CEUR-WS.org/Vol-3611/paperl0.pdf

C

CEUR

Workshop
Proceedings

Detecting applications vulnerabilities using remote procedure

calls

Lukas Jokubauskas ?, Jevgenijus Toldinas ? and Borisas Lozinskis !

! Kaunas University of Technologv, Studenty street 50, LT-51368 Kaunas, Lithuania

Abstract

Computer software often comprises multiple components, such as a frontend application and a
backend database, which need to exchange information. Many modern desktop applications
also follow the design of web software and have separate frontend and backend processes. Inter-
process communication mechanisms or third-party frameworks provided by the operating
system are used for communication between processes. Improperly implemented remote
procedure calls can lead to code vulnerabilities that can be exploited for malicious purposes. In
this paper, we present a novel method for detecting application vulnerabilities using the remote
procedure call approach, namely Detecting Applications Vulnerabilities using Google
Remote Procedure Call (DAVuUGRPC) that aims to utilize statically created taint and its
dynamic fuzzification during the execution of the application.

Keywords

Vulnerability detection, dynamic analysis, taint dataset, RPC, gRPC

1. Introduction

A software vulnerability can be defined as a
defect, weakness, or simply an emor in an
application that can be exploited by an attacker to
change the system’s regular behavior [1]. Because
the quantity of software systems and applications
is growing, so is the number of vulnerabilities.
There are various application vulnerabilities:
injection, cross-site scripting, broken
authentication and session management, format
string, insecure direct object reference, and many
others [2]. In the software industry, vulnerability
identification and remediation have been a core
and vital operation. Hackers can take advantage of
undetected flaws and wreak significant damage to
people [3]. While program analysis tools exist,
they often only discover a small subset of
probable errors based on predefined rules. With
the widespread availability of open-source
repositories, data-driven methodologies for
discovering wvulnerability trends have become
possible [4].

IVUS 2022: 27th International Conference on Information
Technology, May 12, 2022, Kaunas, Lithuania

© 2022 Copyright for this paper by its authors. Use perminied under

w Creative Commons License Atzributian 4.0 [nternstional (CC BY 4.0).
[==] CEUR Workshop Proceedings (CEUR-WS org)

The techniques for finding application
vulnerabilities are classified into two main
categories: static analysis and dynamic analysis
[5]- Static application analysis entails methods for
inspecting source code or compiled binary
without running it. Dynarnic analysis is studying
an application while it is running, with the use of
a debugger or other techniques, such as [1]:

e Fault injection is a testing approach that
introduces problems to an application to
test its behavior. To generate the possible
faults, some lanowledge of the application
is required.

e Fuzzing testing involves feeding the
application with random data to see if it
can handle it correctly.

e Dynamic taint during the execution of the
application, the tainted data is monitored
to determine its appropriate validation
before accessing sensitive functions.

e Sanitization is a method of avoiding
vulnerabilities caused by using user-
supplied data by implementing newly
included functions or custom routines

whose main objective is to evaluate or
sanitize any input from users before using
it inside an application.

Most of the time, cyber security specialists do
not have access to the source code of the
applications they are testing. As a result, cyber
security specialists aim to automate some tasks
using dynamic methodologies. The power of these
strategies resides in the fact that the number of
false positives is low, and the precision is
extremely high [6].

The methods offered by operating systems that
allow processes to handle shared data or interact
are referred to as inter-process communication
(IPC) [7]. IPC is a set of methods for
communicating with two processes that may or
may not be on the same machine. Remote
procedure call (RPC) methods are widely used in
systems because they lower system complexity
and development costs. The primary purpose of an
RPC is to make remote procedure -calls
transparent to users, allowing them to make
remote procedure calls in the same way that they
would make local procedure calls [9].

In this paper, we present a novel method for
detecting application vulnerabilities using the
remote procedure call approach, namely
Detecting Applications Vulnerabilities using
Google Remote Procedure Call (DAVuGRPC)
that aims to utilize statically created taint and its
dynamic use during the execution of the
application. For that purpose, we employ the
fuzzification technique for the tainted dataset.

The rest of the paper is organized as follows.
The second section discusses the related works.
The third section overviews application
programming interfaces. The fourth section
describes the gRPC payload. The fifth section
presents the proposed application’s vulnerabilities
detection method using gRPC. The evaluation
framework and experimental setup are presented
in section six. The seventh section presents
experimental results. The last section concludes
the paper with a discussion of future work.

2. Related work

Fuzzing is a popular and successful method for
detecting security flaws in the software when a
system is tested by processing test cases generated
by another program in a continuous loop.
Simultaneously, the system monitored for any
errors that may have been disclosed as a result of
processing this data. Fuzzing strategies are

classified into three groups based on the role:
sample generation techniques, dynamic analysis
approaches, and static analysis techniques [11].
Random mutation, grammatical representation,
and scheduling algorithms are three types of
sample generation approach that are used to
choose and mutate seeds as well as restrict and
generate new samples. To assist in the generation
of the new sample, dynamic analysis techniques
are employed to acquire dynamic information on
the running application. Symbolic expressions,
the executed path, taint information on the
sample, and codes are all included in this data.
Control flow analysis and data flow slices are
examples of static analysis. Although static
analysis frequently yields false-positive results, it
can be used in conjunction with other methods to
get useful pretreatment data.

In [12] proposed a system that combines
machine learning and bandit-based optimization
with state-of-the-art grey-box fuzzing approaches.
Authors show significant improvements over
numerous state-of-the-art grey-box fiizzers, such
as AFL, FidgetyAFL, and the recently released
FairFuzz. Thompson Sampling was used to learn
adaptive distributions over mutation operators.
The first concolic execution-based smart fuzzing
method for detecting heap-based buffer overflow
in executables was provided in [13]. The
suggested fuzzer runs the binary program and
determines the path and vulnerability restrictions
for the executed path symbolically. It combines
the constraints to generate test data that traverses
the execution path and detects any flaws. The
fuzzer removes each path constraint one at a time
and solves the resulting constraints to generate
test data that follows novel execution paths. The
suggested approach propagates the tainted data
through direct assignment and arithmetic
operations.

In [7] authors proposed a new fuzzing solution
to discover inter-process communication bugs
without source code, by combining static analysis
and dynamic analysis. Static analysis is used to
recognize format checks and help construct inter-
process communication messages of valid
formats. Dynamic analysis is used to infer the
constraints between inter-process communication
messages and model the stateful logic with a
probability matrix. This lets to generate high-
quality inter-process communication messages to
test services and discover deep and complex bugs.

In [8] authors presented the first grey box
fuzzer for protocol implementations. Unlike the
existing protocol fiizzers, the solution takes a

mutational approach and uses state feedback to
guide the fuzzing process. It acts as a client and
replays variations of the original sequence of
messages sent to the server and retains those
variations that were effective at increasing the
coverage of the code or state space. A significant
performance boost was demonstrated over the
state-of-the-art.

Another similar solution [11] was suggested to
perform a stateful communication protocol
fuzzing. The approach contains a state switching
engine with a multi-state fork server to
consistently and flexibly fuzz different states of a
compiler-instrumented protocol program. The
solution was implemented by using a state-of-the-
art grey-box AFL fizzer. Experimental results
showed that the solution achieved two times more
unique crashes when compared to only fuzzing
the first packet during the protocol
communication.

Inter-Process Communication (/PC) refers to a
variety of approaches for one-way or two-way
data transmission between threads in one or more
processes that can run on a single computer or
multiple computers connected by a network [14],
[15]. Message passing, synchronization, shared
memory, and remote procedure calls (RPC) are
some of the JPC approaches that can be divided
into groups based on how they communicate
shared memory and message passing [16]. The
authors in [17] introduced direct IPC (dIPC) to
marry the isolation of processes with the
performance of synchronous function calls
because IPC imposes overheads on a variety of
different environments. Threads in one process
can call a function on another process, offering the
same performance as if the two processes were a
single composite application, but without
jeopardizing their isolation.

3. Application programming
interfaces

Application Programming Interfaces (A4PIs)
are software intermediaries that define certain
rules and determinations for applications to
interact and communicate with one another. An
APIJ is in charge of delivering a user's response to
a system, which is then returned to the user by the
system. Representational State Transfer (REST),
RPC, and query language for 4PIs (GraphQL) are
the three basic models for creating 4PIs [18]. The
response from the back-end data is delivered to
the clients (or users) through the JSON or XML

communications format when using REST APIs.
The HTTP protocol is commonly used in this
architectural style.

The acronym gRPC [20] stands for Google
Remote Procedure Call, and it is an RPC-based
variation. This technology is based on an HTTP
2.0 RPC API implementation, but H7TP is not
presented to the 4PJ developer or the server. As a
result, there's no need to worry about how RPC
principles are mapped to HTTP, which simplifies
things. The goal of gRPC is to speed up data
transmission between micro services. It is based
on the concept of selecting a service, then
establishing methods and parameters to allow for
remote calling and return types. It also describes
the RPC API paradigm in an interface description
language (Z/DL), which makes determining remote
operations easier. Protocol Buffers (Protobuf) are
used by default in the IDL to describe the service
interface as well as the structure of payload
messages. gRPC can handle four types of
interactions:

e Unary — when the client makes a single
request and gets a single answer.

e Server streaming — in response to a
client's request, the server sends a stream
of messages. When all of the data has
been transmitted, the server sends a status
message to conclude the operation.

e Client streaming — the client delivers a
stream of messages to the server, which
responds with a single message.

e Bidirectional streaming — the client and
server streams are autonomous, which
means they can send messages in any
sequence. Bidirectional streaming is
started and stopped by the client.

gRPC is a great choice for multi-language
systems, real-time streaming, and IoT systems
that require light-weight message transfer, such as
serialized Profobufmessages. Furthermore, gRPC
should be considered for mobile apps because it
does not require the use of a browser and can
profit from fewer messages, preserving the speed
of mobile processors [19].

4. gRPC payload data structure

By default, gRPC serializes payload data using
Protobuf. Protocol buffers are a language-
independent, platform-independent, and flexible
framework for serializing structured data in a
forward and backward compatible manner. It's
similar to JSON but smaller and faster, plus it

creates native language bindings. Protocol buffers
are made up of the definition language (in .proto
files), the code generated by the proto compiler to
interact with data, language-specific runtime
libraries, and the serialization format for data
written to a file (or sent across a network
connection) [21].

Protocol buffer messages and services are
described by engineer-authored .proto files. You
can define whether a field is optional, repeated
(proto2 and proto3), or single when defining
.proto files (proto3). Setting a field to required is
not an option in proto3, and it is strongly
discouraged in proto2 [22].

5. Detecting application
vulnerabilities using grRPC

The stages of processing and interpreting
network traffic packets are depicted in Figure 1. A
general framework for detecting application
vulnerabilities using gRPC is shown in Figure 2.
There are two basic messaging strategies:
changing the values of one field or all fields in one
loop. There is also the situation where a message
field's value is fixed and cannot be modified.

Protobuf
interface
definition files

\ 4

Suggested method experimental research

Jpoap(ng) Metwork packets Parsed messages

Select ;
network HTTRE with gRPC Parsed saved to the
capture file ' messages gRPC database
packets messages I
gRPC message
| mello.helloRequest | |
iHello !
' [0a0642a6572656d79 /
Figure 1. The stages of processing and

interpreting network traffic packets

Both preceding solutions can be used in this
scenario, but only if the required fields are left
intact (see Figure 2). In the settings, you can
define the messaging technique you want to
employ.

The premise remains the same for both change
techniques when it comes to fields modifications.
The numeric message fields are modified by

altering the values in the message using fuzzy
logic.

1. At once 2. At once 3. When a
only one field all fields message is
is being are being modified, some
modified modified fields are left
intact
[Message Message Message
MName = Test Name = Test MName = Test
LastMame = McTest LastMame = McTest LasiName = McTest
Age =54 Age = 54 Age = 54
CountryCode = LT CountryCode = LT CountryCode = LT
Taxld = 245 Taxld = 345 Taxld = 345
Message Message Message

Name = TestTest
LastMName = McTestMcTest

Name = TestTest
LastName = McTestMcTest

Name = TestTest
LastMame = McTest

Age = 54 Age = 2147483647 Age = 2147483647
CountryCode = LT CountryCode = LTLT CountryCode = LTLT
Taxld = 345 Taxld = 65535 Taxld = 345

Figure 2: A general framework for detecting
application vulnerabilities using gRPC

The range of substituted values for numeric
fields is divided into value types and ranges (see
Table 1).

Table 1
The range of substituted values for numeric fields
Value Value range
type The smallest The largest
possible value possible value
bool 0 1
string min length= max length = 2%
null
int32, -2147483648 2147483647
sint32,
sfixed32
uint32, 0 4294967295
fixed32
int64, -9223372 92233720
sinté4, 036854775808 36854775807
sfixed64
uint64, 0 184467440
fixed64 73709551615
float 1.175494351 E 3.402823466 E +
-38 38
double 2.225073 1.79769
8585072014 E 31348623158 E
-308 +308

The method for detecting vulnerabilities in
applications using gRPC starts with scanning the
initial remote procedure messages (see Figure 3).
The proposed method will accept data that can be
retrieved using the Tepdump or Wireshark
network packet analyzer from .pcap or .pcapng
files. The proposed method accepts Protobuf files

.proto, which are used to filter out unnecessary
messages and send messages to the application
under test. Because profobuf messages are utilized
in the gRPC remote procedure call framework,
which is based on the HTTP/2 protocol [23].
protobuf messages must be requested in all
HTTP/2 protocol requests. After reviewing the
contents of the HTTP/2 request, it is determined
whether this message is intended for at least one
of the services described in the .proto files of the
tested software. The data is saved if the message
has a service match. If no match is detected, the
algorithm repeats the process with a new HTTF/2
request. Protobuf messages in binary format are
extracted from these queries, which were
constructed using the protocol buffer's interface
description language [22].

Q

[Read .pcap or .pcapng file]

¥
[Select packet]

{ selected pocket J

Is selected packet HTTP/2?

[Read packet message]

‘ packet message J

Do packet message has .proto

file?

Yes
Read .proto file to define data structure and save to the
database
| .proto files database |

Are there mare packets to
select?

Figure 3: Packet scanning process for extracting
remote procedure messages

After all remote procedure calls, message
structures, and data types are saved to the
database, the process of detecting application
vulnerabilities using gRPC starts. The process of
the proposed method is depicted in Figure 4.
Starting vulnerability detection, .proto file,
messages structure, and data types uploaded from
the database. The execution monitoring procedure

and the application under test are both started. The
gRPC message creator using fuzzy logic changes
the values of the message data accordingly to the
types and possible values given in Table 1.

Q

[Read .proto file, messages structure and data types from the database]
+

Select following database record

.proto file, messages structure, data types

Run an application under test

profiling of the tested application

Thare are appleation messages
in the database record?

Select message and change value of the data
Fuzify vaiue of the message dota

Send fuzified message data to the running applicaticn

send the message via gRPC

Does application returns the
reply message?

| Collect application vulnerability data |
l save vuinerability report J

Application under test crashed?

[End application task and collect application crash regort |

| save crash report I
|

O

Figure 4: The process of proposed method for
detecting application vulnerabilities using gRPC

The message with the highest expected
number of message change cycles is chosen in the
first iteration and changed values of the message
data are constructed based on it. The messages are
created in subsequent cycles depending on the
execution progress and the tested application
replies to the gRPC sent messages. The received
response is sent for further analysis. The
application is being tested if it is still running or if
no reply is received. Verification of the tested
application progress is sent to the report
generating procedure. A new test iteration is
started after the gRPC message generating
process receives the execution status and response
data from the application under test. The
application activity monitoring process detects the
tested application fault (no response) the crash

report process collects all relevant fault data and
saves the application crash report.

6. Evaluation framework and

experimental setup

A general framework for evaluation of the
proposed method for detecting application
vulnerabilities using gRPC is depicted in Figure
5.

|7 Davugrrctool V[Tapplication under test

l |
Script B -
| | DAVUGRPC script
l |
: Bi-directional I
|

I

I

|

I frida-go

[exchange of SSON Frido-agent
I

I

I

Ga
Y messages . o
frido-core | Shared library injected
(C AP, statically] _p2pDbus | by frida-core

linked shared library) |

Figure 5: A general framework for evaluation of
the proposed method

The Frida dynamic analysis library is used to
track the application under test execution. To use
the library programming interface in the Go
programming language, we use the frida-go
library, which allows us to use the Frida library's
needed functions. The Frida library inserts
additional code during execution that permits
JavaScript to be performed after enabling the
application under test execution. These scripts
have full access to the application under test
memory and can also change how functions are
executed.

When a method in the application under test is
called in the DAVuGRPC tool, the script begins to
capture blocks of executed method instructions.
The Frida Library's Interceptor and Stalker
development API were used to do this. The
completed instruction blocks are transmitted to
the DAVuGRPC tool at the end of the application
under the test method. In addition to this
information, the application of the under test
method's execution time is recorded. Data from
the application under the test is sent using the
Frida library's P2P Dbus communication
channel, which allows data to be exchanged
between the D4 VuGRPC tool and the application
under the test script code. This P2P Dbus channel
is also used when JavaScript scripting methods
are invoked. The structure of DAVuGRPC tool is
represented in Figure 6.

The user can see the terminal interface after
configuring and running the DAVuGRPC tool,
which displays three main blocks: information on
the time and duration of the test process, the
overall results of the test process, and the current
progress of the test process.

Sample gRPC
packets and
Pratobuf IDL files

Application
under test

Application
crashes

Yulnerabilities
report

Static gRPC Bl
message

analyzer
] |

Generate
new
messages

Collect the
data due to
the application

rocess crash

Maonitor the
application
and collect
code coverage

Send messages
to the
application
under test

Fuzzer

Figure 6: The structure of DAVUGRPC tool

Code coverage

7. Experimental results

Our experiments are performed using AMD
Ryzen 5 2600 processor with six physical and
twelve logical cores @ 3.40GHz: 16 GB RAM:
Windows 10 Pro 64 bits OS.

For the experimental investigation, a testing
platform was created with applications written in
the C++ that uses gRPC. There have been twenty-
three remote procedures implemented: ten
procedures (ProcO — Proc9) have various types of
buffer overflow and null-pointer dereference
vulnerabilities and thirteen without any
vulnerability. The proposed method was
compared with the proto-fiizzer and WinAFL with
libprotobuf-mutator library solutions (Table 2).

Table 2
Comparison of the DAVUGRPC tool

Results (No. of sent messages /

Procedur Detection time in sec)
es DAVUGRPC proto- WinAFL
fuzzer

ProcO 5/5 10/2 665000/-
Procl 4/6 3/2 3737/28
Proc2 2/4 7/3 1357/5
Proc3 3/5 8/2 5043/78
Proc4 5/4 4/2 4983/11
Proc5 6/5 10/2 649000/-
Proc6 7/5 2/2 962/3
Proc7 7/5 34/3 10900/67
Proc8 16/6 -/- -/-

Proc9 -/- -/- -/-

Based on the results we can evaluate that the
proposed method detects stack-based, heap-
based, and null-pointer dereference vulnerabilities
in the short time sending a small number of gRPC
messages.

8. Conclusion

The goal of gRPC is to speed up data
fransmission between micro services. It also
describes the RPC API paradigm in an interface
description language (IDL), which makes
determining remote operations easier. The main
results of this paper are as follows:

e goRPC could be successfully used in
applications vulnerabilities detection.

e Dynamic application testing outperforms
static methods because of a low number
of false positives and extremely high
precision.

e Fuzzing is the most acceptable method
since it is the most universal and
combines the best sides of static and
dynamic testing.

e To increase efficiency, the method uses
code-coverage feedback to prioritize
complex remote procedure messages.
This is achieved by using Frida dynamic
analysis library.

e DProposed applications vulnerabilities
method using remote procedure calls and
realized DAVuGRPC tool shows
acceptable results for stack-based, heap-
based buffer overflow and null-pointer
dereference vulnerabilities with the short
time whereas the small number of gRPC
messages has been sent.

e The proposed method found 11 out of 12
vulnerabilities. The method has lower
performance than the proto-fuzzer
solution; however, it sends fewer
messages over the testing process.

Future work will be as follows:

e Add nested messages value fuzzing.

e Implement complex fuzzification logic
with recognition dependencies between
the same values in the messages.

e Add additional dynamic instrumentation
framework support since the current Frida
implementation is unstable.

e Add compressed gRPC messages
support.

References

W. Jimenez , A. Mammar and A. Cavalli,
“Software Vulnerabilities, Prevention and
Detection Methods: A Review”, July 2010.
PenTest Magazine [Online]. URL:
http://www-lor.int-evry.fr/~anna/files/sec-
mda09.pdf

S. Garg, RK. Singh and A.K. Mohapatra
“Analysis of software vulnerability
classification based on different technical
parameters” 2019. Information Security
Journal: A Global Perspective, 28:1-2, pp. 1-
19. doi:10.1080/19393555.2019.1628325

J. Fan, Yi. Li, S. Wang, and T. N. Nguyen.
“A C/C++ Code Vulnerability Dataset with
Code Changes and CVE Summaries” 2020.
Proceedings of the 17th International
Conference on Mining Software
Repositories. Association for Computing
Machinery, New York, NY, USA, pp. 508—
512. doi:10.1145/3379597.3387501

R. L. Russell, L. Y. Kim, L. H. Hamilton, T.
Lazovich, J. A. Harer, O. Ozdemir, P. M.
Ellingwood and M. W. McConley.
“Automated Vulnerability Detection in
Source Code Using Deep Representation
Learning.” 2018. 17th IEEE International
Conference on Machine Leaming and
Applications (ICMLA’2018) pp. 757-762.
doi:10.1109/ICMLA.2018.00120

J. Fell, “A Review of Fuzzing Tools and
Methods”, March 10, 2017. PenTest
Magazine [Online]. URL:
https://wcventure.github.io/FuzzingPaper/Pa
per/2017 review.pdf

O. Zaazaa and H. El Bakkali, "Dynamic
vulnerability detection approaches and tools:
State of the Art," 2020 Fourth International
Conference On Intelligent Computing in
Data Sciences (ICDS), 2020, pp. 1-6.
doi:10.1109/ICDS50568.2020.9268686

K. Yang, H. Zhao, C. Zhang, J. Zhuge and H.
Duan, "Fuzzing IPC with Knowledge
Inference,” 2019 38th Symposium on
Reliable Distributed Systems (SRDS), 2019,
11-1109.
doi:10.1109/SRDS47363.2019.00012

V.-T. Pham, M. Bohme, and A.
Roychoudhury, “AFLNET: A Greybox
Fuzzer for Network Protocols,” in 2020
IEEE 13th International Conference on
Software Testing, Validation and
Verification (ICST), Porto, Portugal, Oct.

2020, p- 460-465.
doi:10.1109/ICST46399.2020.00062

[9] H. Bagci, and A. Kara, “A Lightweight and
High Performance Remote Procedure Call
Framework for Cross Platform
Communication”, 2016. In Proceedings of
the 11th International Joint Conference on
Software Technologies - ICSOFT-EA,
(ICSOFT 2016) ISBN 978-989-758-194-6,
p- 117-124. doi:10.5220/0005931201170124

[10] T. Hussain, S. Satyaveer, and M. Seth, “A
Comparative Study of Software Testing
Techniques Viz. White Box Testing Black
Box Testing and Grey Box Testing.”
IJAPRR International Peer Reviewed
Refereed Joumnal, Vol. II, Issue V, 2015.

[11] C. Chen, C. Baojiang, M. Jinxin, W. Runpu,
G. Jianchao and L. Wengqian, "A systematic
review of fuzzing techniques" 2018
Computers & Security, Volume 75, pp. 118-
137, ISSN 0167-4048.
doi:10.1016/j.cose.2018.02.002

[12] S. Karamcheti, G. Mann and D. Rosenberg,
“Adaptive Grey-Box Fuzz-Testing with
Thompson Sampling” 2018 In Proceedings
of the 11th ACM Workshop on Artificial
Intelligence and Security (AlISec '18).
Association for Computing Machinery, New
York, NY, USA, PD- 37-47.
doi:10.1145/3270101.3270108

[13] M. Mouzarani, B. Sadeghiyan and M.
Zolfaghari, "A Smart Fuzzing Method for
Detecting Heap-Based Buffer Overflow in
Executable Codes," 2015 IEEE 21st Pacific
Rim International =~ Symposium on
Dependable Computing (PRDC), 2015, pp.
42-49. doi:10.1109/PRDC.2015.10

[14] Z. Spasov, D. Bogdanova, and M. Skopje,
“Inter-Process Communication, Analysis,
Guidelines And Its Impact On Computer
Security” 2010 The 7th International
Conference for Informatics and Information
Technology (CIIT 2010). Institute of
Informatics. URL:
http://ciit.finki.ukim.mk/data/papers/7CiiT/7
CiiT-11.pdf

[15] N. C. Will, T. Heinrich, A. B. Viescinski and
C. A. Maziero, "Trusted Inter-Process
Communication Using Hardware Enclaves,"
2021 IEEE International Systems
Conference (SysCon), 2021, pp. 1-7.
doi:10.1109/SysCon48628.2021.9447066

[16] D. Hamed, “Inter-Process Communication
(IPC) in Distributed Environments: An
Investigation and Performance Analysis of

Some Middleware Technologies” 2020.
International Journal of Modern Education &
Computer Science. Vol. 12 Issue 2, pp. 36-
52. doi:10.5815/ijmecs.2020.02.05

[17] L.Vilanova, M. Jorda, N. Navarro, Y. Etsion,
and M. Valero. “Direct Inter-Process
Communication (d/PC): Repurposing the
CODOMs Architecture to Accelerate I/PC”
2017. In Proceedings of the Twelfth
European Conference on Computer Systems
(EuroSys '17). Association for Computing
Machinery, New York, NY, USA, pp. 16-31.
doi:10.1145/3064176.3064197

[18] N. Koutroumpouchos, G.Lavdanis, E.
Veroni, C. Ntantogian, and C. Xenakis.
“ObjectMap: detecting insecure object
deserialization” 2019. In Proceedings of the
23rd Pan-Hellenic = Conference on
Informatics (PCI '19). Association for
Computing Machinery, New York, NY,
USA, PDP- 67-72.
doi:10.1145/3368640.3368680

[19] M. Berga, A. Santos, “gRPC vs REST:
comparing APIs architectural styles” June
03, 2021. Imaginary Cloud [Online]. URL:
https://www.imaginarycloud.com/blog/gRP
C-vs-rest/

[20] gRPC a high performance, open source
universal RPC framework. [Online]. URL:
https://gRPC.io/

[21] Protocol Buffers Overview. [Online]. URL:
https://developers.google.com/protocol-
buffers/docs/overview

[22] Protocol Buffers Language Guide. [Online].
URL:
https://developers.google.com/protocol-
buffers/docs/proto#specifying-rules

[23] Internet Engineering Task Force, Hypertext
Transfer Protocol Version2 (HTTP/2).
[Online]. URL:
https://datatracker.ietf.org/doc/html/rfc7540

