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Abstract
We investigate embedding a broad class of deduction systems in satisfiability solvers such as Z3. One

such deduction system is the connection calculus. Using Z3’s support for user-propagation, proofs in

a user-specified calculus can be found automatically via Z3’s internal satisfiability procedures. The

approach places few constraints on the deduction system, yet allows for domain-specific optimisations if

known. We discuss ramifications for proof search in the connection calculus.
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1. Introduction

Satisfiability Modulo Theories (SMT) is the problem of finding models for formulas over a

predetermined set of first-order theories, such as integer/real arithmetic, arrays, and strings.

SMT solvers are nearly always implemented by combining propositional reasoning with (mostly-

separate) theory-specific decision procedures [1]. Adding support for a new theory in an existing

SMT solver is not easy for end-users: the new theory could be axiomatised in the solver’s input,

but this typically requires universal quantification [2, 3] and is unlikely to be as efficient as a

built-in theory reasoning engine. Alternatively, the solver could be modified directly to support

the desired theory, but this demands significant, solver-specific knowledge from the user and

incurs a maintenance overhead.

User-propagation [4, 5] is a recent development in satisfiability solving that avoids direct

solver modification while maintaining efficient reasoning. End-users supply a propagator as a

loadable module which interacts with the solver in response to solver actions. With the benefit

of user-propagation, adding reasoning in new classical logics is usually straightforward, but

non-classical logics are harder to support directly as they require a complete redesign of the

SMT solver’s internals, or inventing sophisticated embeddings to incorporate the intended

non-classical semantics [6, 7].

AReCCa 2023: Automated Reasoning with Connection Calculi, 18 September 2023, Prague, Czech Republic
∗Corresponding author.

$ clemens.eisenhofer@tuwien.ac.at (C. Eisenhofer); laura.kovacs@tuwien.ac.at (L. Kovács); michael@rawsons.uk

(M. Rawson)

� 0000-0003-0339-1580 (C. Eisenhofer); 0000-0002-8299-2714 (L. Kovács); 0000-0001-7834-1567 (M. Rawson)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

AReCCa 2023 54 CEUR-WS.org

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:clemens.eisenhofer@tuwien.ac.at
mailto:laura.kovacs@tuwien.ac.at
mailto:michael@rawsons.uk
https://orcid.org/0000-0003-0339-1580
https://orcid.org/0000-0002-8299-2714
https://orcid.org/0000-0001-7834-1567
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
http://leancop.de/AReCCa-2023/
http://CEUR-WS.org/


Contributions. In contrast to model-based approaches that depend heavily on the semantics

of a specific logic [8, 9, 10, 6, 11], in this paper we suggest a completely syntactic approach to

proof, implemented via user-propagation. We search for derivations in a calculus for some logic

by reasoning over the space of all possible derivations. In other words, we advocate theorem

proving in arbitrary calculi via SMT solving. One such supported calculus, which is the focus

of our paper, is the connection calculus. Our approach, while unusual, brings the following

advantages in general and to connection calculus in particular:

1. The implementation burdenwith respect to SMT is significantly reduced, as the considered

meta-logic is classical in nature: either some postulate is provable or not.

2. With very few restrictions, a large number of calculi can be supported in a relatively

uniform manner.

3. Meta-logical properties, such as monotonicity or permutation of assumptions, can be

generically handled and exploited during proving in order to improve efficiency.

4. Even logics with no known semantics can be supported. Moreover, logics for which

decision procedures are not known (or are too complex) can be embedded.

5. Built-in theories can be supported within even non-classical logics, as long as theories

may behave classically.

6. Ordinary propositional SAT proofs generated by SMT solvers can be replaced by a wide

variety of proofs we can represent within our system.

7. In some calculi, we can even extract explicit counterexamples if no proof exists.

2. Preliminaries

We assume a given calculus has a finite number of rules. Each rule makes exactly one conclusion

from a finite set of premises. For any given conclusion, there is a known finite, but possibly

empty set of applicable rules that form the conclusion from their premises. A derivation of a

certain conclusion is a rooted tree such as shown below:

A B
C

D E F
G

H I
R

where the root R concludes the theorem and leaves are axioms. Recall that axioms are rules

with no premises. Deductions like the above include a variety of calculi, including (but not

limited to) sequent calculi [12] such as that in Figure 1, the connection calculus [13] in Figure 2,

or other deduction systems such as Hindley-Milner type inference [14].

2.1. Restrictions on Calculi

While the aforementioned deduction formalism is extremely general, we do have some require-

ments in order to support a calculus. We expect derivations to be as shown above: in particular,

there must be a finite branching factor, both in the number of applicable rules and in the number

of premises to rules. Infinite branching in a calculus can often be avoided by various kinds of

indirection.
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AX -1 : F1 ⊢ F1 AX -2 : ⊥ ⊢ AX -3 : ⊢ ⊤

¬-left : Γ1 ⊢ A; ∆1

¬A; Γ1 ⊢ ∆1

¬-right : A; Γ1 ⊢ ∆1

Γ1 ⊢ ¬A; ∆1

∧-left : F1;F2; Γ1 ⊢ ∆1

F1 ∧ F2; Γ1 ⊢ ∆1

∧-right : Γ1 ⊢ F1; ∆1 Γ1 ⊢ F2; ∆1

Γ1 ⊢ F1 ∧ F2; ∆1

∨-left : F1; Γ1 ⊢ ∆1 F2; Γ1 ⊢ ∆1

F1 ∨ F2; Γ1 ⊢ ∆1

∨-right : Γ1 ⊢ F1;F2; ∆1

Γ1 ⊢ F1 ∨ F2; ∆1

Perm-left : Γ1;F2; Γ2;F1; Γ3 ⊢ ∆1

Γ1;F1; Γ2;F2; Γ3 ⊢ ∆1

Perm-right : Γ1 ⊢ ∆1;F2; ∆2;F1; ∆3

Γ1 ⊢ ∆1;F1; ∆2;F2; ∆3

Weak -left : Γ1; Γ2 ⊢ ∆1

Γ1;F1; Γ2 ⊢ ∆1

Weak -right : Γ1 ⊢ ∆1; ∆2

Γ1 ⊢ ∆1;F1; ∆2

Figure 1: Some propositional rules of the sequent calculus system LK [12]. Here, F1, F2 are for-
mulas, whereas Γ1,Γ2,Γ3,∆1,∆2,∆3 denote possibly-empty sequences of formulas. Γ1; . . . ; Γm ⊢
∆1; . . . ; ∆n can be understood as “at least one ∆ can be derived from all the Γs”.

Our approach proceeds “upwards” from a goal via backwards chaining. Therefore, for

any given conclusion, it must be possible to compute the set of applicable rules from the

conclusion alone. Furthermore, each conclusion in the calculus is considered independently:

note that this differs from systems like analytic tableaux [15] or the usual presentation of natural

deduction [12], where context matters. Identical subgoals occurring at different locations in

proof search can be assumed to have the same proof.

While soundness and completeness of a considered calculus is beneficial, neither property is

essential: a satisfiable result may not be valid if the calculus is unsound, whereas an unsatisfiable

result might not hold if the calculus is incomplete (as discussed later).

2.2. User-Propagation and a Theory of Goals

User-propagation as implemented in Z3 allows asserting additional constraints to the solver in

response to solver decisions [4]. Justifications for the additional constraints are important such

that the solver can detect where to backjump to when conflicts arise. As an example, if our

theory contains a symmetric relationR and the solver decidesR(s, t), we can propagateR(t, s),
justified by R(s, t), which we write R(s, t) ⊩ R(t, s). We use this mechanism to implement

our SMT solving approach via user-propagation.

Our theory consists of a “goal” sort and a provability predicateℱ . Wewriteℱ(G) to mean that

“G has a proof”, ℱ(C,G) for “G has a proof with immediate consequence C”, and ℱ(d, C,G)
for “G has a proof of depth at most d with immediate consequence C”. Visually, ℱ(d, C,G)
represents the following piece of information:
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Axiom

{};M ;Path

Start

C;M ; {}

ǫ;M ; ǫ

Reduction

C;M ;Path ∪ {¬L}

C ∪ {L};M ;Path ∪ {¬L}

Extension

C ′ \ {¬L};M ;Path ∪ {L} C;M ;Path

C ∪ {L};M ;Path

Figure 2: Propositional connection calculus as a deduction system, adapted from [16]. Here, C,C ′ are
clauses in M and L is a literal. The matrixM is valid if there is a derivation for ǫ;M ; ǫ.

{};M ; {¬B,¬A} {};M ; {¬B}

{¬A};M ; {¬B} {};M ; {}

{¬B};M ; {}

ǫ;M ; ǫ

Figure 3: Connection proof forM := {A,¬A ∨B,¬B}.

. . .

. . . [≤ d] . . . [≤ d]

G . . .
C
. . .

3. Theorem Proving in Arbitrary Calculi via SMT Solving

We now describe our approach for syntactic theorem proving, in particular in the connection

calculus, via user-propagation in SMT solving. While our approach can be applied to any SMT

engine and deduction system, we discuss our work in the context of the Z3 SMT solver [17]

and the sequent calculus LK .

We begin by asserting that the goal is provable, and then propagate applicable rules for

this goal resulting in new expressions stating that some subgoals are provable. Exploiting the

internal satisfiability procedure of Z3, we already have a kind of idiosyncratic proof search, as

follows.

Example 1 (Proof Search by Propagating Applicable Rules)

Suppose we use system LK from Figure 1 and Z3 assigns ℱ(A;B ∨ C ⊢ A) to true. We can then

apply weakening on both the left and right sides of the sequent, permutation on the left, or the

∨-left rule, and therefore propagate

ℱ(A;B ∨ C ⊢ A) ⊩ ℱ(B ∨ C ⊢ A) ∨

ℱ(A ⊢ A) ∨

ℱ(A;B ∨ C ⊢) ∨

ℱ(B ∨ C;A ⊢ A) ∨
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(ℱ(A;B ⊢ A) ∧ ℱ(A;C ⊢ A))

We leave it up to the solver to handle backtracking search, but clearly the second disjunct leads to a

proof. Once Z3 assigns ℱ(A ⊢ A) to true, we can apply weakening or the axiom rule:

ℱ(A ⊢ A) ⊩ ℱ(⊢ A) ∨

ℱ(A ⊢) ∨

⊤

The last disjunct represents the lack of premises of the axiom rule, and therefore the whole prop-

agation is a tautology. If the goal was A;B ∨ C ⊢ A, then Z3 can report a model satisfying

ℱ(A;B ∨ C ⊢ A) ∧ ℱ(A ⊢ A), from which we can extract a proof in LK .

Example 2 (Connection-Driven Proof Search)

Similarly, we can simulate the connection calculus. Consider Figure 3. We start with ℱ(ε;M ; ε)
and propagate all possible choices for the start clause

ℱ(ε;M ; ε) ⊩ ℱ({A};M ; ε) ∨

ℱ({¬A,B};M ; ε) ∨

ℱ({¬B};M ; ε).

Supposing the solver decides to assign ℱ({¬B};M ; ε) to true, we can proceed by propagating

ℱ({¬B};M ; ε) ⊩ (ℱ({¬A};M ; {¬B}) ∧ ℱ({};M ; {})).

Note that adding a connection to ¬A ∨B is the only feasible step. As with LK , we consider local

goals like {¬A,B};M ; ε atomically and implement them as constants of our “goal” sort.

3.1. Preventing Cyclic Proofs

Unfortunately, the intuitive encoding from Example 1 is unsound for some calculi, as it permits

cyclic derivations.

Example 3 (Cyclic Proofs)

Suppose we use the system LK from Figure 1 with the goal A;B ⊢, which is not provable in LK .

From ℱ(A;B ⊢), we propagate a disjunction containing ℱ(B;A ⊢), and then propagate another

disjunction containing ℱ(A;B ⊢) once again. However, Z3 has already assigned ℱ(A;B ⊢) true
and hence reports a model, having discovered a cyclic “proof”.

To avoid soundness issues due to cyclic derivations, we must perform a cyclicity check. We

introduce the binary form of ℱ , as it allows us to maintain during reasoning the transitive,

asymmetric relation “G has a proof containing an ancestor A”. More precisely, we consider the

relation graph of the binary relation induced by the propositional variables ℱ(C,G). In case

of a cycle, we eliminate it by propagating a conflict with respect to all propositional variables

involved in the cycle.
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Example 4 (Preventing a Cyclic Proof)

Considering Example 3, the chain of propagated atoms includes ℱ(A;B ⊢, B;A ⊢) and subse-
quentlyℱ(B;A ⊢, A;B ⊢). However, we detect a cycle and prevent the cyclic “proof”, backtracking
from this branch and attempting another. Since the goal is not a theorem in LK and the search

space is finite, eventually the solver will indicate unsatisfiability.

3.2. Infinite Search Spaces

Many useful calculi have large, redundant, but ultimately finite search spaces. Here the procedure

sketched for the propositional system LK is already complete. However, in the case of infinite

search spaces a wrong decision will cause the solver to get lost in barren space, from which it

may never return. Avoiding such scenarios is a challenging task.

Iterative deepening, as used in connection systems [18], may be employed here: we use

the ternary form of ℱ to determine that there are no proofs of a certain size before trying

larger sizes, perhaps re-using this information elsewhere as in failure caching [19]. Another

option disables Z3’s support for relevancy propagation [20] and, assuming all atoms to be

true by default, explores all branches simultaneously and fairly. It may also be possible to use

complementary calculi to disprove a certain goal, causing a partial “restart” — see Section 4.5.

As well as merely infinite search spaces, there is a special case in which the search space has

an infinite chain where only one rule is applicable, a well-known problem in tree search [21].

In this case, even unit propagation in the solver will never terminate. In practice, this happens

relatively rarely, but solutions for infinite search spaces should take this into account.

4. Logic-Specific Optimization

While we envision our approach to be widely applicable without special-purpose modifications,

there are some recurring themes among many calculi. In the sequel, we discuss our “box of

tricks” to be applied whenever their prerequisite properties are met by the calculus.

4.1. Improving the Calculus

In some cases, the proof calculus is extremely ill-suited to automation. While the system LK as

described initially by Gentzen [12] is not adequate for efficient, machine-supported theorem

proving, a few well-known tweaks to the calculus can result in significantly better performance.

Eliminating structural rules, treating each side of the sequent as a set, and strengthening the

axiom rules to be applicable regardless of extraneous formulae on either side helps enormously.

We also adapt our reasoning engine to reuse “goal” variables for elements that should be

equivalent, such as ℱ(A;A;B ⊢ ⊥) = ℱ(B;A ⊢ ⊥).

4.2. Acyclic Calculi

Notwithstanding the discussion in Section 3.1, some calculi either explicitly allow cyclic proofs,

or more often cannot generate cycles by virtue of their rules. In either case, we can forgo the

cycle-checking. For example, the system LK with incorporated structural optimizations as
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described in Section 4.1 has this property and hence does not require tracking the ancestry of

a derivation. The presented connection calculus also has this property, by a short inductive

argument.

4.3. Monotonicity

Sequent calculi very often have the monotonicity meta-logical property: that is, if A ⊢ C then

A,B ⊢ C,D. This can be exploited to improve performance. Consider the solver already

assigned ℱ(A ⊢ C) to true whereas ℱ(A;B ⊢ C;D) is assigned to false. By monotonicity, we

already have a conflict, but the solver will not detect this on its own without lengthy search.

We can also propagate monotonicity information. If we have ℱ(Γ ⊢ ∆), we propagate all

ℱ(Γ′ ⊢ ∆′) such that Γ ⊆ Γ′ and ∆ ⊆ ∆′. Naturally, we only propagate monotonicity

information in case the respective atoms are already present in the search space, otherwise

there would be infinitely many propagations.

An important special case is monotonicity with respect to the number of steps, which

resembles failure caching. In case ℱ(i, C,G) is true, we can also propagate ℱ(j, C,G) if j > i.

4.4. Ordering

Another common problem in theorem proving is that there might be several (similar) ways

to reach exactly the same proving state. Proof search can become highly symmetrical. To

break this symmetry, we can order rule applications, cf. ordered resolution [22] or matings

pruning [23].

Example 5 (Symmetric Rule Applications)

Consider the sequent A1 ∧ B1, . . . , An ∧ Bn ⊢ ⊥. There are n! possible derivations using the

∧-right rule, each failing in the same sequent A1, . . . , An, B1, . . . , Bn ⊢ ⊥. Nonetheless, the

solver will fail to detect this symmetry, causing the solver to inspect all possible orderings.

In some cases, we may be able to prevent such unnecessary blow-ups by establishing a partial

order on the rules applied by a variety of methods from theorem proving. The connection

calculus, for instance, has complete “don’t-care non-determinism” with respect to which open

goal is selected for the next connection, although of course it may be beneficial to choose one

or another [24, 25]. The partial order should be as total as possible, but reachability must be

preserved.

4.5. Complementary Calculi

Some logics have a useful complementary calculus that allows disproving statements in the logic.

This duality allows a possible optimisation for logics with a complementary calculus. It may

be possible to disprove a statement quickly, but exhausting all possible proofs is considerably

harder or even impossible; equally, a statement may be proved quickly but disproving it can be

difficult. Therefore, we can explore both the positive and the complementary calculi in a single

proof attempt, exchanging information between the two.
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4.6. Global Constraints

Note that the connection calculus from Figure 2 is the propositional version, rather than the

arguably more interesting first-order variant. This is because the first-order variant requires

that a global substitution satisfies a number of side conditions imposed by the application of

rules (unification). Therefore, the first-order version of Figure 2 does not have independent

goals in the manner that we require, as solving one subgoal in a certain way may prevent the

solution of another. This property necessitates considerable backtracking or communication in

connection and other free-variable systems [26, 27].

Such difficulties could be remedied by “rephrasing” the calculus once more, perhaps carrying

around an explicit substitution in the manner of Algorithm W [28] and requiring a single,

compound premise for the extension rule as a result. Now we can handle the calculus once

more, but there would be no shared sub-goals for Z3 to exploit. For example, variants of

splitting [13, 29] could provide us efficient remedies.

However, SMT solvers have no problem maintaining a set of global constraints and back-

tracking over decisions that affect them — it is arguably what they do best, in fact. Having rules

propagate equations, such as t1 = t′
1
, . . . , tn = t′

n
when unifying two literals L(t1, . . . , tn) and

¬L(t′
1
, . . . , t′

n
) is a convenient way out. An algebraic datatype [30] over the signature provides

the required semantics, with suitably-fresh uninterpreted constants representing rigid variables.

5. Conclusions

We advocate theorem proving in arbitrary calculi, in particular in connection calculus, by SMT

solving via user-propagators. Our work is inspired by the application of user-propagators to

simulate analytic tableaux in SMT solving [31]. However, we do not build a model by applying

rules to get assignments to subformulas, but consider rules themselves as the relevant objects in

the model to construct derivations. This makes our approach more generic, although we cannot

usually generate explicit models from successful SMT solving runs.

The cyclicity check proposed in our work is vaguely related to the foundedness check in

answer set programming [32], where atoms are required not to be only justified by cycles in a set

of implications [10]. A different encoding of the first-order connection calculus as a satisfiability

problem was implemented in ChewTPTP [33].

Techniques from satisfiability solving such as conflict-driven clause learning or local search

may have a clear interpretation at the calculus level. This may provide inspiration for new

search routines in a particular calculus.
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