
Connect++: A New Automated Theorem Prover Based

on the Connection Calculus

Sean B. Holden1

1University of Cambridge, Department of Computer Science and Technology, The Computer Laboratory, William Gates

Building, 15 JJ Thomson Avenue, Cambridge CB3 0FD, UK.

Abstract
Connect++ is an automated theorem prover for first-order logic with equality, based on the clausal

connection calculus and designed with three primary goals. The first was to produce a carefully coded

system in a compiled language (C++). The second was to allow the system to support my own research

agenda involving the addition of machine learning to connection provers. The third, somewhat inspired

by the success of the MiniSAT solver for Boolean satisfiability, was to provide an implementation

sufficiently modifiable as to provide a common basis for experiments by others. In addition to these aims

I wanted to exploit the opportunities inherent in the connection calculus to explore the production of

readable and certified proofs. This paper describes the system as it stands; development is ongoing and

some plans for the future are also outlined.

Keywords
Connection Prover, C++, Machine Learning, Certified Proof, Automated Theorem Prover, System de-

scription, First-Order Logic, Clausal Connection Calculus

1. Introduction

Connect++ is a prover for first-order logic, implemented in C++ and based on clausal connection

calculus. The advantages of connection provers, with respect to their goal-oriented search and

ability to produce readable proofs, are well-known, and have led to great interest in their use

for applying machine learning (ML) to automated theorem proving (ATP). This paper introduces

Connect++, and gives a high-level description of the system; it also motivates its development.

The paper falls a little outside the usual form of discourse for such papers, combining three

related perspectives. First, it is a ‘system description’. Second, it argues for design decisions

based on practical experience in conducting large-scale experiments; a pursuit often mandating

use of preferred technologies for these two, often disparate research areas. Third, it presents

motivations underlying the system’s design decisions, based purely on accommodating the

author’s ongoing interest in applying ML in the field of ATP.

Connect++ is open source under the GNU General Public License (GPL) Version 3, and can

be downloaded from www.cl.cam.ac.uk/~sbh11/connect++.html. The work in this paper is

based on the current development version.

AReCCa 2023: Automated Reasoning with Connection Calculi, 18 September 2023, Prague, Czech Republic

$ sbh11@cl.cam.ac.uk (S. B. Holden)

� https://www.cl.cam.ac.uk/~sbh11 (S. B. Holden)

� 0000-0001-7979-1148 (S. B. Holden)
© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR

Workshop
Proceedings

http://ceur-ws.org

ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

AReCCa 2023 95 CEUR-WS.org

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://www.cl.cam.ac.uk/~sbh11/connect++.html
mailto:sbh11@cl.cam.ac.uk
https://www.cl.cam.ac.uk/~sbh11
https://orcid.org/0000-0001-7979-1148
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org
http://leancop.de/AReCCa-2023/
http://CEUR-WS.org/

One motivation for Connect++ arose while writing a review of ML applied to satisfiability

(SAT) solvers [1]. It was apparent that there are many SAT solvers, but an enabler of research

over the last two decades wasMiniSAT [2], which had a transformative effect. MiniSAT was

fast enough to be competitive,1 while being sufficiently easy to modify that it provided a tool

for other researchers. Much of the research leading to today’s best solvers relied onMiniSAT.

One aim of Connect++ is to provide a similar basis for experiments with connection provers.

(And this is true regardless of any ML.)

At present, several connection calculus provers are available, implemented in Prolog [5, 6],

C [7], OCaml [8, 9], Rust [10], Python [11] and C++ [12]. This has led to a difficulty which

in the SAT world MiniSAT helped to defray: if two researchers conduct experiments using

different solvers, how do we decouple the effect of any proposed technical contribution from the

characteristics of the solvers? For one to re-implement the other’s work on their own system

would be a solution; but the use of a common solver, in the manner of MiniSAT, would benefit

both sides.

Further motivation to develop Connect++ arose from two observations made while working

on ML applied to ATP more generally:

1. The ATP world has two main currencies: proving more things and proving known things

faster. This motivates the development of ATPs that are inherently fast. It is also in conflict

with the use of lean ATPs for connection calculus, which tend to rely on languages known

not to be the fastest.

2. The ML world is heavily invested in Python, with the most prevalent libraries using

it to implement their API. To produce research in ML for ATP, one needs to run large

numbers of experiments. My own groups’ experience in continuing the work presented

in [13] was that there are significant difficulties in combining Python (for ML), Prolog

(for leanCoP [5, 6]), and one or more compiled languages supporting the overall process,

into an experiment on a high-performance computing facility.

These points suggested the development of a connection prover in a fast, compiled language

such as C++, or in Python. C++ emphasizes the speed requirement and is the approach taken

here, addressing Point 1.2 Python is also the subject of current work [11]. Both approaches

address Point 2, but in complementary ways.3

Further motivations appeared while I worked on the development of Connect++, and these

are some of the most central issues, both discussed further in Section 2:

1. The lean approach to ATP, exploiting the inherent strengths of Prolog, leads to beautiful,

compact implementations. However Prolog’s model of computation based on backtracking

search is not always amenable to the use of ML. (See also Point 2 above.) There are two

1I will not be claiming that Connect++ currently competes with the fastest solvers such as E [3] and Vampire [4];

any comparison is among connection solvers.
2While speed was a motivating factor in the choice of language for Connect++, I make no claim in this paper

regarding its speed in comparison to existing provers—an experimental comparison remains a subject for a future

paper; here the aim is to provide a general description of the system.
3A possible future development that might be of interest would be to incorporate either of these systems into the

FLoP system [14]. This system employs Python and the C foreign function interface, along with a connection

prover implemented in OCaml, and hence represents a good target for the kind of simplification envisaged.

96

Axiom
{},M,P,L

C ′,M, {}, {}
Start

ǫ,M, ǫ, ǫ

C,M,P,L ∪ {L′}
Lemma

C ∪ {L},M,P,L ∪ {L′}
where C ′ is a copy of C ∈M where σ(L) = σ(L′)

C,M,P ∪ {L′},L ∪ {L}
Reduction

C ∪ {L},M,P ∪ {L′},L

C ′\L′,M,P ∪ {L},L C,M,P,L ∪ {L}
Extension

C ∪ {L},M,P

where σ(L) = σ(L′) where C ′ is a copy of a clause inM,

L′ ∈ C ′ and σ(L) = σ(L′)

Figure 1: Rules for constructing a clausal connection calculus proof. See Figure 3 for an example proof.

issues here: APIs allowing ML methods to interact with a running Prolog program may

present a barrier, and Prolog’s model of computation itself can present a limitation.

2. In particular, the Prolog cut is perfect for leanCop’s backtracking restriction [6]. However

it is a blunt instrument, and more subtle backtracking heuristics might profitably be

explored, in turn providing new ways for ML to control the proof search. However the

implementation of such alternatives in Prolog potentially becomes cumbersome.

While the realisation that the use of C++ supported these points was serendipitous, the overall

design of Connect++ was informed by them as described in Section 4, with the overall aim of

making a system capable of supporting new research.

A final motivation for Connect++ was to explore the production of readable proofs and

proof certificates.

2. ML for connection calculus: why use C++?

Prolog provides compact implementations for connection provers, but to facilitate ongoing

research on improving connection provers there are good reasons to consider alternatives. In

this section I attempt to explain my reasoning.

Connect++ implements the clausal connection calculus with lemmata and regularity, as in

Figure 1. The matrix M is the set of clauses for the problem. The path P is a set of literals, as is

the set L of lemmata. A copy of an item has a fresh set of unused variables. An overline denotes

the complement of a literal. Regularity adds the condition

∀L′ ∈ C ∪ {L} . σ(L′) /∈ σ(P)

to the Reduction and Extension rules. When applying the Reduction and Extension rules the

substitution is applied to the entire proof. In the case of Regularity and Lemmata we test for

equality using the substitution as it stands, but no further unification is applied.

The rules in Figure 1 are the basis for a classical backtracking search problem. leanCoP, for

example, arranges this search using Prolog’s underlying search algorithm. It is well-known that

the use of heuristics to order such a search is critical for good performance. For the calculus

97

described, there is ample scope for learning such heuristics; for example, at any point in the

search there may be multiple ways to extend a partially complete proof, possibly including

multiple applicable uses of Reduction, Extension, or Lemmata rules, and we might aim to

find improved ways of choosing of the next to try. Researchers therefore need to be able to

influence such choices, and the extent to which this is feasible will depend on the details of the

implementation of a prover. This is a particular area where we need a solver implementation

facilitating fine control over search heuristics.

Some of the most successful heuristics for connection provers go further, relying on the

restriction of backtracking during the proof search [6]. In the Reduction, Extension and Lemmata

rules, L is called the principal literal when the rule is selected as a candidate for extending a

proof. For the Reduction and Lemmata, L is considered solved; for an Extension it is considered

solved if the left sub-tree of the Extension is completed. After L is solved, no other options for

solving it will be considered on backtracking. This heuristic is remarkably effective and the

Prolog cut makes its implementation extremely convenient. However, by moving beyond the

use of cut we potentially open a wide design space of backtracking heuristics. For example,

having solved a literal using Extension, should we backtrack within the left subtree or discard

it completely? (leanCoP, and Connect++ under its default settings do the latter; but use of

the −−explore−left−trees flag forces Connect++ to adopt the former behaviour.) Should

we stop backtracking for a principal literal after it has been solved once, or should we limit

the maximum number of ways we try to solve it? Should we limit backtracking just for this

principal literal, or remove other possibilities once some literal has been solved? There is

considerable opportunity for new work here, and facilitating such research is a key motivation

for Connect++. (See [15] which provides some results in this direction.)

Other successful heuristics include restriction of backtracking on start clauses, forms of

reordering and randomization [16], and others. Ideally a solver should support all forms of

heuristic, and allow researchers to experiment with them freely. However we should also

consider a further potential need: to modify the operation of the proof search dynamically.

For example, much research on ML for ATP addresses the tuning of heuristics that are then

fixed when attempting new proofs. There is ample evidence from work on SAT solvers that

learning on a per-proof basis is extremely effective. For example, variable selection heuristics are

light-weight learning algorithms adjusting variable choice using feedback obtained while the

proof search progresses. This type of learning also deserves attention in ATP, and the need to

modify heuristics during proof search might be better served by a move away from Prolog.

A final consideration relates to the way in which the proof search is structured. Some systems

search recursively, trying the left branches of Extensions first. There has been considerable

interest in applying reinforcement learning [17] and Monte-Carlo tree search [18] to connection

provers, and in these cases it makes sense to allow proofs to be constructed in a less constrained

manner. This is the subject of complementary work on representing the process as a Markov

Decision Process [11].

98

2 --pos-neg-start --complete 7 ;

60 --conjecture-start ;

20 --pos-neg-start --restrict-start ;

2 --conjecture-start --reorder 23 ;

2 --pos-neg-start --restrict-start --reorder 29 ;

2 --conjecture-start --reorder 37 ;

2 --pos-neg-start --restrict-start --reorder 41 ;

2 --conjecture-start --reorder 47 ;

0 --pos-neg-start --all-backtrack ;

Figure 2: Default schedule file for Connect++.

3. Connect++

Connect++ supports most of the functionality provided by leanCoP, and has some additional

facilities. It supports restricted backtracking, restriction of start clauses and reordering. It

deals with equality by detecting its use in the input file and adding the necessary axioms; more

sophisticated approaches, such as described in [19, 20], are a subject for future extension. It as-

sumes negative (CNF) representation by default but can use positive (DNF) representation—this

changes the equality axioms added, and the behaviour for some of the start clause selection

options. It supports iterative deepening by path length or tree depth; switching to complete

search after a given depth; and specified start depth and depth increment. It accepts input in

the conjunctive normal form (CNF) format of the Thousands of Problems for Theorem Provers

(TPTP) [21] library. Support for problems in first-order form is a work in progress, and subse-

quently it does not at present support definitional clausal form (DCF) [6]; this is perhaps the

first priority for further development as leanCoP’s standard schedule employs different settings

related to DCF.

A lesson learned applying ML to SAT is that solvers should avoid hiding within their imple-

mentation, parameters that are potentially important for tuning performance. Instead, such

parameters should be exposed, preferably at the command line, so that they can be adapted to

suit a particular domain of application. Automated systems for this task, such as ParamILS [22],

SMAC [23] and GGA [24] have been used with great success, as has Bayesian optimisation [25].

Connect++ exposes a large, and growing, number of such parameters.

Some connection provers run with a hard-coded schedule optimized through experiments.

A schedule is a sequence of sets of parameter settings, each element of the sequence being

assigned a percentage of the run time. The prover might start with a schedule line stating that it

should run with full backtracking for 10% of the time, then switch to restricted backtracking for

5% of the time, then switch to a different configuration and so on. Figure 2 shows the current

default schedule used by Connect++, which is similar to that of leanCoP version 2.0. The

differences are necessary as Connect++ does not at present implement definitional clausal

form. This is clearly an effective method, but there is evidence that learning of schedules can be

beneficial [26]. Connect++ supports the use of arbitrary schedules and can read these from

a file in a simple format, making it easy to incorporate the results of ML applied to schedule

choice, and potentially to support the ML process for learning schedules. Referring again to

Figure 2, each line of a schedule file begins with an integer specifying the percentage of the time

available (which can be set using the −−timeout command line option) for which to run the

99

Axiom
{},M, [¬p,¬q(_1)], [p]

() Red
{p},M, [¬p,¬q(_1)], []

Axiom
{},M, [¬p], [¬q(_1)]

(_1← c) Ext
{¬q(_1)},M, [¬p], []

Axiom
{},M, [¬r], [¬p]

Lem
{¬p},M, [¬r], [¬p]

Axiom
{},M, [], [¬p,¬r]

() Ext
{¬r},M, [], [¬p]

() Ext
{¬p,¬r},M, [], []

Start
ǫ,M, ǫ, ǫ

Figure 3: LATEX output for Example 1. Variables of the form _1, _2, . . . are fresh variables introduced by
the Start or Extension rules. Annotations to the le� of a rule, such as (_1← c), denote substitutions
applied to the entire proof.

matrix(0, [-p, -r]).

matrix(1, [p, q(c)]).

matrix(2, [p, -q(X)]).

matrix(3, [-p, r]).

matrix(4, [-p, q(a)]).

(a) Prolog-readable representation of the matrix.

proof_stack([

start(0),

left_branch(0, 2, 0, 2),

left_branch(0, 1, 1, 3),

reduction(0, 0),

right_branch(3),

right_branch(2),

left_branch(0, 3, 1, 3),

lemmata(0, 0),

right_branch(3)

]).

(b) Stack representation of the proof.

Figure 4: Certificate for the proof of Example 1.

following settings (or 0 in the last line denoting “all time remaining”). By default, Connect++

runs in essentially the same way as the underlying leanCoP search, choosing proof steps on the

basis of the first available literal, and restricting backtracking in the same way. This default

behaviour is set at each line of the schedule, and the schedule line then modifies it. The flags in

the schedule line are named in the same way as the command line options; all command line

options that affect the search are available to a schedule file.

Connect++ can produce a readable proof via LATEX. Example 1 is a problem from [6].

Example 1. M = {{¬P,¬R}, {P,Q(c)}, {P,¬Q(x)}, {¬P,R}, {¬P,Q(a)}} .

Figure 3 shows the typeset output for a proof of Example 1.

Connect++ can output a simply-formatted proof certificate. While there is currently no

consensus on what format a certificate should take, suggestions have appeared [27, 8, 28] and

a proposal for a standard is given in [29]. Figure 4 shows a certificate for the proof shown in

Figure 3. It consists of Prolog-readable summaries of the matrix and a stack representation

of the proof (see Section 4). Each element of the stack describes the proof rule employed,

with left_branch and right_branch denoting the left and right premises of the Extensions.

Numbers after an item identify the element(s) used in applying a rule; clauses are indexed

from 0 in the matrix and literals are indexed from 0 within clauses. For example, referring

again to Figure 1, left_branch(0, 2, 0, 2) denotes that there is an Extension rule. The first

index denotes that L = ¬P (the 0-indexed literal in the clause C ∪ {L}).4 The second index

4Readers familiar with leanCoP might find this unusual. leanCoP always uses the leftmost literal in C ∪ {L} as the

100

denotes that C ′ is a copy of {P,¬Q(x)} (the 2-indexed clause in the matrix). The third index

denotes that L′ = P (the 0-indexed literal in the copy of C ′). The fourth number denotes the

depth within the proof. A short Prolog program reads this certificate and verifies that the rule

has been correctly applied at each stage, using the built-in unification mechanism to build the

substitution.

4. Implementation: some technical details

The requirements for compiling Connect++ are light. Aside from a C++ compiler, it uses the

Boost libraries5 for parsing TPTP and schedule files, and dealing with command-line parameters.

LATEX is needed for readable proofs and SWI Prolog [30] is needed for verifying proofs.

Connect++ exploits the structure of the connection calculus by using an optimized rep-

resentation for variables and terms. As substitutions apply to an entire proof, any variable

is only represented once, and terms using that variable do so via a pointer. Any substitution

applied to a variable therefore takes effect everywhere the variable appears, in constant time,

and backtracking (removing a substitution) is equally fast and straightforward. Fresh variables

are recycled to preserve memory. Terms are constructed using pointers to subterms; subterms

are shared and no copy of an existing subterm is ever made. This is supported by an index: new

(sub)terms are added to the index and only stored if not already present; if already present then

a pointer to the existing copy is provided. Literals are straightforward identifiers paired with a

list of pointers to terms. Clauses are lists of literals. The matrix is indexed to allow fast lookup

of which clauses contain a literal, and the position of that literal in each relevant clause. This

aids fast identification of possible Extensions.

As one aim of Connect++ is to provide flexibility in the proof search, it avoids the use of

recursion in favour of an iterative approach using a pair of stacks. Figure 5 illustrates this. The

proof is built in the left stack, and as left premises of Extensions are explored first, the right

stack is used to store the currently outstanding right premises. Stack items store C , P and L, a

substitution, and a list of actions (applications of the proof rules) that can be used to further

extend the proof at this point. This structure is manipulated iteratively, and as at any point there

is direct access to the list of possible actions stored in each stack item, there is great flexibility

in directing the search—the action list in each stack item can arbitrarily be re-ordered, added

to (increasing the degree of backtracking) or reduced (restricting the degree of backtracking)

while a proof is in progress.

Planned developments to Connect++ include: (1) completion of clause translation, including

definitional clausal form, from TPTP first-order format; (2) enumeration of different proofs

for a single problem as a means of generating training data; (3) addition of other heuristics

for connection provers; (4) experiments with new heuristics; (5) addition of further command-

line options, and where appropriate inclusion of these in the system for handling schedules;

(6) implementation of readable proofs similar to those produced by leanCoP version 2.1; (7)

principal literal, and at each stage only uses that literal to generate possible new steps for the proof tree. Connect++

does the same in its default settings, but future development is planned allowing the choice of this literal to be

subject to one or more heuristics, with the aim of ordering the search more effectively. The format of the certificate

supports this planned extension.
5https://www.boost.org/

101

https://www.boost.org/

Start

ExtR1

ExtL1

ExtL2

ExtR2

Red1

Axiom

ExtL1

ExtL2

Red1

Axiom

Start

ExtL3 ExtR3

Red2

Red3

Axiom

ExtR1

ExtR2

(a) Early in a proof search—the shaded area is not
yet explored.

Start

ExtR1

ExtL1

ExtL2

ExtR2

Red1

Axiom

ExtL1

ExtL2

Red1

Axiom

Start

ExtL3 ExtR3

Red2

Red3

Axiom

ExtR3

ExtR1

ExtR2

ExtL3

Red2

Red3

Axiom

(b) After generating the shaded area, explore
ExtR3.

Figure 5: Proof search arranged around two stacks. The proof itself is built on the le�-hand stack, while
the right-hand stack maintains details of the currently outstanding right premises for Extensions.

implementation of any forthcoming standard for proof certificates; and (8) implementation of

better approaches to equality.

5. Evaluation

While a large-scale study of the power of Connect++ in comparison with other connection

provers, and across a large collection of problems, remains for future work, we provide some

brief, initial experimental results to demonstrate the prover in its current state.

A selection of 52AGT problems from TPTP version 8.0.06 were converted to a format readable

by Connect++.7 Connect++ was run8 on these problems using its default schedule (Figure 2)

and a 10 second timeout, on two systems: a MacBook Air M1 with 16GB memory running OS

X Sonoma, and the University of Cambridge High-Performance Computing (HPC) Facility.9

Figure 6 shows the running times for the problems solved by Connect++ within the 10 second

timeout.

For comparison, running10 leanCoP version 2.1 with ECLiPSe version 5.10 #147 on the HPC,

again with the timeout set to 10 seconds and with the problems in first-order TPTP format11, it is

clear that leanCoP can solve the same problems, and some others. However at this stage further

comparison is complicated as the systems have significant differences. In particular, leanCoP

has a significantly more detailed schedule employing various forms of clause translation, most

significantly definitional clausal form.

6Selected using: tptp2T -pp Domains AGT Form FOF Status Theorem Equality.
7
tptp2X with options -tclausify:tptp -f tptp followed by a second run with options -tadd_equality -f

tptp.
8
./connect++ --schedule default -v0 --no-equality --timeout 10 file.tptp

9Technical details for the Ice Lake CPUs employed can be found at https://www.hpc.cam.ac.uk/.
10
./leancop.sh file.tptp 10

11
tptp2X with option -f tptp

102

Figure 6: Running times for Connect++ on two architectures for the AGT problems solved with a 10
second timeout and the default schedule. Names on the x-axis identify AGT problems when appended
to the prefix ‘AGT0’.

Acknowledgments

This work was performed using resources provided by the Cambridge Service for Data Driven

Discovery (CSD3) operated by the University of Cambridge Research Computing Service

(www.csd3.cam.ac.uk), provided by Dell EMC and Intel using Tier-2 funding from the En-

gineering and Physical Sciences Research Council (capital grant EP/T022159/1), and DiRAC

funding from the Science and Technology Facilities Council (www.dirac.ac.uk).

103

References

[1] S. B. Holden, Machine Learning for Automated Theorem Proving: Learning to Solve SAT

and QSAT, volume 14 of Foundations and Trends® in Machine Learning, now publish-

ers, Boston, Delft, 2021. URL: https://www.nowpublishers.com/article/Details/MAL-081.

doi:10.1561/2200000081.

[2] N. Eén, N. Sörensson, An extensible SAT-solver, in: E. Giunchiglia, A. Tacchella (Eds.), Pro-

ceedings of the 6th International Conference on Theory and Applications of Satisfiability

Testing, volume 2919 of Lecture Notes in Computer Science, Springer, 2003, pp. 502–518.

[3] S. Schulz, E—a brainiac theorem prover, AI Communications 15 (2002) 111–126.

[4] A. Riazanov, A. Voronkov, The design and implementation of VAMPIRE, AI Communica-

tions 15 (2002) 91–110.

[5] J. Otten, W. Bibel, leanCoP: lean connection-based theorem proving, Journal of Symbolic

Computation 36 (2003) 139–161.

[6] J. Otten, Restricting backtracking in connection calculi, AI Communications 23 (2010)

159–182.

[7] C. Kaliszyk, Efficient low-level connection tableaux, in: H. D. Nivelle (Ed.), 24th Interna-

tional Conference on Automated Reasoning with Analytic Tableaux and Related Methods

(TABLEAUX 2015), volume 9323 of Lecture Notes in Artificial Intelligence, Springer, 2015,

pp. 102–111.

[8] C. Kaliszyk, J. Urban, J. Vyskočil, Certified connection tableaux proofs for HOL Light and

TPTP, in: Proceedings of the 2015 Conference on Certified Programs and Proofs (CPP),

Association for Computing Machinery, New York, NY, United States, 2015, pp. 59–66.

[9] M. Färber, C. Kaliszyk, J. Urban, Machine learning guidance for connection tableax, Journal

of Automated Reasoning 65 (2021) 287–320.

[10] M. Färber, cop: Highly efficient first-order connection proving, 2021. URL: https://lib.rs/

crates/cop.

[11] F. Rømming, J. Otten, S. B. Holden, Markov decision processes for classical, intuition-

istic, and modal connection calculi, 2023. Submitted to the International Workshop on

Automated Reasoning with Connection Calculi (AReCCA) 2023.

[12] G. Prusak, C. Kaliszyk, Lazy paramodulation in practice, in: B. Konev, C. Schon, A. Steen

(Eds.), Proceedings of the Workshop on Practical Aspects of Automated Reasoning (PAAR),

volume 3201 of CEUR Workshop Proceedings, 2022.

[13] V. Toth, Reinforcement Learning for Automated Theorem Proving, Master’s thesis, Uni-

versity of Cambridge, Department of Computer Science and Technology, The Computer

Laboratory, William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, 2021.

[14] Z. Zombori, A. Csiszárik, H. Michalewski, C. Kaliszyk, J. Urban, Towards finding longer

proofs, in: A. Das, S. Negri (Eds.), Proceedings of the International Conference on Au-

tomated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX), volume

12842 of Lecture Notes in Artificial Intelligence, Springer, 2021, pp. 167–186.

[15] M. Färber, A curiously effective backtracking strategy for connection tableaux, 2021.

ArXiv:2106.13722v1 [cs.LO].

[16] T. Raths, J. Otten, randoCoP: Randomizing the proof search order in the connection

calculus, in: B. Konev, R. A. Schmidt, S. Schulz (Eds.), Proceedings of the First International

104

https://www.nowpublishers.com/article/Details/MAL-081
http://dx.doi.org/10.1561/2200000081
https://lib.rs/crates/cop
https://lib.rs/crates/cop

Workshop on Practical Aspects of Automated Reasoning (PAAR), volume 373 of CEUR

Workshop Proceedings, 2008.

[17] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, 2nd edition ed., MIT

Press, 2018.

[18] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshag, S. Tavener,

D. Perez, S. Samothrakis, S. Colton, A survey of Monte Carlo tree search methods, IEEE

Transactions on Computational Intelligence and AI in Games 4 (2012) 1–43.

[19] B. E. Oliver, J. Otten, Equality preprocessing in connection calculi, in: P. Fontaine,

K. Korovin, I. S. Kotsireas, P. Rümmer, S. Tourret (Eds.), Proceedings of the 7th Workshop

on Practical Aspects of Automated Reasoning (PAAR) and the 5th Satisfiability Checking

and Symbolic Computation Workshop (SC-Square) Workshop, volume 2752 of CEUR

Workshop Proceedings, 2020.

[20] G. Prusak, C. Kaliszyk, Lazy paramodulation in practice, in: B. Konev, C. Schon, A. Steen

(Eds.), Proceedings of the 8th Workshop on Practical Aspects of Automated Reasoning

(PAAR), volume 3201 of CEUR Workshop Proceedings, 2022.

[21] G. Sutcliffe, C. Suttner, The TPTP problem library for automated theorem proving, 2023.

URL: https://tptp.org/.

[22] F. Hutter, H. H. Hoos, K. Leyton-Brown, T. Stützle, Paramils: An automatic algorithm

configuration framework, Journal of Artificial Intelligence Research 36 (2009) 267–306.

[23] F. Hutter, H. H. Hoos, K. Leyton-Brown, Sequential model-based optimization for general

algorithm configuration, in: C. A. C. Coello (Ed.), Proceedings of the 5th International

Conference on Learning and Intelligent Optimization (LION), volume 6683 of Lecture Notes

in Computer Science, Springer, 2011, pp. 507–523.

[24] C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the automatic

configuration of algorithms, in: I. P. Gent (Ed.), Proceedings of the 15th International

Conference on Principles and Practice of Constraint Programming (CP), volume 5732 of

Lecture Notes in Computer Science, Springer, 2009, pp. 142–157.

[25] C. Mangla, S. B. Holden, L. Paulson, Bayesian optimisation of solver parameters in

CBMC, in: F. Bobot, T. Weber (Eds.), Proceedings of the 18th International Workshop on

Satisfiability Modulo Theories (SMT), volume 2854, CEUR Workshop Proceedings, 2020,

pp. 37–47. URL: http://ceur-ws.org/Vol-2854/.

[26] C. Mangla, S. B. Holden, L. Paulson, Bayesian ranking for strategy scheduling in automated

theorem provers, in: J. Blanchette, L. Kovács, D. Pattinson (Eds.), Proceedings of the

11th International Joint Conference on Automated Reasoning (IJCAR), volume 13385

of Lecture Notes in Artificial Intelligence, Springer, 2022, pp. 559–577. URL: https://link.

springer.com/chapter/10.1007/978-3-031-10769-6_33. doi:https://doi.org/10.1007/

978-3-031-10769-6.

[27] J. Otten, G. Sutcliffe, Using the TPTP language for representing derivations in tableau and

connection calculus, volume 9 of EPiC Series, 2012, pp. 95–105.

[28] M. Färber, C. Kaliszyk, J. Urban, Machine learning guidance and proof certification for

connection tableaux, 2018. ArXiv:1805.03107v3 [cs.LO].

[29] J. Otten, S. B. Holden, A standardized syntax for connection proofs, 2023. Submitted to

the International Workshop on Automated Reasoning with Connection Calculi (AReCCA)

2023.

105

https://tptp.org/
http://ceur-ws.org/Vol-2854/
https://link.springer.com/chapter/10.1007/978-3-031-10769-6_33
https://link.springer.com/chapter/10.1007/978-3-031-10769-6_33
http://dx.doi.org/https://doi.org/10.1007/978-3-031-10769-6
http://dx.doi.org/https://doi.org/10.1007/978-3-031-10769-6

[30] J. Wielemaker, T. Schrijvers, M. Triska, T. Lager, SWI-Prolog, Theory and Practice of Logic

Programming 12 (2011) 67–96.

106

