CEUR-WS.org/Vol-3611/paperll.pdf

C

CEUR

Workshop
Proceedings

Development of a software quality assessment method

Irakli Basheleishvili, Giorgi Kapanadze and Avtandil Bardavelidze
Akaki Tsereteli State University, Tamar Mepe St #59, Kutaisi, 4600, Georgia

Abstract

The paper is about the development of a software quality assessment method, which is based
on the FCM (Factor-Criteria-Metrics) software quality assessment model, ISO / IEC 25010
software quality standard and multi-criteria decision analysis method. The method presented in
the paper allows us to obtain a quantitative assessment of quality indicators using the ISO / IEC

25010 standard when assessing software quality.

Keywords

Software, quality, assessment, FCM model

1. Introduction

The rapid development of information
technologies is increasing the demand for their
use in almost all spheres of human activity,
moreover, at present it is inconceivable for them
to function effectively without the use of modern
information technologies. The rapid development
of information technologies and computing
processes in recent decades has led to the
existence of software in all areas of human
activity [1]. Therefore increasing the demand for
software quality. Software quality is the
combination of the characteristics of a computer
software product and their meanings that relate to
the ability to use it to meet established or expected
requirements [2]. Quality in software means no
errors in it [3]. Software errors can cause great
material damage, so research into software quality
management is very important today.

Based on the above, the aim of our paper is to
develop a software quality assessment method
based on the FCM (Factor-Criteria-Metrics)
software quality assessment model, the ISO / IEC
25010 software quality standard, and the multi-
criteria decision analysis method.

IVUS 2022: 27th International Conference on Information Technology

EMAIL: irakli basheleishvili@atsu.eduge (I. Basheleishvili);
kapanadze giorgi2(@atsu.edu.ge (G. Kapanadze);
avtandil bardavelidze@atsu.edu.ge (A. Bardavelidze)

ORCID: 0000-0002-4429-7577 (L. Basheleishvili);
0000-0002-9873-4402 (A. Bardavelidze)

License Artribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

“"- ———
Coez ==

& 2022 Copyright for this paper by its suthors. Use permitted under Creative Commons

2. Standard and model of software
quality

There are many standards in software quality
evaluation that determine the factors
(characteristics) of software quality evaluation.
Quality characteristics reflect the different
qualities exhibited by self-promotional software,
ISO/IEC 25010 is a software quality standard, it
refers to the quality of the software application as
a "product”, as well as the quality of its creation
processes. The product quality model specified in
ISO / IEC 25010 includes the following quality
characteristics[1,3,11]:

* Functional Suitability - Functional
Suitability refers to how well a product or system
is able to provide functions that meet the stated
and implied needs.

* Reliability - Reliability refers to how well
a system, product, or component performs

specified functions under specified
conditions[11].
* Performance Efficiency - This

characteristic represents the performance relative
to the amount of resources used under stated
conditions.

* Useability - Usability refers to how well a
product or system can be used to achieve specified
goals effectively, efficiently, and satisfactorily.

* Security - Security refers to how well a
product or system protects information and data
from security vulnerabilities[3,11].

* Compatibility - Compatibility refers to
how well a product, system, or component can
exchange information as well as perform its
required functions while sharing the same
hardware or software environment[10,11].

* Maintainability - Maintainability refers to
how well a product or system can be modified to
improve, correct, or adapt to changes in the
environment as well as requirements.

* Portability - Portability refers to how well
a system, product, or component can be
transferred from one environment to another.

These features can be divided info two
categories: functional features which are the main

features of software operation and non-functional
features that characterize the behavior of the
software product during daily use. Non-functional
features related to reliability, usability and
efficiency should be classified as requirements
that a software product, must meet in the course
of its operation. To determine that a software
product meets different quality characteristics,
there are different models and methods of
processes [1,2,3,5]. Some models can be
attributed (nearest) to the concept of process
quality. This means that the high-quality process
of creating a product creates a high-quality
product. That is why special attention is paid to
the processes [3,6,10].

The FCM model is a general model for
evaluating software quality, in the model the
software termination factor is one factor, one
factor is the decisive criterion, several criteria are
decided by some metrics.

Software Quality

Pl

Quality characteristic 1

Quality characteristic 2

Quality characteristic N

_So=— >\

3. Methodology

Criterion 1 Criterion 2 Criterion 3 Criterion 4 Criterion n
l l r Y h 4
Quality indicators
Figure 1: FCM model [3,11]

G, € - G

q1 X11 X12 Xin (1)

Q2 X321 X322 Xon

Q3 X371 X32 X3n

If we look at the software quality evaluation
model presented above, we will see that its
structure is similar to the structure of a multi-
criteria decision analysis task. Because individual
quality characteristics are characterized by
different criteria, compile a decision matrix for a
particular quality characteristic (consisting of
alternatives (quality characteristic) and evaluation
criteria for alternatives). Based on which the
multi-criteria decision analysis TOPSIS method
[6,7,8] can be used to determine the quantitative
evaluation rate for the quality characteristic (in the
range 0 -1).

In this case, the matrix consists of one real
alternative (quality characteristic - ql) and two
formal alternatives (q2 - with the maximum
possible values according to the criteria, and q3 -
with the minimum values). For the real alternative,
the x1j values are determined using numbers
obtained from metrics and using various types of
testing methods (which must be represented on a
100-point scale).

Once we have defined the decision matrix, the
following steps need to be performed:

Stage 1. Determine the weight vector W =

[wy, Wy, ...,w,] for the evaluation criteria, which
must satisfy the following condition:
n
I
im1 (2)

Stage 2. Normalize the decision matrix using
the following formula:

___Ji
rij =

mixk (3)
Stage 3. Compute a weighted normalized
decision matrix according to the following
formula:
Vij = wj*1y; (4)
Stage 4. Define positive ideal and negative
ideal solutions:
Positive Ideal Decision:

St =i, vy, ..., v} (5)

Where:
o
v’ = max(v;;)
Negative ideal solution:

ST ={v,v3,.., v} (6)

vj = min(vij)
Stage 5. Calculate the distance to the ideal
positive and ideal negative solution for the qi

alternative:

di = JZ}Ll(vu) @

dy = JZ}Ll(”U -v)")

Stage 6. Calculate the alternative closest to the
ideal solution. Which is calculated by the
following formula:

_ _dy
Ry = dy+df (9)
Where:
0<R; <1

In order to evaluate all quality characteristics
according to ISO / IEC 25010 standard, it is

necessary to compile a decision matrix for
individual characteristics and perform the above
steps based on it.

4. Practical example

To illustrate the use of the method presented in the
work, consider a practical case, for example, for
specific software, we want to evaluate the quality
characteristic reliability, the evaluation criteria of
which are: accuracy, consistency and
completeness. First define the decision matrix

represented below:
Table 1
Decision matrix
accura consiste completen
cy ncy ess
releabili
o 97 78
ty)
9z 100 100 100
qs 0 0 0

As in the decided matrix, q; is the real
characteristic (in our case reliability), while q» and
qs is the formal alternative (q» is evaluated
according to the criteria with more significant
values, and q3 - with minimal wvalues). qi
Alternatively use sampling metrics using numbers
and other types of testing methods.

Once we have defined the decision matrix, we
must weigh the weights for the evaluation criteria,
in this case we take equal weights for the three
criteria (w1 = 0.33333333333, w, =
0.33333333333, w3 = 0.33333333333).

Normalize the decision matrix and define a
weighted normalized matrix that looks like this:
Table 2
Weighted normalized matrix

accura consiste completen
cy ncy ess
releabili
o 0.22 0.23 0.21
ty)
Q2 0.25 0.24 0.26
a3 0 0 0

Define positive ideal and negative ideal
solutions as follows:
positive ideal solution - [0.25, 0.24, 0.26]
negative ideal solution - [0,0, 0]

Calculate the distance to the ideal positive and
ideal negative solution for the q; alternative, in
our case the distance to the ideal solution is
0.06681, and the distance to the negative ideal
solution is 0.37916. Using this to calculate the
coefficient of proximity to the ideal solution for
the q)alternative, which is equal to 0.850187. This
is the target value for us by the proximity of which
we determine the level of evaluation of the quality
characteristic.

5. Conclusion

The work presents a software quality
assessment method based on the FCM (Factor-
Criteria-Metrics) software quality assessiment
model, ISO /IEC 25010 software quality standard
and multi-criteria solution analysis method,
allows us to evaluate software quality features,
which is an important tool for the software quality

management process, which aims to develop and [10]

manage software quality so that the product meets
the quality standards required by the user as much
as possible.

6. References

[1] Galin, D. (2018). Software quality: concepts
and practice. John Wiley & Sons.

[2] Dalla Palma, S., Di Nucci, D., Palomba, F.,
& Tambuiri, D. A. (2020). Toward a catalog
of software quality metrics for infrastructure
code. Journal of Systems and Software, 170,
110726.

[3] G. Chogovadze, G. Surguladze, M.
Gulitashvili and S. Dolidze(2020), Software
application quality management: testing and
optimization, Georgian Technical
University. pp. 366.

[4] Desyatirikova, E. N., Belousov, V. E,
Zolotarev, V. N., & Lavlinskaia, O.Y. (2017,
September). Design process of software
quality management. In 2017 International
Conference" Quality Management,
Transport and Information Security,

Information Technologies"(IT&QM&IS)
(pp. 496-499). IEEE.

[S] Hovorushchenko, T. (2018). Methodology of
evaluating the sufficiency of information for
software quality assessment according to
ISO 25010. Journal of information and
organizational sciences, 42(1), 63-85.

[6] Pamucar, D. S., Bozanié, D., & Randelovic,
A. (2017). Multi-criteria decision making:
An example of sensitivity analysis. Serbian
journal of management, 12(1), 1-27.

[7] Basheleishvili, I. (2020). Developing the
expert decision-making algorithmm using the
methods of multi-criteria analysis.
Cybernetics and Information Technologies,
20(2), 22-29.

[8] I. Basheleishvili, S. Tsiramua (2019),
Development of Method of Multifunctional
Personnel Assessment Using a Topsis
Method. Journal of Technical Science and
Technologies, 7(1), 31-36.

[9] Midler, J., Viedt, I, & Urbas, L. (2021).

Applying quality assurance concepts from

software development to simulation model

assessiment in smart equipment. In Computer

Aided Chemical Engineering (Vol. 50, pp.

813-818). Elsevier.

Estdale, J, & Georgiadou, E. (2018,

September). Applying the ISO/IEC 25010

quality models to software product. In

European Conference on Software Process

Improvement (pp. 492-503). Springer,

Cham.

[11] https://is025000.com/index.php/en/iso-
25000-standards/iso-250107?start=3

[12] Fraser, G., & Rojas, J. M. (2019). Software
testing. In Handbook of Software
Engineering (pp. 123-192). Springer, Chan.

[13] Kassab, M., DeFranco, J. F., & Laplante, P.
A. (2017). Software testing: The state of the
practice. IEEE Software, 34(5), 46-52.

[14] Jamil, M. A., Arif, M., Abubakar, N. S. A.,
& Ahmad, A. (2016, November). Software
testing techniques: A literature review. In
2016 6th international conference on
information and communication technology
for the Muslim world (ICT4M) (pp. 177-
182). IEEE.

[15] Molnar, A. J., Neamtu, A., & Motogna, S.
(2019, May). Longitudinal Evaluation of
Software Quality Metrics in Open-Source
Applications. In ENASE (pp. 80-91).

