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Abstract
Machine learning and artificial intelligence are crucial tools in the vast majority of different fields, but mainly in computer 
science and technology. Classifiers play a vital role in this field, especially in predicting the class membership of a sample 
under consideration. An example of the practical use of classifiers is the spam filter of email messages. The following paper 
aims to determine the most efficient classifier from selected: kNN, Soft set, and Naive Bayes on Iris database. Different 
versions of each of the classifiers have been considered. For kNN, the performance of various metrics was compared, for the 
Soft set, two approaches for establishing intervals during the classification, and for Naive Bayes, the normal and triangular 
distributions were compared. The most effective versions of the classifiers have been selected for the final comparison.
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1. Introduction
Artificial intelligence is an important aspect in today’s

world. It brings a communication between human and

machine. Thanks to that we are able to teach our com-

puter how to process a given data and get a response

from it. This is a called machine learning.

Machine learning is a field of study that uses diverse

algorithms to make some analysis in the given data. That

can be for example:

1. variety recognition,

2. weather and disease prediction,

3. puzzle or sudoku solver,

4. building a movie recommendation system.

This is actually a small fraction of the immeasurable pos-
sibilities in this field of study. Machine learning models

are used to learn the patterns in data. Machine learning
algorithms can be used for example to gather information

about data, split data for two parts and try to identify
unknown sample as a data element. The methods which
determine this, are called classifiers. We have various
types of classifiers applicable to different task. In machine

learning models neural networks based ideas are very
efficient in complex data analysis. In [4] was presented
how to use them in low-dimensional data feature learn-
ing. The idea presented in [8] proposed neural network
for analytical purposes of data recorded form high-speed
train. There are also very efficient, however simple in
construction, classifiers based on approaches sourced in
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data analytics. In [1] was proposed a model of soft set to 
approximate reasoning from input data. A model based 
on kNN classifier for big data analytics was presented 
in [7]. In decision processes we also very often use 
bayesian approaches which analyze probability of 
possible situations. In [2] was presented an wildfire 
risk assessment from data of remote sensing. 
Transmission of sensor readings for classifiers is an 
important topic, and there are many interesting models 
to support this process [5]. Classification model also 
depends on the type of the input information. In [6] was 
discussed how to use bayesian model for text 
classification. This kind of processes also need efficient 
data aggregation to improve efficiency of the classifier 
[3].

In our paper we are going to compare three classifiers: 
kNN, Soft set, Naive Bayes and decide which of those is 
the most accurate and effective. We will be trying to use 
different methods for each classifiers to determine the 
most reliable results. Each of these classifiers is different 
in some aspects. But the thing which connects them is 
that all of theirs main purpose is to identify a given sam-

ple by learning from a database using different types of 
identification. And in this paper we want to bring each 
classifier closer in the meaning, we are going to explain 
each of those three classifiers, explain which techniques 
of identification we were used and make overall conclu-
sion which one is the best classifier.
   We decided to use Iris data base to compare the accu-
racy of those classifiers and identify the most suitable.

2. Iris database
Before we started working on our base, we made sure 
that our Iris base didn’t have null or NaN values. We have 
created additional class called DataProcessing which
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helped us to shuffle, normalize and split database by di-

viding it into 70% as a training set and 30% as a validation

set. As we can see, the setos class is significantly sepa-

rated from the rest of the classes. This will result in a

high proportion of correctly recognized objects for this

class.

Figure 1: Iris dataset graphs

Figure 2: Iris dataset information

2.1. Normalization
For all classifiers we were normalizing a given database

by taking all values from a specific column, determining

of the lowest and highest value in the specific column

and changing all values in the column according to the

formula which is given below:

𝑛𝑒𝑤𝑉 𝑎𝑙𝑢𝑒[𝑥][𝑦] =
𝑜𝑙𝑑𝑉 𝑎𝑙𝑢𝑒[𝑥][𝑦]−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
(1)

𝑥 a current row

𝑦 a current column

𝑚𝑖𝑛 a minimal value in the current column

𝑚𝑎𝑥 a maximal value in the current column

3. Methods

3.1. kNN
3.1.1. Formulas

In order to function properly, the kNN algorithm needs 
functions that calculate the distance of the object for 
which we are looking for a class to the objects of classes 
already known to us. It is on the basis of this distance 
that the kNN algorithm decides to which class a given 
object may belong. There are many ways to calculate 
distances, each with its pros and cons. When 
calculating distances, we can, for example, use one of 
the known metrics, e.g. Euclid:

||𝑥− 𝑥𝑖||2 =

𝑛∑︁
𝑗

(𝑥𝑗 − 𝑥𝑖
𝑗)

2
(2)

Or Minkowski distance:

𝐿𝑚(𝑥, 𝑦) = (

𝑛∑︁
|𝑥𝑖 − 𝑦𝑖|𝑚)

1
𝑚 (3)

𝑖=1

In our algorithm, we chose the Minkowski metric.

3.1.2. Algorithm

The kNN (k-Nearest Neighbors) classifier is one of 
the most important non-parametric classification 
methods. The kNN algorithm does not create an 
internal representation of the training data, but looks 
for a solution only when the testing pattern appears. It 
consists in assigning an object to a given class by 
checking to which representatives a given object has 
the shortest distance. The algorithm works as follows. 
First, a sample is taken from the validation set. Next 
for a given sample, the distance to each object in the 
test set is calculated. Then list is created containing the 
given test file object and the distance to the sample 
which then is sorted from shortest distance to longest.



After that from this list, the k objects in the shortest 
distance from the sample are analyzed. At the end the 
sample is assigned to the class with the most objects.

Algorithm 1 kNN algorithm

Input: Test set, validate set, 𝑘, 𝑚
Output: The class to which the sample may belong

while 𝑖 < 𝑙𝑒𝑛(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 𝑠𝑒𝑡) do
while 𝑗 < 𝑙𝑒𝑛(𝑡𝑒𝑠𝑡 𝑠𝑒𝑡) do

Calculate the distance using Minkowski

distance of test object j to the sample 𝑖
and add the result to the list of distances.

𝑗 ++

Sort the list of distances in ascending order.

Take the k objects with the smallest distance

and return the class x with the most objects.

Return from dictionary variety with the highest prob-
ability

3.2. Soft sets
The soft set term as a mathematical model offers a tool

for analysing vaguely defined objects. Soft set theory is

a generalisation of fuzzy set theory that was introduced

in 1999 by Dmitri Molodtsov.

3.2.1. Formulas

There are a few ways in which soft set may be im-

plemented, for example: including weight or not. In

this case weight was included. Pearson correlation

coefficients were calculated to properly choose the most

appropriate weight values for particular characteristics.

𝑟 =
(
∑︀

𝑖(𝑥𝑖 − �̄�)(𝑦𝑖 − 𝑦)√︀∑︀
𝑖(𝑥𝑖 − �̄�)2

√︀∑︀
𝑖(𝑦𝑖 − 𝑦)2

(4)

𝑥𝑖 characteristic value for i = 0,1,...,n

𝑥 mean value for particular characteristic

𝑦𝑖 value of compared characteristic for i = 0,1,...,n

𝑦 mean value for compared characteristic

𝑟 Pearson correlation coefficient value

3.2.2. Algorithm

Prior to classification data was prepared through shuf-

fling, normalizing, and splitting the database into a test

set and validation set in the ratio of 70 to 30.

In the developed implementation of the soft set, the

minimum and maximum values for each species of the

test set were calculated. On their basis, the middle values

of species range values were determined.

The classifier considers samples from the validation

set together with the selected characteristic weight.

In the first approach implementation for each sample,

the distance from the center of the interval is calculated

and the minimum value is chosen, which determines

sample classification.

Figure 3: First approach algorithm visualization

Algorithm 2 Soft set algorithm - first approach

Input: Test set, validation set, weight

Output: The class to which the sample was classified

𝑐𝑒𝑛𝑡𝑒𝑟𝑠← 𝑐𝑒𝑛𝑡𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑟𝑖𝑠 𝑡𝑦𝑝𝑒

for 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡) do

Creates nested list with iris type name, minimal

and maximal values for each iris type in test set.

Creates nested list with iris type name, centre

value for each iris type based on minimal

and maximal values.

𝑟𝑜𝑤 ← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑦𝑝𝑒← 𝑖𝑟𝑖𝑠𝑡𝑦𝑝𝑒𝑛𝑎𝑚𝑒
𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒← 0
𝑖← 0
for 𝑡 𝑖𝑛 𝑟𝑜𝑤 do ◁ Add all trait values for sample

𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒+ = 𝑡 * 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]
𝑖+ = 1

for 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 do ◁ Calculate distances

𝑐𝑒𝑛𝑡𝑟𝑒 = 𝑣𝑎𝑙𝑢𝑒[0]
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝑐𝑒𝑛𝑡𝑟𝑒− 𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒|

Chooses minimal distance and corresponding iris type.
Returns classified type.



In the second approach algorithm, overlapping intervals

are considered and mean value is calculated to create

new intervals. Based on new intervals each sample is

being classified accordingly to these measures.

Figure 4: Second approach algorithm - calculating mean value 
for overlapping intervals

Figure 5: Second approach algorithm - determined intervals

Algorithm 3 Soft set algorithm - second approach

Input: Test set, validation set, weight

Output: The class to which the sample was classified

Create sorted list of all minimal and maximal values

of each iris type form test set.

Creates nested list of new ranges for each iris type

where mean value was calculated for overlapping sets

and taken as new edge value for set.

𝑠𝑜𝑟𝑡𝑒𝑑𝑉 𝑎𝑙𝑢𝑒𝑠← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑖𝑟𝑖𝑠 𝑡𝑦𝑝𝑒 𝑟𝑎𝑛𝑔𝑒
𝑛𝑒𝑤𝑅𝑎𝑛𝑔𝑒𝑠← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑖𝑟𝑖𝑠 𝑡𝑦𝑝𝑒 𝑟𝑎𝑛𝑔𝑒𝑠
for 𝑖𝑛𝑑𝑒𝑥 < 𝑙𝑒𝑛(𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑒𝑡) do

𝑟𝑜𝑤 ← 𝑙𝑖𝑠𝑡 𝑜𝑓 𝑡𝑟𝑎𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑜𝑛𝑒 𝑠𝑎𝑚𝑝𝑙𝑒
𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑦𝑝𝑒← 𝑖𝑟𝑖𝑠𝑡𝑦𝑝𝑒𝑛𝑎𝑚𝑒
𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒← 0
𝑖← 0
for 𝑡 𝑖𝑛 𝑟𝑜𝑤 do

𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒+ = 𝑡 * 𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]
𝑖+ = 1

if 𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒 ∈ 𝑛𝑒𝑤𝑅𝑎𝑛𝑔𝑒𝑠[0] then
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑆𝑒𝑡𝑜𝑠𝑎

else if 𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒 ∈ 𝑛𝑒𝑤𝑅𝑎𝑛𝑔𝑒𝑠[1] then
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑉 𝑒𝑟𝑠𝑖𝑐𝑜𝑙𝑜𝑟

else if 𝑠𝑎𝑚𝑝𝑙𝑒𝑉 𝑎𝑙𝑢𝑒 ∈ 𝑛𝑒𝑤𝑅𝑎𝑛𝑔𝑒𝑠[2] then
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑉 𝑖𝑟𝑔𝑖𝑛𝑖𝑐𝑎

Returns classified type.

3.3. Naive Bayes
Naive Bayes classifier is a probabilistic machine learning 
model that’s used for classification task. At the begin-
ning it reduces database by splitting an Iris database 
to three smaller databases according to their variety. 
After that classifier assigns the initial probability of a 
given species appearing in the database. Next, it takes a 
sample and counts a probability for each reduced 
database. It uses one of two considered distribution 
formulas. Subsequently, it multiplies the initial 
probability with all partial probabilities (with all 
attributes that a reduced database has). And at the end 
it compares which probability of three possible is the 
highest.

3.3.1. Formulas 

Normal distribution:

𝑃 (𝑎𝑖|𝑉 ) =
1√
2𝜋𝜎2

𝑒𝑥𝑝(− (𝑠𝑎𝑖 − 𝜇)2

2𝜎2
) (5)

Triangular distribution:

𝑃 (𝑎𝑖|𝑉 ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, 𝑠𝑎𝑖 < 𝜇−

√
6𝜎𝑉

𝑠𝑎𝑖−𝜇
6𝜎2 + 1√

6𝜎
, 𝜇−

√
6𝜎 ≤ 𝑠𝑎𝑖 ≤ 𝜇

− 𝑠𝑎𝑖−𝜇
6𝜎2 + 1√

6𝜎
, 𝜇 ≤ 𝑠𝑎𝑖 ≤ 𝜇+

√
6𝜎)

0 𝑠𝑎𝑖 > 𝜇+
√
6𝜎)

(6)

𝑎𝑖 a current attribute in reduced database

𝑠𝑎𝑖 a current attribute of a sample

𝜎 a standard deviation of an attribute

𝜇 a mean of an attribute in reduced database

𝑉 current reduced variety database

Counting probability:

𝑃 (𝑉 𝑎𝑟𝑖𝑒𝑡𝑦) = 𝑃 (𝐼𝑛𝑖𝑡) *
4∏︁

𝑖=1

𝑃 (𝑎𝑖|𝑉 𝑎𝑟𝑖𝑒𝑡𝑦) (7)

3.3.2. Algorithm

To simplify how Naive Bayes actually works I will explain 
everything based on Iris database.
At the beginning, the Naive Bayes algorithm takes 

two parameters. First is a test set and the second is a 
validation set.

Afterwards, it splits the test set to three reduced 
databases according to their varieties.
Subsequently, it calculates a initial probability by 

counting the number of elements in reduced database 
divided by the number of all elements in the main 
database. Next, for a given sample it calculates a 
partial probability for each attributes in each reduced 
database.



To do so, it takes a list of elements in each attribute and

then it calculates a mean and a standard deviation.

After that, it calls a distribution function which passes

the given sample’s current calculated attribute, the stan-

dard deviation and the mean.

Next, it multiplies the initial probability with four par-

tial probabilities.

At the end, it returns the variety of the highest proba-

bility.

Algorithm 4 Naive Bayes algorithm

Input: Test set, sample

Output: The class to which the sample may belong

Make three reduced databases according to theirs
varieties;
Make a list of attributes names in reduced databases;
Make a empty dictionary;

𝑖← 0
while 𝑖 < 𝑙𝑒𝑛(𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠) do

𝑖𝑛𝑖𝑡𝑃𝑟𝑜𝑏← 𝑙𝑒𝑛(𝑟𝑒𝑑𝑢𝑐𝑒𝑑𝐷𝑎𝑡𝑎𝑏𝑎𝑠𝑒𝑠[𝑖])
𝑙𝑒𝑛(𝑑𝑎𝑡𝑎𝐵𝑎𝑠𝑒)

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 𝑖𝑛𝑖𝑡𝑃𝑟𝑜𝑏
𝑗 ← 0

while 𝑗 < 𝑙𝑒𝑛(𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠) do
Get a list of all values in the column[j]
Calculate mean and standard deviation from the list

𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑃𝑟𝑜𝑏← DistributionFunction(
sample[j],

standardDeviation,

mean;)

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ← 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 * 𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑃𝑟𝑜𝑏;

Add to dictionary a new record

Return from dictionary variety with the highest probability

4. Experiments
In order to properly analyze individual classifiers, we 
will perform a series of tests that will allow us to select 
the best classifier using the confusion matrix. Confu-
sion matrix is used in assessing the quality of a binary 
classification. It describes how well the classifier classi-
fied given samples. It also gives us information about 
several things about the classifier such as:

1. Accuracy

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(8)

2. Sensitivity

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9)

3. Precision

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(10)

4. F1 Score

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(11)

5. Specificity

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
(12)

For this purpose we will make one confusion matrix

based on one of three abstract class called Setosa. Based

on that class the all three classifiers will be identify how

well they classified given samples.

Setosa Versicolor Virginica

Setosa TP FP FP

Versicolor FN TN FN

Virginica FN FN TN

4.1. kNN
After testing, we noticed that the results for any k are 
very similar to each other. This may be due to the fact 
that the Setos class is significantly distant from the other 
two classes, which means that there is a very high prob-
ability that the objects closest to the sample will also be 
Stetosa. Below are the results for k equal to 1 2 3 and 
4, respectively.

Table 1
Table for k = 1

k TP FP TN FN

1 16 0 27 2

AC SEN PRE F1 SPE
0.96 0.89 1.00 0.94 1.00



Table 2
Table for k = 2

k TP FP TN FN

2 19 0 22 4

AC SEN PRE F1 SPE
0.91 0.83 1.00 0.90 1.00

Table 3
Table for k = 3

k TP FP TN FN

3 14 0 29 2

AC SEN PRE F1 SPE
0.96 0.88 1.00 0.93 1.00

Table 4
Table for k = 4

k TP FP TN FN

4 18 0 26 1

AC SEN PRE F1 SPE
0.98 0.95 1.00 0.97 1.00

4.2. Naive Bayes
We considered in our article two distribution formulas.

In this section we decide which of these two are the best
for our database.

For the Normal distribution function results are:

Table 5
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.96 0.88 1.00 0.93 1.00

TP FP TN FN

14 0 29 2

Table 6
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.96 0.89 1.00 0.94 1.00

TP FP TN FN

16 0 27 2

Table 7
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.96 1.00 0.87 0.93 0.94

TP FP TN FN

13 2 30 3

For the Triangular distribution function results are:

Table 8
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.91 0.78 1.00 0.88 1.00

TP FP TN FN

14 0 27 4

Table 9
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.91 0.83 0.94 0.88 0.96

TP FP TN FN

15 1 26 3

Table 10
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.91 0.92 0.80 0.86 0.91

TP FP TN FN

12 3 29 1

After analyzing above tables we decided that Normal

distribution is the best distribution function and it will
be considered in the final test.

At the end we performed 100 test and we obtained the
following results:

Table 11
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.95 0.87 1.00 0.93 1.00



Table 12
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.95 0.93 0.94 0.93 0.97

Table 13
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.95 0.93 0.92 0.93 0.96

4.3. Soft sets
The determined values of Pearson correlation coefficients

for each characteristic of iris flowers allowed choosing

the weight of the features for the optimal classifier ac-

curacy. An association between individual features was

considered and their influence on the classifier efficiency.

Based on these factors different weights were applied to

select the most suitable solution.

Figure 6: Pearson correlation coefficients for iris characteris-
tics

Considering obtained correlation values, it was

concluded that the most important characteristics

are the following in descending order: petal-length,

petal-width, sepal-length, and sepal-width. According

to these observations, successively assigning different

weight values, the best results were observed with

weight 𝑤 = [0.1, 0, 0.5, 0.4].

The analysis of the results for both the first and

the second algorithm showed that the first algorithm is a

more effective soft set implementation. After performing

100 tests, the following results were obtained.

Table 14
Statistical results for first approach

Accuracy F1 Sensitivity Precision Specificity

0.96 0.94 0.92 0.96 0.98

Table 15
Statistical results for second approach

Accuracy F1 Sensitivity Precision Specificity

0.96 0.93 0.92 0.95 0.97

For the most efficient implementation, the following
results were obtained for individual types of iris flowers.
After performing 100 tests, the following results were
obtained.

Table 16
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.98 0.95 1.00 0.97 1.00

TP FP TN FN

18 0 26 1

Table 17
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.98 0.93 1.00 0.97 1.00

TP FP TN FN

14 0 30 1

Table 18
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.98 1.00 0.92 0.96 0.97

TP FP TN FN

12 1 32 0



5. Conclusion
In order to establish the most efficient classifier, the pre-
pared implementations were compared on the same par-
tition of the Iris database. In comparison, the following 
results were statistically calculated.
Results for kNN:

Table 19
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.96 0.87 1.00 0.93 1.00

TP FP TN FN

13 0 30 2

Table 20
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.96 0.89 1.00 0.94 1.00

TP FP TN FN

17 0 26 2

Table 21
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.96 1.00 0.87 0.93 0.94

TP FP TN FN

13 2 30 0

Results for Naive Bayes:

Table 22
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.96 0.87 1.00 0.93 1.00

TP FP TN FN

13 0 30 2

Table 23
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.96 0.89 1.00 0.94 1.00

TP FP TN FN

17 0 26 2

Table 24
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.96 1.00 0.87 0.93 0.94

TP FP TN FN

13 2 30 0

Results for Soft sets:

Table 25
Results for Setosa class

Accuracy Sensitivity Precision F1 Specificity

0.98 0.93 1.00 0.96 1.00

TP FP TN FN

13 0 31 1

Table 26
Results for Versicolor class

Accuracy Sensitivity Precision F1 Specificity

0.98 0.93 1.00 0.96 1.00

TP FP TN FN

17 0 27 1

Table 27
Results for Virginica class

Accuracy Sensitivity Precision F1 Specificity

0.98 1.00 0.93 0.97 0.97

TP FP TN FN

14 1 30 0



Through analysis of attained results for all classes of 
all classifiers, it can be noted that the level of accuracy 
is the highest for the soft set classifier. The values of 
other statistically obtained characteristics also reach the 
highest levels for the previously mentioned classifier. It 
is worth mentioning that the obtained results are similar 
for particular characteristics of the kNN and Naive Bayes 
classifiers.

Based on the obtained results, it can be concluded 
that the soft set classifier implementation classifies most 
effectively. All of the implemented classifiers have been 
properly implemented. The results of the best classifier 
differ only by a few percentage points from each other.
The work and effort that was applied to completing 

this article are practical and applicable. This research 
offered an opportunity to learn and expand knowledge 
about the different approaches to assessing and teaching 
chosen classifiers as well as through the process of iden-
tifying the best solution. The analysis allowed acquiring 
practical experience in implementing machine learning 
algorithms.

In the future, the project could be extended and fol-
lowed with further analysis of other classifiers, for in-
stance through rebuilding the current classifiers in a more 
advanced way and selecting even more efficient solutions.

Table 28
Results

Classifier Setosa Versicolor Virginica

kNN

ACC 0.96 0.96 0.96
SEN 0.87 0.89 1.00
PRE 1.00 1.00 0.87
F1 0.93 0.94 0.93
SPE 1.00 1.00 0.94
TP 13 17 13
FP 0 0 2
TN 30 26 30
FN 2 2 0

Naive
Bayes

ACC 0.96 0.96 0.96
SEN 0.87 0.89 1.00
PRE 1.00 1.00 0.87
F1 0.93 0.94 0.93
SPE 1.00 1.00 0.94
TP 13 17 13
FP 0 0 2
TN 30 26 30
FN 2 2 0

Soft sets

ACC 0.98 0.98 0.98
SEN 0.93 0.93 1.00
PRE 1.00 1.00 0.93
F1 0.96 0.96 0.97
SPE 1.00 1.00 0.97
TP 13 17 14
FP 0 0 1
TN 31 27 30
FN 1 1 0
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