the optimal program. Through systematic exploration and comparison, the most concise 

and efficient program is selected for representing a given count. 

3.4.3. Program Encoding 

Upon synthesizing optimal programs, the next step involves their encoding. Here, Huffman 

encoding serves as a primary tool renowned for its effectiveness in minimizing the length of encoded 

data. However, in cases where further compression is desirable, we resort to a custom packaging 

algorithm. This tailor-made algorithm provides an additional layer of compression, subtly improving 

upon the results achieved through Huffman encoding alone. 

We construct a comprehensive genome compression framework through this multi-tiered approach, 

combining value encoding, program synthesis for count representation, and subsequent encoding of 

synthesized programs. This framework offers promising compression ratios and ensures efficiency and 

speed in both the compression and decompression stages. 

4. Results and Discussion 
4.1. Data Set Selection 

For the purpose of this research, we utilize publicly accessible human genome sequences. These 

sequences have been obtained from two primary repositories: the National Center for Biotechnology 

Information (NCBI) [21]  and the Genome Aggregation Database (gnomAD) [22]. The selection of data 

for this study has been influenced by specific criteria, which we outline below: 

1. Completeness 

It is imperative that the genome data used for this research be as complete as possible. Completeness 

in this context means that the sequences are well-annotated, with all regions clearly marked and 

identified. Additionally, the data should be free from missing values. Missing values could potentially 

skew the outcomes and introduce unnecessary noise into the program synthesis and compression 

process. Therefore, only datasets that fulfill these stringent requirements of completeness are included 

in the study. 



2. Diversity 

Given that the human genome exhibits natural variations across different ethnic and geographical 

backgrounds, including as much diversity as possible in our dataset is essential. By incorporating 

genomic sequences from various ethnic backgrounds, the study aims to account for this natural 

variability. This ensures that the developed compression techniques are generalizable and effective 

across a broad spectrum of genomic data. 

In adhering to the completeness and diversity criteria, we have compiled a dataset consisting of 1000 

diverse human genomes. Each genome in this dataset is meticulously selected to represent a variety of 

ethnic and geographical backgrounds, ensuring a comprehensive and inclusive data pool. 

The dataset exhibits a balanced distribution of nucleotides. On average, each genome is 

approximately 3.07 GB in size. Given this, the cumulative size of our dataset is approximately 3.1 TB, 

providing a substantial data pool for robust testing and validation of the proposed compression 

techniques. 

 
Figure 2: An analysis of nucleotide distribution within the dataset.  

The probability of having 'N' is relatively low, with a value of 0.048. Given this low probability, the 

focus should be placed on efficiently compressing the primary nucleotides (A, C, G, T) with higher 

occurrence rates. 

Furthermore, an analysis of the nucleotide distribution (Fig. 2) within the dataset reveals an average 

composition reflective of general human genome characteristics, providing a solid foundation for 

developing and testing our program synthesis-based compression techniques. 

4.2. Benchmarks algorithms 

In the initial phase of this study, it is crucial to establish a strong baseline against which the efficacy 

of the proposed program synthesis-based compression techniques can be measured. To that end, we 

have implemented and tested several classical compression algorithms to serve as benchmarks. These 

include Huffman and Arithmetic encoders and Run-Length Encoding (RLE). 

4.2.1. Classical Algorithms 

The classical algorithms, such as Huffman and Arithmetic encoders, provide a foundational 

understanding of the limits and potentials of general-purpose compression techniques. The RLE 

algorithm was also included to cover a broader spectrum of existing compression methods. 

 



4.2.2. Custom Packing Algorithm 

In addition to these well-established algorithms, we have also developed a custom packing approach 

specifically tailored for genomic data. The crux of the custom packing algorithm revolves around the 

ability to compress a combination of three nucleotides, along with the error marker 'N', into just a single 

byte, thereby achieving a 3-fold compression ratio and an average code length of 2.667 bits. 

This approach is noteworthy for achieving a 3-fold compression ratio while maintaining the critical 

feature of O(1) random access. This implies that any segment of the compressed genomic data can be 

accessed in constant time, which is a significant advantage for many genomic applications. 

The custom packing approach presents enormous potential for parallelization. Initial tests have 

shown compelling results in terms of both time efficiency for encoding and decoding operations. This 

makes it a strong candidate for comparison with the program synthesis-based techniques developed in 

this thesis. 

To achieve this, the byte is split into distinct sections of bits, where the first two bits act as a counter 

for the 'N' symbol's occurrences within a nucleotide triplet. Depending on the counter's value, the 

remaining six bits are parsed differently: 

● For N = 0: 

 
Here, XX, YY, and ZZ each represent one of the nucleotides in the set {A, C, G, T}, using two bits 

per nucleotide. 

● For N = 1: 

 
Here, II specifies the position of 'N' in the triplet, and XX and YY encode the other two nucleotides,  

In this case, II represents the position of the non-'N' nucleotide, which XX encodes, and the last two 

with two bits for each. 

● For N = 2: 

 
bits are not used. 

● For N=3: 

All symbols in the triplet are 'N', so the six bits following the counter are disregarded: 

 
Here, XX, YY, and ZZ each represent one of the nucleotides in the set {A, C, G, T}, using two bits 

per nucleotide. 

This structured bit-partitioning efficiently represents nucleotide triplets while considering the 

prevalence of 'N' symbols, streamlining the encoding and decoding processes. 

Through this bit-partitioning strategy, the custom packing algorithm is not only efficient in terms of 

compression ratio but also maintains O(1) random access, which is pivotal for many genomic data 

applications. It is worth mentioning that this algorithm does not require any additional lookup table or 

tree for data decoding, further enhancing its performance and making it highly suited for real-time 

applications. 

4.3. Metrics for Evaluation 

Evaluating the efficiency of data compression algorithms necessitates the use of precise and reliable 

metrics. This research utilizes two primary metrics: Average Code Length and Compression Ratio. 

These metrics are crucial for quantifying the performance of the implemented compression algorithms 

and providing an objective comparison among them. 



4.3.1. Average Code Length (L) 

The Average Code Length is a vital metric that reflects the average length of the codes generated by 

a compression algorithm. For a set of symbols S with respective probabilities P, the Average Code 

Length (L) is calculated as: 

𝐿 =  ∑ 𝑝𝑖 ⋅ 𝑙𝑖

𝑛

𝑖 = 1

 (12) 

Where: 

 𝑝𝑖 : the probability of the 𝑖𝑡ℎ symbol in the dataset. 

 𝑙𝑖 : length of the code assigned to the 𝑖𝑡ℎ symbol. 

 𝑛: total number of unique symbols in S. 

The average code length provides insights into the efficiency of a compression algorithm. Ideally, 

the average code length should be as close as possible to the entropy of the source to achieve optimal 

compression. 

4.3.2. Compression Ratio (R) 

Compression Ratio is another crucial metric that measures a compression algorithm's reduction in 

data size. It is defined as the ratio of the uncompressed data size (𝑈) to the compressed data size (𝐶). 

The formula for calculating the Compression Ratio is 

𝑅 =  
𝐶

𝑈
 (13) 

Where: 

 𝑈: Size of the uncompressed data. 
 𝐶: Size of the compressed data. 
A higher compression ratio indicates more efficient data reduction. However, it is essential to 

consider that a higher compression ratio does not always imply better compression, as the quality and 

readability of the compressed data must also be maintained. 

4.4. Results Comparisons 

The algorithms were tested on a custom dataset of human genomes, meticulously curated and 

discussed in previous sections, to ensure a balanced representation of various genomic sequences. Each 

genome in this dataset represents a unique and diverse genetic structure, offering a challenging and 

comprehensive ground for testing the efficiency of the algorithms. 

For each genome in the dataset, we applied the various compression algorithms: Entropy, Huffman, 

RLE (Run-Length Encoding), Custom Packing, and Program Synthesis combined with Huffman 

encoding (PS + Huffman). The Average Code Length (L) and Compression Ratio (R) were computed 

for each algorithm on every genome sequence, and the results were then averaged over the entire dataset 

to obtain a more generalized and robust understanding of each algorithm’s performance. 

 

Table 2 

Comparison of benchmarks and proposed algorithm 

Approach Average Code Length (L) Compression Ratio (R) 

Entropy 2.039 3.923 

Huffman 2.241 3.569 

RLE 5.633 1.428 

Custom Packing 2.667 3.000 

PS + Huffman 2.154 3.714 

The proposed approach (PS + Huffman) emerges as the most efficient method among those 

analyzed, closely approximating the theoretical entropy and achieving the highest compression ratio. 



Its success can be attributed to the effective combination of program synthesis for count representation 

and Huffman encoding, which collectively optimize the compression process. 

 

In comparison which is demonstrated in Table 2, while the Huffman algorithm and custom packing 

method exhibit commendable performances, they do not reach the efficiency level of the proposed 

approach. Although RLE is a straightforward method, it significantly lags in terms of compression ratio 

and code length, deeming it unsuitable for optimal genome data compression in this context. 

5. Conclusions 

This article has presented promising results for genome data compression through the innovative 

use of program synthesis, specifically employing the equality saturation technique. Our approach offers 

substantial improvements in compression ratio and ensures a reduction in average compression time, 

proving its effectiveness and efficiency in handling genome data. 

The method introduced applies program synthesis meticulously to extract and efficiently encode 

optimal programs for different sections of genome data. This careful application bridges the gap 

between theoretical potential and practical utility, resulting in a robust and efficient compression 

technique. 

Future work can enhance this approach by incorporating deeper insights into the intrinsic 

characteristics of genome data. The encoding phase outlined in this study also offers scope for 

refinement. By adopting advanced encoding strategies and integrating domain-specific knowledge, we 

anticipate the development of a more powerful and refined technique for genome data compression. 

 

In conclusion, this paper marks a significant step forward in the dynamic field of genome data 

compression, opening up new possibilities for further research and innovation in developing more 

efficient compression techniques. 
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