
Formalization and Verification of
Go-based New Simple Queue System
Danyang Wang1, Jiaqi Yin2, Sini Chen1 and Huibiao Zhu1

1Shanghai Key Laboratory of Trustworthy Computing. East China Normal University, Shanghai, China
2Northwestern Polytechnical University, Xi’an, China

Abstract
NSQ (New Simple Queue) is a real-time distributed messaging platform implemented by Go language. It’s designed to operate
at scale stably and efficiently handle billions of messages per day. Its decentralized topology guarantees fault tolerance, high
availability, and reliable message delivery. Operationally, NSQ is elastic to configure and deploy. With the broad application of
the NSQ message system, its security and stability have attracted extensive concentration. Therefore, it is crucial to conduct
a rigorous analysis and verification of NSQ’s properties. In this paper, we employ process algebra CSP (Communicating
Sequential Processes) to model the core functional modules of the NSQ. In addition, we utilize the model checker PAT (Process
Analysis Toolkit) to verify five properties of the model, including divergence freedom, reachability, scalability, availability,
and flow controllability. The verification results demonstrate that the NSQ system satisfies all the above properties, proving
that the system has high flexibility and robustness while providing credible and efficient message delivery.

Keywords
NSQ, Messaging System, Communicating Sequential Processes(CSP), Modeling, Verification

1. Introduction
In the rapidly evolving era of the Internet, the explosion
of users and services creates severe challenges for net-
work applications. Conventional monolithic and vertical
service architectures can no longer deal with such a vol-
ume of data. Distributed services are gradually becoming
the mainstream architecture. As a foundational segment
in distributed message systems, middleware [1] is impor-
tant in decoupling, asynchronous communication, traffic
clipping, and other issues. It can improve the perfor-
mance and stability of applications. Therefore, message
queue as a critical middleware acquires more attention
in the Internet field.

With the evolution of technology, message queues
are gradually maturing, resulting in a series of outstand-
ing middleware, including ActiveMQ [2], RabbitMQ [3],
Kafka [4], and RocketMQ [5]. These services decouple
complex systems and enable asynchronous operations
to reduce response times, providing a better user experi-
ence. Although the introduction of middleware can sig-
nificantly improve the performance of a system, we must
consider its potential problems and challenges, such as
reduced availability due to unstable message queues and
data inconsistencies due to concurrent communication.
The system needs to introduce additional mechanisms

QuASoQ 2023: 11th International Workshop on Quantitative
Approaches to Software Quality, December 04, 2023, Seoul, South
Korea
$ 51215902076@stu.ecnu.edu.cn (D. Wang); jqyin@nwpu.edu.cn
(J. Yin); 52265902002@stu.ecnu.edu.cn (S. Chen);
hbzhu@sei.ecnu.edu.cn (H. Zhu)

© 2023 Copyright for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

to ensure high availability and reachability of messages,
which increases system complexity. Therefore, excellent
message middleware should have high message process-
ing efficiency, robustness, stability, and scalability.

NSQ [6] has emerged from these excellent middlewares
in recent years. It is a distributed messaging platform
based on Go language [9] with outstanding performance,
robustness, and usability. This messaging platform is a
user-friendly middleware for real-time messaging ser-
vices, capable of managing hundreds of millions of mes-
sages. In addition, NSQ is fitted to the current concurrent
Internet ecosystem due to Go’s native strengths in concur-
rency. Go is a programming language with concurrency
features, and its concurrency model was developed based
on the process communication concept of CSP (Com-
municating Sequential Processes) [10, 11]. This feature
makes the Go-based NSQ distributed system well-suited
to the producer-consumer concurrency problem. There-
fore, it is becoming popular within businesses and has
also attracted the attention of researchers.

NSQ is suitable for distributed applications and sys-
tems that require asynchronous messaging, such as Social
Media, Gaming, and other industries that require high
concurrency. Until now, existing studies primarily fo-
cus on comparing different message queues performance,
operability, and other characteristics [8] or delve into
practical applications of NSQ [7]. To the best of our
knowledge, there has yet to be research about the verifi-
cation of its properties, which are significant for users.
And the fundamental attributes of the system still need
to be proven.

Employing a formal verification approach to verify
NSQ’s fundamental properties offers rigorous proof and

74

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:51215902076@stu.ecnu.edu.cn
mailto:jqyin@nwpu.edu.cn
mailto:52265902002@stu.ecnu.edu.cn
mailto:hbzhu@sei.ecnu.edu.cn
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

Figure 1: An Instance of the NSQ System

assurance, ensuring the system’s correctness, reliability,
and stability. This approach enhances confidence and
credibility in the design, implementation, and deploy-
ment of the system, which is paramount for developers
and users. Consequently, this paper bridges this research
gap by adopting formal methods to analyze the NSQ sys-
tem. We utilize process algebra CSP to formally model
the core functional modules and basic workflow of the
NSQ such as message publishing, subscription, registra-
tion, and querying. Subsequently, leveraging the model
checker PAT [12], we verify five properties of the model,
including Divergence Freedom, Reachability, Scalability,
Availability, and Flow Controllability. Experimental re-
sults demonstrate that the NSQ distributed message plat-
form can guarantee all these properties, proving that the
system has outstanding flexibility and robustness.

The remainder of this paper is organized as follows.
Section II briefly describes the NSQ system and process
algebra CSP. In Section III, we use CSP to model four
fundamental components in the NSQ message system.
Furthermore, in Section IV, we employ the model check-
ing tool PAT to implement the constructed models and
verify five properties we defined. Finally, we summarize
this paper and discuss future work in Section V.

2. Background
In this section we give a brief description of the NSQ’s
architecture and process algebraic language CSP.

2.1. NSQ - New Simple Queue
A typical architecture of the NSQ system is displayed in
Fig. 1. Before furthering into the transmission mechanism
of the NSQ, we should familiar with the following terms:
• nsqd: The NSQ daemon responsible for receiving and

delivering messages. nsqd instances manage the actual
message storage and distribution.

• nsqlookupd: The NSQ lookup daemon that manages
topology information. It receives registration informa-
tion and provides service discovery.

• Topic: It is a distinct stream of messages. An NSQ
instance can have multiple Topics, each of which can
have one or more Channels.

• Channel: It is a logical grouping of consumers sub-
scribed to a given Topic. Each Channel receives a copy
of all the messages for that Topic.

The Topic and Channel in the NSQ system are imple-
mented by Go’s channel data type. Go-chan builds on the
idea of channel in CSP, it allows data transfers and syn-
chronization operations between concurrent processes.
A channel with cache space are also the natural way to
express queue structure. Therefore, essentially NSQ’s
Topic/Channel is a buffered queue for message.

After learning the basic terms, we can introduce the
NSQ system further from two core workflows: Message
multi-cast and Message consumption.

2.1.1. Message Multi-cast
NSQ designs nsqd to handle multiple data streams con-
currently. Each Topic can have one or more Channels.
Topics multicast the received messages to Channels, and
each Channel receives copies of messages. In practice,
Channels map to downstream services that subscribe the
Topics. Topics and Channels are not preconfigured but
are created upon the first publication or subscription.
Within nsqd, Topics and Channels independently buffer
data to prevent lagging consumers from affecting other
Channels. Messages are delivered to a randomly client
when all clients are ready, achieving load balancing.
2.1.2. Message Consumption

Unlike many conventional message queues, NSQ maxi-
mizes performance and throughout by pushing data to
the client instead of waiting for it to pull. This concept
is called the RDY (Ready) state, constituting a form of
client-side flow control. This RDY state is a pivotal perfor-
mance parameter, allowing clients to modulate message
by adjusting the RDY value. Once clients establish con-
nections and subscriptions, they assert control over the
flow of messages from nsqd by dynamically updating the
RDY value.

2.2. CSP
Process Algebra CSP [10, 11] is a formal mathematical
method that is widely applied in the design and verifi-
cation of concurrent systems. This language has been
successfully applied in modeling and verifying various
concurrent systems and protocols [13, 14]. Parts of the
CSP syntax used in this paper is defined as follows:

𝑃 , 𝑄 ::= 𝑆𝐾𝐼𝑃 | 𝑐?𝑢→ 𝑃 | 𝑐!𝑣→ 𝑃 | 𝑃□𝑄 | 𝑃 ||𝑄
| 𝑃 |||𝑄 | 𝑃 [|𝑋|]𝑄 | 𝑃◁𝐵▷𝑄 | 𝑃 ; 𝑄

• SKIP: The process terminates properly.

• 𝑐?𝑢→ 𝑃 : The process receives a value from channel
c and assigns it to variable u, then starts P.

75

• 𝑐!𝑣 → 𝑃 : The process sends value v to channel c and
then starts executing process P.

• 𝑃□𝑄: It depicts a general choice between process P
and process Q.

• 𝑃 |||𝑄: It illustrates interleaving. Processes P and Q
run simultaneously and do not share any operations
or variables.

• 𝑃◁𝐵▷𝑄: It portrays the execution of process P if
the boolean expression b is true; otherwise, process
Q will be executed.

3. Modeling
In this section, we construct the model of NSQ distributed
architecture as illustrated in Fig. 1.

3.1. Sets, Messages and Channels
For a more detailed understanding of how the compo-
nents within the NSQ system communicate and inter-
act, we have laid out explanations for the fundamental
building blocks used in the model: Sets, Messages, and
Communication Channels.

Table 1
The correspondence between sets and constants/variables

Set Constant / Variable
Module P(Producer), C(Consumer), D(nsqd),LD(nsqlookupd)

ID
pid(producer ID), cid(consumer ID),

did(nsqid), lid(nsqlookupd ID),
tid(Topic ID), chid(Channel ID), msgid(message ID)

Command
FIN(Finish), REQ(Requeue), SUB(Subscribe), PUB(Publish),

REGISTER(Register),MSG(Message),REP(Response),
LOOKUPCHA(Lookup channel), LOOKUPD(Lookup nsqd)

Data chList(registered channel list),
dList(nsqd list with specific Topic)

ACK OK, OUTTIME

Figure 2: Channels of the NSQ System

Table 1 shows the definitions we defined for the rele-
vant sets employed in the modeling process. The Module
set contains all modules of the NSQ messaging system.
The ID set consists of unique identifiers for each object
within the system. Commands describe the instructions
managing interactions within the NSQ, such as message
publication (PUB) and subscription (SUB). The Data set
indicates the topological information queried by compo-
nents, and the Ack set is internal feedback.

Based on the above collections, we give the definition
of the Message transferred between components:

𝑀𝑆𝐺𝑟𝑒𝑞 = {𝑚𝑠𝑔𝑟𝑒𝑞 .𝐴.𝐵.𝐴𝑐𝑡𝑖𝑜𝑛.𝐶𝑜𝑛𝑡𝑒𝑛𝑡 |
𝐴 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,𝐵 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,

𝐴𝑐𝑡𝑖𝑜𝑛 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑,𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝐷}
𝑀𝑆𝐺𝑟𝑒𝑝 = {𝑚𝑠𝑔𝑟𝑒𝑝.𝐴.𝐵.𝐴𝑐𝑡𝑖𝑜𝑛.𝐶𝑜𝑛𝑡𝑒𝑛𝑡 |

𝐴 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,𝐵 ∈ 𝑀𝑜𝑑𝑢𝑙𝑒,

𝐴𝑐𝑡𝑖𝑜𝑛 ∈ 𝐶𝑜𝑚𝑚𝑎𝑛𝑑,

𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∈ {𝐼𝐷,𝐴𝐶𝐾,𝐷𝐴𝑇𝐴}}
𝑀𝑆𝐺𝑑𝑎𝑡𝑎 = {𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝐶𝑜𝑛𝑡𝑒𝑛𝑡 | 𝐶𝑜𝑛𝑡𝑒𝑛𝑡 ∈ 𝐼𝐷}

𝑀𝑆𝐺𝑟𝑒𝑞 denotes the set of request messages,
𝑀𝑆𝐺𝑟𝑒𝑝 means the set of responses, and 𝑀𝑆𝐺𝑑𝑎𝑡𝑎 rep-
resents the set of transmitted data.

Next, we define the Channels responsible for communi-
cation between the modules and refer to these Channels
with the label 𝐶𝑂𝑀_𝑃𝐴𝑇𝐻 .

• ComCL: channels between consumer and nsqlookupd.

• ComPD: channels between producer and nsqd.

• ComDL: channels between nsqd and nsqlookupd.

• ComCD: channels between consumer and nsqd.

We also define the channels used internally by compo-
nents with the label 𝑀𝑆𝐺_𝑃𝐴𝑇𝐻 . These channels
have cache space and are responsible for caching mes-
sages. Fig. 2 shows all the channels we have defined.

• MsgTPC: message cache channels of Topics.

• MsgCHA: message cache channels of Channels.

• MsgCON: message cache channels of consumers.

3.2. Overall Modeling
The NSQ system embodies an intricate workflow. Due to
the page limit, we only present part of the core modeling
codes in this section.

The whole 𝑆𝑦𝑠𝑡𝑒𝑚() as below:

𝑆𝑦𝑠𝑡𝑒𝑚() =𝑑𝑓

|||𝑝𝑖𝑑∈𝑃𝐼𝐷,𝑑𝑖𝑑∈𝐷𝐼𝐷,𝑙𝑖𝑑∈𝐿𝐼𝐷,𝑐𝑖𝑑∈𝐶𝐼𝐷⎛⎝ 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑 [|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|]𝑛𝑠𝑞𝑑𝑑𝑖𝑑
[|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|]𝑛𝑠𝑞𝑙𝑜𝑜𝑘𝑢𝑝𝑑𝑙𝑖𝑑
[|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|]𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑

⎞⎠

76

It describes the concurrent model where producers,
nsqds, nsqlookupds, and consumers run in parallel and
collaborate over the [|𝐶𝑂𝑀_𝑃𝐴𝑇𝐻|] channels. The
𝑝𝑖𝑑 denotes the producer ID, and 𝑃𝐼𝐷 means the set of
𝑝𝑖𝑑. Other characters such as 𝑑𝑖𝑑, 𝑙𝑖𝑑 are similar.

3.3. Producer
The producer is responsible for generating and sending
messages to corresponding Topics. It communicates with
the nsqd directly and publishes messages to the nsqd
module through the 𝐶𝑜𝑚𝑃𝐷𝑖 channel.

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑() =𝑑𝑓⎛⎜⎜⎜⎜⎝
𝐶𝑜𝑚𝑃𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .𝑝𝑖𝑑.𝑑𝑖𝑑.𝑃𝑈𝐵.𝑡𝑖𝑑.𝑀𝑆𝐺𝐼𝐷 →
𝐶𝑜𝑚𝑃𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑝𝑖𝑑.𝑅𝐸𝑃.𝑚𝑠𝑔𝑖𝑑.𝑂𝐾 →
𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠 {𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[𝑚𝑠𝑔𝑖𝑑] == 1; } ;(︂

𝑆𝐾𝐼𝑃 ◁𝑚𝑠𝑔𝑖𝑑 == 1▷
𝑛𝑒𝑥𝑡𝑀𝑠𝑔{𝑀𝑆𝐺𝐼𝐷 ++; } → 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑()

)︂
⎞⎟⎟⎟⎟⎠

◁ 𝑝𝑖𝑑 == 0▷⎛⎜⎜⎜⎜⎜⎝
𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑝𝑖𝑑()
◁𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[0] == 1&&𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[1] == 1▷⎛⎜⎜⎝

𝐶𝑜𝑚𝑃𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .𝑝𝑖𝑑.𝑑𝑖𝑑.𝑃𝑈𝐵.𝑡𝑖𝑑.2 →
𝐶𝑜𝑃𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑝𝑖𝑑.𝑅𝐸𝑃.2.𝑂𝐾 →
𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠 {𝑃𝑚𝑠𝑔𝑆𝑡𝑎𝑡𝑒𝑠[2] == 1; }
→ 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎠ ;

We define two type 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟𝑖𝑑. 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟0 sends
messages with message id 0, 1 while 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟1 with
id 2. The producers publish three messages to simulate
the practical operation of the NSQ. Furthermore, we re-
strict that 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟1 must wait for 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟0 to finish
sending before it sends the message.

3.4. nsqd
The nsqd is daemon that receives, queues, and delivers
messages to clients. It handles multiple streams of data
at once through the unique design of Topic and Channel.
We modeled three core functions of nsqd.

The entire nsqd process execute as flowing:

𝑁𝑠𝑞𝑑𝑑𝑖𝑑() =𝑑𝑓

𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑()|||𝑚𝑠𝑔𝑃𝑢𝑚𝑝𝑑𝑖𝑑()|||𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑();

The 𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑() is the main execution loop that
drives the core functions of the NSQ daemon. It is respon-
sible for constantly listens requests from other compo-
nents and processes them according to predefined logic.
We model four basic command handling logics, including
𝑅𝐸𝑄, 𝑆𝑈𝐵, 𝑃𝑈𝐵 and 𝐹𝐼𝑁 .

Multicasting and delivery of messages is a core func-
tion of nsqd. The relationship between Topics and
Channels is established through multicast, ensuring that
each Channel receives a copy of all messages associated
with a given Topic. This logic is implemented by the
𝑚𝑠𝑔𝑃𝑢𝑚𝑝𝑑𝑖𝑑() process.

𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑() is responsible for pushing messages
to clients by load balancing strategy. In the NSQ mes-
saging system, this strategy is achieved by employing
a random distribution strategy, wherein messages are
randomly dispatched to clients subscribed to the same
Channel. 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] signifies the number of messages
𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑖𝑑 can process from a specific 𝑛𝑠𝑞𝑑𝑖𝑑. We use
the 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑐𝑖𝑑] array to mark whether 𝑛𝑠𝑞𝑑𝑑𝑖𝑑
is in the state of pushing messages to 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑. nsqd
only sends messages to clients who can process messages.
We model this process using the General Choice in CSP.

𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑() =𝑑𝑓⎛⎜⎜⎜⎜⎜⎝
𝐶𝑜𝑚𝑃𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑝𝑖𝑑.𝑑𝑖𝑑.𝑃𝑈𝐵.𝑡𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →(︂

𝑐𝑟𝑒𝑎𝑡𝑇𝑜𝑝𝑖𝑐(𝑑𝑖𝑑, 𝑡𝑖𝑑)
◁𝐷𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑡𝑖𝑑] == 0▷ 𝑆𝐾𝐼𝑃

)︂
;

𝑀𝑠𝑔𝑇𝑃𝐶𝑗 !𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑡𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →
𝐶𝑜𝑚𝑃𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑝𝑖𝑑.𝑅𝐸𝑃.𝑚𝑠𝑔𝑖𝑑.𝑂𝐾 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎠
□⎛⎝ 𝐶𝑜𝑚𝐶𝐷𝑘?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝐹𝐼𝑁.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →

𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔{𝐷𝑀𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = −1} →
𝑆𝐾𝐼𝑃

⎞⎠
□⎛⎜⎜⎝

𝐶𝑜𝑚𝐶𝐷𝑘?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝑅𝐸𝑄.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →
𝑢𝑝𝑑𝑎𝑡𝑒𝑀𝑠𝑔{𝐷𝑀𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] + +} →
𝑀𝑠𝑔𝐶𝐻𝐴𝑙!𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
□⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝑜𝑚𝐶𝐷𝑘?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝑆𝑈𝐵.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑 →⎛⎜⎜⎝
𝑐𝑟𝑒𝑎𝑡𝑒𝑇𝑜𝑝𝑖𝑐(𝑑𝑖𝑑, 𝑡𝑖𝑑);
𝑢𝑝𝑑𝑎𝑡𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙{

𝐷𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] = 1; } →
𝑁𝑜𝑡𝑖𝑓𝑦(𝑑𝑖𝑑, 𝑡𝑖𝑑, 𝑐𝑖𝑑)

⎞⎟⎟⎠
◁𝐷𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑡𝑖𝑑] == 0▷⎛⎜⎜⎝

⎛⎝ 𝑢𝑝𝑑𝑎𝑡𝑒𝐶ℎ𝑎𝑛𝑛𝑒𝑙{
𝐷𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] = 1; } →

𝑁𝑜𝑡𝑖𝑓𝑦(𝑑𝑖𝑑, 𝑡𝑖𝑑, 𝑐𝑖𝑑)

⎞⎠
◁𝐷𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] == 0▷ 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
𝑎𝑑𝑑𝐶𝑙𝑖𝑒𝑛𝑡{𝑇𝐶ℎ2𝐶𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑐𝑖𝑑] = 1;]} →
𝑝𝑢𝑚𝑝𝑀𝑠𝑔{𝑠𝑡𝑎𝑟𝑡𝑀𝑠𝑔𝑃𝑢𝑚𝑝𝑑𝑖𝑑[𝑡𝑖𝑑] = 1; } →
𝐶𝑜𝑚𝐶𝐷𝑘!𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑆𝑈𝐵.𝑂𝐾 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

𝐸𝑥𝑒𝑐𝐿𝑜𝑜𝑝𝑑𝑖𝑑();

𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑() =𝑑𝑓

□
𝑐𝑖𝑑

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎝
𝑀𝑠𝑔𝐶𝐻𝐴𝑖?𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑

{𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑐𝑖𝑑] = 1; } →
𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.

𝑀𝑆𝐺.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑
{𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑑𝑖𝑑[𝑐𝑖𝑑] = 0; } →

𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎠
◁

(︂
𝑇𝐶ℎ2𝐶𝑑𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑[𝑐𝑖𝑑] == 1
& 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] > 0

)︂
▷

𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

𝑚𝑠𝑔𝑃𝑢𝑠ℎ𝑑𝑖𝑑();

77

3.5. nsqlookupd
The nsqlookupd daemon manages the system’s topology
information. nsqlookupd provides discovery and registra-
tion services, which decouple consumers from producers.
The formal modeling of nsqlookupd is as follows.

𝑛𝑠𝑞𝑙𝑜𝑜𝑘𝑢𝑝𝑑𝑙𝑖𝑑() =𝑑𝑓

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑() ||| 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑() ||| 𝐸𝑟𝑟𝑜𝑟𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑙𝑖𝑑();

The 𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑() process handles the registration
requests sent by nsqd through the 𝐶𝑜𝑚𝐶𝐷𝑖 chan-
nel,and record nsqd instance by 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑑𝑖𝑑].
𝐿𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑡𝑖𝑑] stores all the registered Topics on
the nsqlookupd, and 𝑇2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑑𝑖𝑑] holds the cor-
responding nsqd addresses for each Topic. Similarly,
𝐿𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] and 𝑇𝐶2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑐ℎ𝑖𝑑][𝑑𝑖𝑑]
serve same functions for Channels.

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑() =𝑑𝑓

𝐶𝑜𝑚𝐷𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑑𝑖𝑑.𝑙𝑖𝑑.𝑅𝐸𝐺𝐼𝑆𝑇𝐸𝑅.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑 →
𝑎𝑑𝑑𝑛𝑠𝑞𝑑{𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑑𝑖𝑑] = 1; } →⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝ 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑝𝑖𝑐{
𝐿𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑡𝑖𝑑] = 1;
𝑇2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑑𝑖𝑑] = 1; } → 𝑆𝐾𝐼𝑃

⎞⎠
◁𝑐ℎ𝑖𝑑 == −1▷⎛⎜⎜⎜⎜⎜⎝

𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑇𝑜𝑝𝑖𝑐𝐴𝑛𝑑𝐶ℎ𝑎𝑛{
𝐿𝑇𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑[𝑑𝑖𝑑] = 1;
𝐿𝐶ℎ𝑆𝑡𝑎𝑡𝑒𝑠𝑙𝑖𝑑,𝑡𝑖𝑑[𝑐ℎ𝑖𝑑] = 1;
𝑇2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑑𝑖𝑑] = 1;
𝑇𝐶2𝐷𝑙𝑖𝑑[𝑡𝑖𝑑][𝑐ℎ𝑖𝑑][𝑑𝑖𝑑] = 1; } →

𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑙𝑖𝑑();

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑() formalizes nsqlookupd’s responses to
queries from consumers and nsqd instances using Gen-
eral Choice. 𝑙𝑜𝑜𝑘𝑝𝑛𝑠𝑞𝑑(𝑙𝑖𝑑, 𝑡𝑖𝑑) provides all the stored
nsqd address information associated with a specific Topic
in nsqlookupd. Similarly, the 𝑙𝑜𝑜𝑘𝑢𝑝𝐶ℎ𝑎𝑛𝑛𝑒𝑙(𝑙𝑖𝑑, 𝑡𝑖𝑑)
returns Channels list under the specified Topic.

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑() =𝑑𝑓⎛⎜⎜⎝
𝐶𝑜𝑚𝐶𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑙𝑖𝑑.𝐿𝑂𝑂𝐾𝑈𝑃𝐷.𝑡𝑖𝑑 →
𝑙𝑜𝑜𝑘𝑢𝑝𝑛𝑠𝑞𝑑(𝑙𝑖𝑑, 𝑡𝑖𝑑);
𝐶𝑜𝑚𝐶𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑝.𝑙𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑡𝑖𝑑.𝑑𝑙𝑖𝑠𝑡 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
□⎛⎜⎜⎝

𝐶𝑜𝑚𝐷𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑞 .𝑑𝑖𝑑.𝑙𝑖𝑑.𝐿𝑂𝑂𝐾𝑈𝑃𝐶𝐻𝐴.𝑡𝑖𝑑 →
𝑙𝑜𝑜𝑘𝑢𝑝𝐶ℎ𝑎𝑛𝑛𝑒𝑙(𝑙𝑖𝑑, 𝑡𝑖𝑑);
𝐶𝑜𝑚𝐷𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑝.𝑙𝑖𝑑.𝑑𝑖𝑑.𝑅𝐸𝑃.𝑡𝑖𝑑.𝑐ℎ𝑙𝑖𝑠𝑡 →
𝑆𝐾𝐼𝑃

⎞⎟⎟⎠ ;

𝐿𝑜𝑜𝑘𝑢𝑝𝑙𝑖𝑑();

We also modeled the response of nsqlookupd to con-
nection errors. When nsqlookupd encounters connec-
tion timeouts with nsqd, it will receive 𝑂𝑈𝑇𝑇𝐼𝑀𝐸

signal through 𝐶𝑜𝑚𝐷𝐿𝑖 and then remove all informa-
tion associated with the corresponding nsqd from its
records. This process ensures that the information stored
on nsqlookupd remains consistently available.

3.6. Consumer
When a consumer is initiated, it queries nsqlookupd for
the addresses of nsqd instances associated with the target
Topics. Upon receiving the addresses, it subscribes to all
of these instances. Only after these can the consumer
activate processes for message retrieval and processing.

Therefore, the modeling of consumer is as follows:

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑,𝑡𝑖𝑑,𝑐ℎ𝑖𝑑() =𝑑𝑓

𝐶𝑜𝑛𝑛𝑇𝑜𝐿𝑜𝑜𝑘𝑢𝑝𝑑𝑠𝑐𝑖𝑑,𝑡𝑖𝑑();

(𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑() ||| 𝑅𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑()) ;

𝐶𝑜𝑛𝑛𝑇𝑜𝐿𝑜𝑜𝑘𝑢𝑝𝑑𝑠𝑐𝑖𝑑,𝑡𝑖𝑑() =𝑑𝑓

𝐿𝑂𝑂𝑃 (𝑙𝑖𝑑 : 0..𝐿𝐷) :

𝑆𝐾𝐼𝑃 ◁ 𝑎𝑑𝑑𝑟𝐿𝑜𝑜𝑘𝑢𝑝𝑑[𝑙𝑖𝑑] == 0▷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎𝑑𝑑𝐿𝐷{𝐶𝐿𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑙𝑖𝑑] = 1; } →
𝑐𝑜𝑢𝑛𝑡{𝑡𝑜𝑡𝑎𝑙𝐿𝐷 = 𝑐𝑜𝑢𝑛𝑡𝐿𝐷(𝑙𝑖𝑑, 𝑐𝑖𝑑); };⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐶𝑜𝑚𝐶𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .
𝑐𝑖𝑑.𝑙𝑖𝑑.𝐿𝑂𝑂𝐾𝑈𝑃𝐷.𝑡𝑖𝑑 →

𝐶𝑜𝑚𝐶𝐿𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.
𝑙𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑡𝑖𝑑.𝑑𝑙𝑖𝑠𝑡 →

𝐿𝑂𝑂𝑃 (𝑑𝑖𝑑 : 0..𝐷) :(︂
𝐶𝑜𝑛𝑛𝑇𝑜𝑁𝑠𝑞𝑑𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑()
◁𝑑𝑙𝑖𝑠𝑡[𝑑𝑖𝑑] == 1▷ 𝑆𝐾𝐼𝑃

)︂
;

⎞⎟⎟⎟⎟⎟⎟⎟⎠
◁𝑡𝑜𝑡𝑎𝑙𝐿𝐷 == 1▷ 𝑆𝐾𝐼𝑃

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

𝐶𝑜𝑛𝑛𝑇𝑜𝑁𝑠𝑞𝑑𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑() =𝑑𝑓

𝑆𝐾𝐼𝑃 ◁ 𝐶𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑑𝑖𝑑] == 1▷⎛⎜⎜⎝
𝐶𝑜𝑚𝐶𝐷𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝑆𝑈𝐵.𝑡𝑖𝑑.𝑐2𝑐ℎ[𝑐𝑖𝑑] →
𝐶𝑜𝑚𝐶𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.𝑅𝐸𝑃.𝑆𝑈𝐵.𝑂𝐾 →
𝑎𝑑𝑑𝑛𝑠𝑞𝑑{𝐶𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑑𝑖𝑑] = 1; } →
𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] = 1} → 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠ ;

The above formula models the process of a con-
sumer connecting to nsqdlookupds and nsqds. The
consumer sends a 𝑆𝑈𝐵 request to the nsqd through
𝐶𝑜𝑚𝐶𝐷𝑖 channel. It records connection information
in 𝐶𝐷𝑆𝑡𝑎𝑡𝑒𝑠𝑐𝑖𝑑[𝑑𝑖𝑑] and updates the 𝑅𝑑𝑦𝑐𝑖𝑑 value of
𝑛𝑠𝑞𝑑𝑖𝑑. In the formula, the value of 𝑅𝑑𝑦𝑐𝑖𝑑 is set to
1, indicating the consumer’s readiness to process one
message from 𝑛𝑠𝑞𝑑𝑖.

𝑟𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑() =𝑑𝑓

𝐶𝑜𝑚𝐶𝐷𝑖?𝑚𝑠𝑔𝑟𝑒𝑝.𝑑𝑖𝑑.𝑐𝑖𝑑.

𝑀𝑆𝐺.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑]−−; } →⎛⎜⎜⎜⎜⎜⎝

(︂
𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } →
𝑅𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑()

)︂
◁𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] == −1▷⎛⎝ 𝑀𝑠𝑔𝐶𝑂𝑁𝑗 !𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑑𝑖𝑑.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{

𝑚𝑠𝑔2𝑑𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = 𝑑𝑖𝑑; } →
𝑅𝑒𝑎𝑑𝐿𝑜𝑜𝑝𝑐𝑖𝑑,𝑑𝑖𝑑,𝑡𝑖𝑑()

⎞⎠

⎞⎟⎟⎟⎟⎟⎠ ;

78

After completing the subscription, the consumer main-
tains a TCP connection with nsqd to be ready to receive
messages. The diminishing of 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] value implies
a decrease in the amount of messages consumers can
handle. 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] keeps track of the mes-
sage attempts number. −1 signifies successful processing
and will release 𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑]. Otherwise, the message is
cached in the 𝑀𝑠𝑔𝐶𝑂𝑁𝑖 channel for further processing.

𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑() is the message-handling module of the
consumer process. In our experiment, we use nonde-
terministic to model the message-processing behavior.
We also model aborting re-queuing when the message
attempts exceed the maximum value. 𝑀𝑎𝑥𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠 de-
fines the maximum number of message attempts allowed
by the system.

𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑() =𝑑𝑓

𝑀𝑠𝑔𝐶𝑂𝑁𝑖?𝑚𝑠𝑔𝑑𝑎𝑡𝑎.𝑑𝑖𝑑.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑 →⎛⎝ 𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑞 .𝑐𝑖𝑑.𝑑𝑖𝑑.𝐹𝐼𝑁.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = −1; } →

𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } → 𝑆𝐾𝐼𝑃

⎞⎠
◁𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] > 𝑀𝑎𝑥𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠▷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑞 .

𝑐𝑖𝑑.𝑑𝑖𝑑.𝐹𝐼𝑁.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] = −1; } →

𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } → 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠
⊓⎛⎜⎜⎝

𝐶𝑜𝑚𝐶𝐷𝑗 !𝑚𝑠𝑔𝑟𝑒𝑞 .
𝑐𝑖𝑑.𝑑𝑖𝑑.𝑅𝐸𝑄.𝑡𝑖𝑑.𝑐ℎ𝑖𝑑.𝑚𝑠𝑔𝑖𝑑{

𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠𝑐𝑖𝑑[𝑚𝑠𝑔𝑖𝑑] + +; } →
𝑢𝑝𝑑𝑎𝑡𝑒𝑅𝐷𝑌 {𝑅𝑑𝑦𝑐𝑖𝑑[𝑑𝑖𝑑] + +; } → 𝑆𝐾𝐼𝑃

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝐻𝑎𝑛𝑑𝑙𝑒𝑟𝑐𝑖𝑑();

4. Verification
In this section, we use the model-checking tool PAT to
realize the formal model constructed in section III, and
verify its properties. At the same time, the results of
properties verification are also shown at the end.

4.1. Implementation
This part presents details of the modeling implementation
with the PAT tool, mainly concerning the definition of
constants, array variables and channels.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑃 2; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐶 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝐷 2; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐿𝐷 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑇 1; #𝑑𝑒𝑓𝑖𝑛𝑒 𝐶𝐻𝐴 2;

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑀𝑠𝑔𝑁𝑢𝑚 3;

We define constants as above to materialize the archi-
tecture of the NSQ system in Fig. 1. 𝑃 , 𝐷, 𝐿𝐷, and 𝐶
represent the number of producer, nsqd, nsqlookupd, and
consumer. 𝑇 and 𝐶𝐻𝐴 denote that each nsqd has one

Topic and associated two Channels. 𝑀𝑠𝑔𝑁𝑢𝑚 defines
the number of messages.

𝑣𝑎𝑟 𝑅𝑑𝑦[𝐶][𝐷] = [0, 0, 0, 0];

𝑣𝑎𝑟 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[𝐷][𝐶] = [0, 0, 0, 0];

𝑣𝑎𝑟 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[𝐿𝐷][𝐷] = [0, 0, 0, 0];

𝑣𝑎𝑟 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[𝐶][𝑀𝑠𝑔𝑁𝑢𝑚] = [0, 0, 0, 0, 0, 0];

In addition, We define some arrays to store system
information, which assists us in confirming the status of
processes. 𝑅𝑑𝑦[𝐶][𝐷] is used to record the number of
messages the consumer can process. 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[𝐷][𝐶]
marks whether the nsqd is in the state of pushing mes-
sages to the consumer. 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[𝐿𝐷][𝐷] logs informa-
tion about registered instances of nsqd on nsqlookupd.
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[𝐶][𝑀𝑠𝑔𝑁𝑢𝑚] tracks the status of messages
processed on the consumer.

Furthermore, we have implemented the relevant chan-
nels in PAT based on the definitions provided earlier. We
use multidimensional arrays to store channels between
different entities is to avoid resource contention.

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜𝑚𝑃𝐷[𝑃][𝐷] 0;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝐶𝑜𝑚𝐶𝐷[𝐶][𝐷] 0;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑀𝑠𝑔𝑇𝑃𝐶[𝐷][𝑇] 𝑀𝑠𝑔𝑁𝑢𝑚;

𝑐ℎ𝑎𝑛𝑛𝑒𝑙 𝑀𝑠𝑔𝐶𝐻𝐴[𝐷][𝑇][𝐶𝐻𝐴]𝑀𝑠𝑔𝑁𝑢𝑚;

The channel definitions can be categorized into two
types: 𝐶𝑂𝑀_𝑃𝐴𝑇𝐻 are used for inter-component
communication, where the channel size is set to 0
to achieve process synchronization. Cache channels
𝑀𝑆𝐺_𝑃𝐴𝑇𝐻 are used within components, where the
channel size is set to 𝑀𝑠𝑔𝑁𝑢𝑚. These channels are uti-
lized for process synchronization and message buffering.

Given that the NSQ message system operates with mul-
tiple producers, nsqds, nsqlookupds, and consumers, we
employ a combination of interleaving and loop functions
to realize the system’s implementation. The comprehen-
sive definition of the NSQ system is presented as follows.
|||𝑖 : {0..𝑁}@𝑃 (𝑖); statement means that multiple pro-
cesses 𝑃 (𝑖) run interspersed in the PAT.

𝑆𝑦𝑠𝑡𝑒𝑚() =

|||𝑝𝑖𝑑 : {0..𝑃 − 1}; 𝑑𝑖𝑑 : {0..𝐷 − 1}; 𝑙𝑑𝑖𝑑 : {0..𝐿𝐷 − 1};
𝑐𝑖𝑑 : {0..𝐶 − 1}; 𝑡𝑖𝑑 : {0..𝑇 − 1}; 𝑐ℎ𝑖𝑑 : {0..𝐶𝐻𝐴− 1}

@
(︂

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟(𝑝𝑖𝑑, 𝑡𝑖𝑑) ‖ 𝑛𝑠𝑞𝑑(𝑑𝑖𝑑) ‖
𝑛𝑠𝑞𝑙𝑜𝑜𝑘𝑢𝑝𝑑(𝑙𝑖𝑑) ‖ 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟(𝑐𝑖𝑑, 𝑡𝑖𝑑, 𝑐ℎ𝑖𝑑)

)︂

4.2. Properties Verification
In this section, we verify the properties of the constructed
model with the model checker PAT. These properties
present the flexibility and robustness of NSQ distributed
messaging platform.

79

4.2.1. Divergence Freedom

In NSQ system, if messages can always flow and be han-
dled in the correct way as they should, avoiding invalid
or infinite loops, then we think the system is divergence
free. It is crucial for message systems because the correct-
ness and stability of the system depends on the correct
handling and delivery of messages.

PAT provides the primitive to verify the divergence
freedom of the system:

#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑓𝑟𝑒𝑒;

4.2.2. Reachability

Data reachability is the basic property of message queue.
NSQ ensures at least one delivery of a message using the
𝐹𝐼𝑁 and 𝑅𝐸𝑄, but it does not guarantee data order. In
our experiment, we track the attempts of messages with
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[𝐶][𝑀𝑠𝑔𝑁𝑢𝑚], where the value of −1 indi-
cates the message is finished. Therefor, the definitions of
reachability and assertions are as follows:

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦{
𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[0][0] == −1 && 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[1][0] == −1

&& 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[0][1] == −1 && 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[1][1] == −1

&& 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[0][2] == −1 && 𝐴𝑡𝑡𝑒𝑚𝑝𝑡𝑠[1][2] == −1};
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() |=<> 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

As the model we constructed has two consumers sub-
scribing to different Channels under the same Topic, each
consumer will receive a copy of all messages sent by pro-
ducers and finish them all eventually. Symbol <> means
that the system can finally reach 𝑅𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦 state.

4.2.3. Scalability

The NSQ system realizes a distributed decentralized ar-
chitecture with nsqlookupd, which shows scalability.
nsqlookupd manages the topological information of the
system and allows nsqd instances to be added for horizon-
tal scaling. In our experiments, the 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[𝐿𝐷][𝐷]
is initially set to 0, denoting that no nsqd instances are
available. When the value changes to 1, it indicates that
nsqd instances were dynamically added, demonstrating
the system’s scalability.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦{
𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][0] == 1 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][1] == 1

&& 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][0] == 1 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][1] == 1};
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() |=<> 𝑆𝑐𝑎𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

4.2.4. Availability

nsqlookupd serves as a distributed directory service that
supports fault tolerance and redundancy. It maintains

information about the available components of the sys-
tem forever, and when instances of nsqd are abnormal, it
deletes all information about the corresponding instances.
We defined a new system to verify the high availability
of NSQ. An 𝑂𝑈𝑇𝑇𝐼𝑀𝐸 event of 𝑛𝑠𝑞𝑑0 is added to the
original system, which will be triggered when all mes-
sages are finished.

𝑆𝑦𝑠𝑡𝑒𝑚2() = 𝑆𝑦𝑠𝑡𝑒𝑚()|||⎛⎜⎜⎝
|||𝑙𝑖𝑑 : {0..𝐿𝐷 − 1}

@

⎛⎝ [𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑖𝑙𝑖𝑡𝑦]
𝐶𝑜𝑚𝐷𝐿𝑖!𝑚𝑠𝑔𝑟𝑒𝑞 .0.𝑙𝑖𝑑.
𝐸𝑅𝑅𝑂𝑅.𝑂𝑈𝑇𝑇𝐼𝑀𝐸 → 𝑆𝐾𝐼𝑃 ;

⎞⎠
⎞⎟⎟⎠

The above formula describes the new system, and we
verify in the PAT whether nsqlookupd maintains the list
of available nsqd. The definition and assertion are as
follows:

#𝑑𝑒𝑓𝑖𝑛𝑒 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦{
𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][0] == 0 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[0][1] == 1

&& 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][0] == 0 && 𝐿𝐷𝑆𝑡𝑎𝑡𝑒𝑠[1][1] == 1};
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚2() |=<> 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦;

4.2.5. Flow Controllability

NSQ can dynamically adjust messages’ processing rate
by changing the consumer’s RDY value. To verify this
property, we need to demonstrate that nsqd can push
messages only if the consumer’s 𝑅𝐷𝑌 is greater than
0. Therefore, we introduce the 𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[𝐷][𝐶] array
to store nsqds’ status, which indicate whether 𝑛𝑠𝑞𝑑𝑑𝑖𝑑
is pushing data to 𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑟𝑐𝑖𝑑. Combined with the
𝑅𝑑𝑦[𝐶][𝐷] array, we give the following definition and
assertion.

#𝑑𝑒𝑓𝑖𝑛𝑒 𝑅𝑒𝑎𝑑𝑦00 {𝑅𝑑𝑦[0][0] > 0};
#𝑑𝑒𝑓𝑖𝑛𝑒 𝑅𝑒𝑎𝑑𝑦 · · ·
#𝑑𝑒𝑓𝑖𝑛𝑒 𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝00 {𝑝𝑢𝑠ℎ𝑆𝑡𝑎𝑡𝑒𝑠[0][0] = 0};
#𝑑𝑒𝑓𝑖𝑛𝑒 𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝 · · ·
#𝑎𝑠𝑠𝑒𝑟𝑡 𝑆𝑦𝑠𝑡𝑒𝑚() |=

(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝00U𝑅𝑒𝑎𝑑𝑦00)

&&(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝01U𝑅𝑒𝑎𝑑𝑦01)

&&(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝10U𝑅𝑒𝑎𝑑𝑦10)

&&(𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝11U𝑅𝑒𝑎𝑑𝑦11);

Our model has four message subscription connections
as show in Fig.2. 𝑝𝑢𝑠ℎ𝑆𝑡𝑜𝑝00 defines the state when
𝑛𝑠𝑞𝑑0 stops pushing messages to the 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟0, and
𝑅𝑒𝑎𝑑𝑦00 defines the state in which the 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟0 is
ready to receive messages from 𝑛𝑠𝑞𝑑0. The rest of defini-
tions are similar. We use the Untill(U) syntax from Linear
Timing Logic (LTL) to describe the event that the nsqd
stops pushing messages until the Rdy of the corresponding
consumer is larger than zero. This formula verifies if the
system can realize flow control.

80

Figure 3: Verification Results of the NSQ System

4.3. Verification and Results
Depending on the definitions and assertions provided
above, we use model checker PAT to verify five proper-
ties of the NSQ system, including Divergence Freedom,
Reachability, Scalability, Availability, and Flow Control-
lability. The model checker PAT verifies properties by
searching for counterexamples in the system’s state space
or reaching the limits of state exploration.

We present a summary of the verification statistics
in Fig. 3, including Visited States, Total Transitions, Time
Used, and Estimated Memory Used.

The verification results of all five properties indicate
that the NSQ message queue satisfies all the above prop-
erties, proving that the system has high flexibility and
robustness while providing credible delivery of messages.

5. Conclusion and Future Work

In this paper, we focus on the core functionalities of the
NSQ message platform, including message publishing,
registration, subscription, and querying. With CSP, we
formalized critical components of the NSQ architecture,
such as producers, consumers, nsqd, and nsqlookupd.
Using the model checker PAT, we conducted a rigorous
analysis of the constructed NSQ model, verifying five fun-
damental properties: Divergence Freedom, Reachability,
Scalability, Availability, and Flow Controllability. These
properties underscore NSQ’s capacity to handle real-time
distributed message delivery at scale, confirming its high
flexibility and robustness while ensuring dependable mes-
sage transmission.

Nonetheless, besides the robustness of message queues,
the security of data is extremely important for users. In
the future, we will continue to enhance the formalized
modeling and verification of NSQ by refining workflows.
We will also delving into the system’s security aspects to
advance our research outcomes continually.

References
[1] Bernstein, P. A. (1996). Middleware: a model for

distributed system services. Communications of the
ACM, 39(2), 86-98.

[2] Snyder, B., Bosnanac, D., & Davies, R. (2011). Ac-
tiveMQ in action (Vol. 47). Greenwich Conn.: Man-
ning.

[3] Rostanski, M., Grochla, K., & Seman, A. (2014,
September). Evaluation of highly available and fault-
tolerant middleware clustered architectures using
RabbitMQ. In 2014 federated conference on computer
science and information systems (pp. 879-884). IEEE.

[4] Wang, G., Koshy, J., Subramanian, S., Paramasivam,
K., Zadeh, M., Narkhede, N., ... & Stein, J. (2015). Build-
ing a replicated logging system with Apache Kafka.
Proceedings of the VLDB Endowment, 8(12), 1654-
1655.

[5] Yue, M., Ruiyang, Y., Jianwei, S., & Kaifeng, Y. (2017,
October). A MQTT protocol message push server
based on RocketMQ. In 2017 10th International Con-
ference on Intelligent Computation Technology and
Automation (ICICTA) (pp. 295-298). IEEE.

[6] NSQ: A realtime distributed messaging platform,
https://nsq.io/

[7] Lai, X., Wang, H., Zhao, J., Zhang, F., Zhao, C.,
& Wu, G. (2020, May). HBase Connection Dynamic
Keeping Method Based on Reactor Pattern. In Jour-
nal of Physics: Conference Series (Vol. 1544, No. 1, p.
012122). IOP Publishing.

[8] Raje, S. N. (2019). Performance Comparison of Mes-
sage Queue Methods (Doctoral dissertation, Univer-
sity of Nevada, Las Vegas).

[9] Togashi, N., & Klyuev, V. (2014, April). Concurrency
in Go and Java: performance analysis. In 2014 4th
IEEE international conference on information science
and technology (pp. 213-216). IEEE.

[10] Brookes, S. D., Hoare, C. A. R, & Roscoe, A. W.
(1984). A theory of communicating sequential pro-
cesses. Journal of the ACM (JACM), 31(3), 560-599.

[11] Hoare, C. A. R. (1985). Communicating sequential
processes (Vol. 178). Englewood Cliffs: Prentice-hall.

[12] PAT: Process Analysis Toolkit. An Model Checker
and Refinement Checker for Concurrent and Real-
time System. https://pat.comp.nus.edu.sg/

[13] Xiao, L., Zhu, H., Xu, Q., & Vinh, P. C. (2022). Mod-
eling and verifying pso memory model using CSP.
Mobile Networks and Applications, 27(5), 2068-2083.

[14] Xu, J., Yin, J., Zhu, H., & Xiao, L. (2023). Formaliza-
tion and verification of Kafka messaging mechanism
using CSP. Computer Science and Information Sys-
tems, 20(1), 277-306.

81

	1 Introduction
	2 BACKGROUND
	2.1 NSQ - New Simple Queue
	2.1.1 Message Multi-cast
	2.1.2 Message Consumption

	2.2 CSP

	3 MODELING
	3.1 Sets, Messages and Channels
	3.2 Overall Modeling
	3.3 Producer
	3.4 nsqd
	3.5 nsqlookupd
	3.6 Consumer

	4 VERIFICATION
	4.1 Implementation
	4.2 Properties Verification
	4.2.1 Divergence Freedom
	4.2.2 Reachability
	4.2.3 Scalability
	4.2.4 Availability
	4.2.5 Flow Controllability

	4.3 Verification and Results

	5 CONCLUSION AND FUTURE WORK

