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Abstract
The paper analyses and compares on a high level of abstraction significant features of the leading proof

methods in Automated Theorem Proving. It aims at the identification of promising areas of research

in order to further advance the field. The evaluation yields relevant evidence for promising such a

substantial advance by solving open research questions in the Connection Method. The most striking

feature thereby is the method’s unique formula-orientedness which recently has led to a notable success

by the system SGCD based on it.
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1. Introduction

The discipline of Automated Reasoning (AR), or Automated Theorem Proving (ATP), derives its

central importance for the science comprising Artificial Intelligence (AI) from the following three

fundamental assumptions. A1: Knowledge of any kind can be represented in a language with a

precisely definable semantics. A2: Logical languages provide a close-enough approximation for

such a knowledge representation language. A3: Logical reasoning on the basis of such logical

languages provides the key mechanism for crucial tasks involved in the various applications of

knowledge and its handling including consistency-checking of knowledge bases as well as their

extensions by reasoning.

Mathematics due to its wide-ranging success in the sciences and their applications provides

convincing evidence for the validity of these fundamental assumptions. For this reason, ATP

systems have primarily been tested paradigmatically on mathematical knowledge although its

mechanisms apply to any kind of knowledge and are not at all restricted to the mathematical

one.

There is a variety of logical languages known for representing knowledge. First-order logic

(fol) may be seen as the language exhibiting core features shared by most others. Hence, fol

along with its inferential structure has been studied so extensively. In this paper we will follow

this attitude and restrict the discussion to fol. This allows us to assume that the reader is familiar

with this widely known formal language.

Along with the underlying language any logic features some mechanism which to some

generality allows to identify true resp. valid statements among all possible ones. In Logic these
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are called formal systems while in ATP we refer to them as proof calculi. Numerous such calculi

have been developed in ATP. Many of them are based on the resolution rule, others are variants

of tableaux, further ones derive from the Connection Method (CM),1 and so forth.

The main topic of this paper is a high-level analysis of their differences, virtues, advantages,

disadvantages, and the resulting perspectives for our field. Thereby we will focus on the three

clusters of calculi just mentioned. Let us refer to these clusters of calculi as RM, TM, and CM.

The subsequent section will present the intended analysis of these three methods. The section

thereafter will point out several aspects of the CM which still are waiting for being explored and

realized in competitive proof systems. The most important aspect thereby is the separation of the

structural work in proof search from the formula to be proved.2 This separation allows a global

guidance of the search from all proof-specific syntactic features of the formula as demonstrated

by the system SGCD in a first step into such a direction. We outline the resulting research

perspective in a first subsection. Apart from pointing to further hints in the literature towards

advancing the CM, we then outline the special handling of equality within the CM in a second

subsection, an important gap still waiting to be closed presumably in a rather straightforward

way simulating the analogous techniques successfully applied in the RM. Conclusions complete

the paper.

2. A comparative analysis of proof methods

The concept of proof has been developed, used, and refined in Mathematics for more than two

thousand years. Establishing the validity of a statement, here assumed to be a formula F in fol,

is the goal of a proof. Generally, F is of the form A1 ∧ . . . ∧An → T, n ≥ 0. The Ai’s are the

axioms and T is the theorem to be established by the proof. “Axioms” here and in the following

is meant as an abbreviation for “axioms, theorems, lemmata, or assumptions”.

Typically, mathematical proofs are presented in a semi-formal natural language text, ie. in a

linear format, and involves some sort of logical/mathematical proof steps which have evolved

by tradition over the centuries. Gerhard Gentzen has precisely formalized this semi-formal

style in his seminal paper [3]. Among others it features his well-known Kalkül des natürlichen

Schließens, NK, or calculus of natural deduction, which is modelling the traditional proof steps

in a formal way. Gentzen’s formal system LK [3, p.192f], a technical modification of NK, features

19 rules (“Schlußfiguren”) including the so-called cut rule. Gentzen proved in his Hauptsatz

that this rule is admissible, ie. that it can be dispensed with without affecting the amount of

provable formulas.

1The cluster denoted by CM of course also includes the extensive work done in fol as well as in hol under the name

of matings; see eg. [1]. Connection and mate are two different notions for the very same concept. To the best of the

author’s knowledge, the notion connection was coined first by Robert Kowalsky and mate by Martin Davis.
2Proof search in the CM operates on connections along with their associated substitutions determined by the

structure of the formula to be proved. Thereby the formula itself is not subjected to any operation changing it.

In this sense the structural work is separated from the formula. This is in contrast to, say, resolution where the

manipulations during proof search are performed on the formula itself by generating resolvents from parts of

it, thus operating on the formula and its parts. Note that the resolvent carries a meaning as does the original

formula, ie. both have semantics while connections are purely syntactic concepts; they are pairs of occurrences

in the formula. This fundamental difference sets the CM apart from most other proof methods. (The reader not

familiar with details of the CM is referred to the literature such as eg. [2].)
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This cut elimination leads to longer proofs, in fact exponentially longer proofs in the worst

case [4, Sect. 5.2]. This increase of the proof lengths is therefore an important, even crucial issue

for proof search. Imagine a competition of two systems one searching for the short proof of a

theorem achievable with cut, the other for the proof of the same theorem, but without cut and

for the exponentially longer proof. It is obvious that the latter system starts at an unassailable

disadvantage.

This observation leads to the first fundamental distinction of proof calculi: calculi with cut

or some equivalent feature vs. calculi without, shortly Cc vs. C−c. Thereby, the calculi with

property Cc have an exponential advantage over those in C
−c for some set of theorems. LK

belongs to Cc unless the cut-rule is deleted in which case it belongs to C
−c.

Proofs in Gentzen’s systems are trees with axioms at the leaves and the theorem at the root.

In a more compressed form they might also be represented as dags, ie. directed acyclic graphs.

Several proof calculi developed thereafter took Gentzen as sort of a reference point. In principle,

all complete and consistent proof systems for fol related with LK are equally suitable for realizing

the automatic search for proofs. There is, however, the crucial criterion just mentioned putting

a subset among these proof systems at a serious disadvantage; the subset consists of those

inheriting the just mentioned exponential expansion of proof lengths.

Since TM calculi are derived from LK without cut by way of inverting its rules, C
−c holds for

TM and thus suffers from that serious disadvantage. It also holds for most CM calculi realized

in implemented systems like leanCoP. In contrast, RM calculi involve the cut since resolution

amounts to sort of a cut: resolution on ground clauses is a version of the cut rule restricted to

atomic formulas. Each resolution step involves the generation of a lemma which can be used

multiple times in the search for a proof, a feature closely related with cut. At our high level

of discussion we may thus say that RM calculi belong to Cc, without going into the nontrivial

details of this statement (see eg. [5, 6]). Cc holding for RM has been considered as a significant

advantage in comparison with TM.3

In [7, Sect. 2.10] a CM calculus has been presented which involves connection structures in

addition to simple connections. For this calculus it has been proved that it can linearly simulate

the resolution calculus, and vice versa. In other words, both calculi are computationally equally

powerful. For the CM as a family of calculi this means that its assumed major weakness in

comparison with RM of lacking cuts does in fact not hold. In short, for the CM we rather have

Cc. The first ATP system with such connection structure features is CCS [8]. First promising

results achieved with it in its interplay with the system SGCD [9, 10] have been reported in [11].

In human mathematical proofs the proof steps typically consist in relatively small changes of

the representational state, expressed in semi-formal statements. This stepwise manipulation of

parts of these statements takes into account the limited computational capabilities of humans

in carrying out such a step in a precise way and supports the minimization of errors. The

consequence is an interweaving of problem statements with proof statements or of problem

structure with proof structure. To a large extent this characteristical feature of not separating

these two different structural aspects, noted as C
−s, is modelled in some way or another by

3For a better overview of the various notions used here and in the following to denote the different characteristics

like Cc of the considered proof methods, the reader is recommended to keep an eye on the summarizing table

towards the end of the present section which would be helpful for keeping track of these different notions in

relation to the proof methods during the subsequent discussion.
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most logical calculi. They modify in each step the actual state, represented by some derived

formula, in some relatively small syntactic way.4 This characteristical feature of interweaving

the deductive structure with some formula structure is thus expressed by the “−s” in C
−s in

order to express that these two different structural aspects are not separated.

The unique exception is CM whose calculi during the course of a proof search leave the

formula itself completely untouched. This is because they strictly separate the proof structural

information from the formula, ie. for CM we have Cs, a significant distinction. While all other

calculi involve the ballast of formulas associated with each state in proof search, the CM has

been freed completely from this burden which thus turns out to be superfluous and is totally

unnecessary from a computational point of view; it is meaningful only with regard to our

human understanding. This separation of the proof structure from the formula at the same

time allows to focus the proof search on all structural features inherent in the formula. Thereby

proof structure includes all structural information possibly leading to proofs, not only the finally

found proof, of course. This includes, eg., alternative spanning sets of connections, variable

multiplicities, term transformations involved with connections, the discrepancy between goal

and axiom terms to be bridged, and so forth. A global view may be taken on all this relevant

information, as we termed it in [12]. In other words, the search can be done in a formula-oriented

manner as we denoted it in [12]. We consider these advantages of equal relevance as those

going along with the cut. They have been demonstrated in a first step by the already mentioned

system CCS/SGCD.

LK is of a generative type, as it is called in the formal languages literature. Any proof in it

starts with axioms and ends with the given theorem. For the search for a proof of a theorem

the opposite direction, namely starting with the theorem, is much more promising for rather

obvious reasons which are not repeated here. For enabling this switch of direction an analytic

type of calculus is asked for which starts from the theorem in a goal-oriented manner, shortlyCg ,

and ends up with axioms. Tableaux calculi belong to this family. They have been derived from

LK roughly by inverting its deductive rules along with certain simplifications and modifications

in detail. Since inverting the cut rule would involve a guess for the cut formula without any

guidance whatsoever, TM calculi have dispensed with that rule altogether, ie. TM calculi as

such are members of C
−c as already noted above.

RM calculi start out with the proof problem as a whole, ie. including axioms and theorem;

more precisely, they do so in the simplified format as a set of clauses. RM therefore features the

flexibility to operate in both directions in a mixed manner, shortly Cm, which may include Cg .
5

As presented in [13, Sect. 13.2] in formal details, the CM is a method abstracted from TM

(and LK) so that all these are closely related. Hence, for the CM calculi published until recently

in the literature we have Cg , ie. it shares this property with TM. As noted above CM and TM

differ in that we have Cs for CM, but C
−s for TM.6 For a computational comparison all this

4As already mentioned in Footnote 2, in the example of resolution the manipulations during proof search are

performed on the formula itself by generating resolvents, thus manipulating on the formula structure itself and this

way interweaving manipulation on the formula structure with that on the deductive structure.
5With resolution a goal-oriented search can be achieved by way of an appropriate set-of-support and an axiom-

oriented search for instance by way of the hyperresolution rule. Since RM calculi typically operate in an exhaustive

manner, the distinction is of minor relevance in this context.
6Disjunction (in the sense of the originally given formula) is handled differently in CM and TM; whether or not this
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amounts to a clear advantage of the CM over TM. Since otherwise both methods are so closely

related, in the important computational context we may thus set aside TM in our comparative

analysis as being represented by the computationally superior CM. In what follows we will

therefore reduce our discussion to CM vs. RM.

For CCS/SGCD mentioned above, and thus also for CM, we have Cm as well which gives the

flexibility of combining goal-oriented search with lemmata derived from the axioms. In fact,

Cm has turned out to become the crucial improvement for CM calculi in order to achieve the

decisive property Cc for them. For that reason it has been included into the list of the three

properties discussed here. Altogether, the comparison of CM with RM so far has thus resulted

in an advantage for CM because of the favorable Cs while otherwise both methods share the

same relevant computational features Cc and Cm.

Unless P=co-NP we have to assume that the complexity of any proof calculus is (at least)

exponential. So, there will always be theorems for which any calculus will fail to find a proof

for them within reasonable time limits. But it could well be the case that one calculus always

fares better than another one. That this is definitely not the case for resolution vs. the CM has

been shown in [14]. Namely, Haken has shown in [15] that resolution exhibits an exponential

behavior for the so-called pigeonhole formulas while the present author has presented in [14]

short CM proofs for exactly these formulas; recently a similar result was achieved for RM [16].7

In other words, CM and RM so far are at least on an equal footing, except for the mentioned

advantage of Cs for the CM.

The ATP community has established a standard for comparing proof systems by way of the

CASC competition (along with TPTP).8 The best system in any problem category is the one

which, roughly, within a given time-limit proves most theorems. Sean Holden puts this on his

homepage such: “The automated theorem-proving (ATP) world likes to see things going faster and/or

more things being proved. If your prover is implemented in Prolog it starts at a disadvantage.”9

This manner of comparison suits the inherent human attitude towards spectacular races and

bears an effect on the complexity of the two methods is unknown to the present author; given the way of different

handling in both, it could only be an effect favorable for CM.
7[16] fails to refer to [14].
8CASC was initiated in the 1990s by members of the present author’s former Munich research group along with

Geoff Sutcliffe during his collaborative visit of it. This footnote remark in the preceding sentence, contained already

in the original version of the paper, was meant to indicate the present author’s favorable attitude towards Geoff’s

enormous and extremely valuable contributions done within this enterprise for many decades. In response to one

of the referees’s “objection/criticism” concerning the subsequent critical assessment of CASC in the paper’s main

text I extend this remark with the following additional explanations.

First of all, the present author has supported TPTP/CASC in various ways, not least in my role as initiator,

coordinator, and speaker of the DFG Focus Programme on Deduction in Germany (1992–1998) which included

several substantial contributions to TPTP/CASC. But I stay with my assessment expressed in the main text that the

present format of CASC implicitly favors the leading and popular proof methods in a too indiscriminate manner.

I fully agree with the referee in that “TPTP/CASC is agnostic wrt the proof methods used in the provers.” But a

comprehensive assessment in addition has to take into consideration the well-known human attitudes in reaction

to the results of any such competition. Under such a more comprehensive view TPTP/CASC in its present format is

focussing merely on quantitative measures without any consideration of further relevant information whatsoever

and, of course, it is supporting the winners in an indirect way, even though the winning methods might not be

the most promising ones in view of their future performance. Admittedly, a finer tuned way of competition is not

easily achievable.
9https://www.cl.cam.ac.uk/∼sbh11/, access 8.7.2023.
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cheering winners. But obviously it involves too crude a measure of long-term comparison for

revealing the true virtues or weaknesses of the underlying proof methods, ie. their potential

performance in the future.

The winning method under this crude measure for many years has been RM which this way

has achieved a monopoly in our field, in accordance with the well-known social principle: “The

winner takes all.” Since computers have dramatically increased in speed and power along these

years, so has the number of proved theorems. Yet, there are still many theorems proved by

humans which have withstood any attempts to prove them by leading systems. Why that? It

is not unlikely that it is this particular manner of comparison within CASC which is favoring

in some way a possibly suboptimal research direction and through that might be suppressing

support for promising alternatives. The analysis in this paper is meant to alert the community

to this possibility – once again – in order to open its interest in competing directions (as I have

vainly done at numerous occasions within the last decades). Some ATP researchers do share this

encouragement to widen ATP’s horizons; among these is Sean Holden who has stated [17]: “It

seems therefore important that researchers devote time to developing methods that, while perhaps

not winning competitions in the short-term – and under the current metrics – have the potential to

allow us to address harder problems in the future.”

The contradiction between our analysis favoring CM and the CASC favoring RM (in some

way) has simple explanations. Building CM systems in earnest has started in the 1980s engaging

since then altogether a mere few dozens of researchers. This is in sharp contrast with RM

systems whose serious research and development started about two decades earlier engaging

over the decades altogether thousands of researchers. For these sheer investmental reasons,

the RM technology this way has advanced far ahead of the CM one, of course. Under these

circumstances it is even remarkable how relatively successful the CM has become none the less.

Let us mention some of these achievements.

CM allows the proof search for theorems in their original form. This makes the transforma-

tions to normal form including Skolemization superfluous which offers a lot of advantages. Also,

the CM generalizes to logics other than fol in a rather straightforward way. The separate proof

structures are quite similar in all these variants. In consequence, a system like leanCoP [18] has

required only marginal changes to mutate to a non-clausal form prover [19], to an intuitionistic

prover [20], to a modal logic prover [21], and so forth. In [12] we introduced the term uniformity

for denoting this advantageous property of CM. Last not least, due to its close relationship with

LK – shared with TM – a discovered CM proof can be transformed in a straightforward way

into a human-readable text, a further important advantage. The discussion of this section is

summarized in Table 1.10

In a personal correspondence with the present author (and with further correspondents)11 Iris

10The inclusion of such a table was proposed by one of the referees. While it certainly supports the view over the

discussion of the various properties for the reader, it has to be interpreted with the following proviso. Each of the

properties carries with it a longer story. The simplification to a binary interpretation suggested by table is not the

whole story. Consider property orf , for instance. There is some work on generalizing resolution to work also for

non-clausal form input; it resulted in concluding that resolution under several aspects suits much better to clausal

input. The lack of
√

in the table has to be interpreted in this more elaborate manner and similarly for the other

entries.
11Email of 22 Sept. 2023.
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C±c C±s Cm/g cmp orf unf thr

RM Cc C−s Cm

TM C−c C−s Cg
√ √ √

CM Cc Cs Cm
√ √ √ √

Legend : RM resolution; TM tableaux; CM connection method; C±c with/without cut; C±s formula and

proof separated/not separated; Cm mixed manner operation; Cg goal-oriented operation; cmp compact

proof structure; orf formula in original form; unf uniformity over different logics; thr ease of

transformation to a human-readable text.

Table 1

Summary of Comparison

van der Giessen pointed to the close relationship between the CM and combinatorial proofs [22].

Indeed the two proof representations share the decisive feature Cs. Details of this relationship

have to be worked out in future research. From a quick look at the work on combinatorial

proofs (CP) it appears to me that both approaches are derivatives from Gentzen’s LK, whereby

CM features a higher degree of abstraction from the details in LK in comparison with CP. This

results in the fact that a CM proof represents a set of different LK derivations not just a single

one. This fact bears major advantages for proof search.

3. Research tasks in the pipeline

Depending on the taken perspective the state of the art in ATP may be regarded as extremely

impressive or relatively disappointing. The fact that its systems are able to prove tens of

thousands of theorems, many of them within a few seconds is impressive indeed. The fact,

however, that there are still theorems with proofs found by humans within a reasonable amount

of time, but still untractable for our systems is certainly disappointing. It demonstrates that the

underlying methodology is still lacking of possibly fundamental features. In the present section

I will try to point to features that I feel would advance the field if explored and exploited. After

the result of the comparison in the previous section it is needless to mention that I am expecting

progress especially by advancing the CM.

3.1. Exploiting structural features

The characteristic of CM to separate the deductive structure from the formula, ie. Cs, opens

the door for studying and exploiting this structure in a global way wrt. the given problem.

This has been demonstrated in a series of recent papers [23, 11, 24]. In order to simplify the

underlying research task to a reasonable state of tractability for the beginning, these papers

have restricted the study to the class of fol formulas known as condensed detachment problems

(CD). A well-known theorem of this class is the following one due to Łukasiewicz. It is shown

in Figure 1 along with its five unifiable connections c1, c2, c3, c4, c5. In fact, there is one more

connection, c0, connecting the axiom with the goal which, however, is not unifiable for which

reason it is not shown explicitly. All CD formulas have the same structure A ∧ DET → G

illustrated by the Figure whereby A is the axiom,DET the detachment rule (or modus ponens),
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Pi(i(ixy, z), i(izx, iux)) ∧ (Pv ∧ Pivw → Pw) → Pi(iab, i(ibc, iac))
5

4

3

2

1

Figure 1: Łukasiewicz with its five unifiable connections.

and G the goal. While CD is a rather restricted class, it already features most important aspects

of general fol.

Any proof of such a CD formula consists of a number of instances of each of these five

connections along with a global substitution of the instances of the variables x, y, . . . , w. This

global view on the structure of proofs is unique to the CM and expressed as Cs in the previous

section. In consequence, this opens the door for novel and promising ways of proof search.

One such approach consists in enumerating these proof structures by the following list S:

{c0}, {c111 , c11
4
, c12

5
}, {c11

1
, c12

2
, c11

5
, c22

4
, c23

5
}, . . .

Recall that a connection is a pair of occurrences of literals in instances of formula parts or clauses

whereby these instances are represented just by multiplicities attached to the occurrences within

the given formula.12 The upper indices attached to the connections in S denote the pair of

instances of the connected positive and negative literals. For instance, c12
2

is the connection

from the (positive) major premise of the first instance of DET to its (negative) conclusion in

the second instance, and similarly for all others.

This enumeration is restricted to contain only spanning sets of connections. This guarantees

that the identification of a unifiable element in the list proves the theorem.13 In the case of CD

formulas this restriction to spanning sets is easily guaranteed by associating with each incoming

connection containing the conclusion of an instance of DET two outgoing connections from

the two premises of this instance. In [23, 11, 24] the sets of S have been represented as so-called

D-terms built from terms of the form D(d1, d2). In correspondence with the members of S the

D corresponds to the incoming connection and its two arguments to the outgoing ones (or,

more precisely, to the corresponding occurrences along with their multiplicities in the formula).

So, we have two equivalent notations for exactly the same structure. However, the notation

used in S is completely general for any kind of formulas, not only CD ones.14

On the basis of this kind of proof structures SGCD mentioned in the previous section has

achieved an impressive performance [11]. Using D-terms it enumerates such proof structures

together with the unification of associated formulas. It also generates lemmata for supporting

proof search in an axiom-oriented way, thus demonstrating the characteristic Cm. SGCD is

12The reader not familiar with details of the CM is referred to the literature such as eg. [2].
13In an email of 26.Aug.2023 Peter Andrews has reminded the author of the possibility to involve QuantumComputing

(QC) which might allow to test many list elements at the same time for unifiability. In his words: “The problem

of searching for complete sets of connections may be radically different when quantum computers are used.” This

possibility would in fact speed up the proof process in a sensational manner.
14Formally representing connection sets may be done in various ways. The text already mentions two different

alternatives, whereby D-terms is a specialized way for CD formulas. Instead of naming connections as done in the

text these could as well be represented as ordered pairs using denotations for occurrences of literals. For instance,

we could enumerate the five occurrences of literals in the formula in Fig. 1 from right to left as 1, . . . , 5. Then the

connection c122 explained in the text could be represented eg. by the ordered pair (3.1, 2.2).
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the first proof system among all currently available provers which achieved a fully automatic

proof for the TPTP problem LCL073-1, known as Meredith Single Axiom problem. Altogether

it ranks among the very best systems within the CD domain. This excellent performance of

SGCD demonstrates the importance of enhancing CM systems the way discussed here.

The steps taken into this direction by the research discussed here is, however, just a beginning.

In the remaining of the subsection I shall outline several future research options. First of all,

the sequence S may be enhanced in the following way. In its present form it lists what may be

represented as full binary trees, for human understanding a more intuitive representation of the

same thing. The different members of S may, however, share common substructures. If these

are represented such that any such common substructure occurs only once in any element of S

then its elements represent dags rather than trees. This way we may reduce the size of those

proof structures considerably and speed up proof search accordingly. Let us assume from here

on that S represents such a list of dags rather than trees.

Along with each such dag there is a substitution of its variables by unification of associated

formulas, including the goal and the axioms. If the unification fails, like in the trivial case of

{c0}, the set may be discarded from the list without restricting generality. Such failure may

be discovered in a strategic manner thus reducing the amount of unificational work involved.

Also, the terms in A and G may give guidance towards limiting the size of the members of

S, and thus reducing S. By closer inspection into the dynamics of the terms determined by

the connection structure,15 involved strategies may be worked out resulting in preferences

among the members of S, or such preferences might be learned by experiments. By noting such

preferences the amount of search might be reduced considerably.

More generally, along with the given formula’s connection structure CS like the five connec-

tions in Fig. 1 there is a transformation T of terms for each of the connections which yields the

unification of the connected literals. The information I given by CS along with T is necessary

to establish a proof, and at the same time it is also sufficient. Thus, the isolated information

contained in I contains all information needed for finding a proof in a maximally condensed

form. In other words, the property Cs from the previous section may be taken as to include the

minimality of the separated information I . Exploiting the various aspects contained in I is the

main task for finding proofs. Note that proof search in this generality is a fairly unexplored and

unexploited domain of ATP research, as it has been invisible through the eyes of RM.16

All these considerations and many further ones have the potential of improving CM systems

designed along these lines in a substantial way well beyond the current state of the art in ATP.

In our opinion it is a good research strategy to carry out all these improvements first for limited

15For illustration consider again the connection c122 . The associated substitution is w2\iv1w1, ie. each activation of

this connection adds, for instance, an i to the resulting w-term. In this sense, an activation of a connection triggers

some kind of term transformation.
16In the present paper we can only provide pointers for future research, of course. Here is one more of those pointers.

Instead of considering single connections during proof search, whole connection structures consisting of more

than one connection may be taken into consideration. For illustration, consider again the connection c122 . The

simplest kind of such a structure would, for instance, be an n-fold iteration of this connection, but with varying

multiplicities. The n might even be taken as a variable to be instantiated by some constraint-driven mechanism

aimed at achieving a certain goal like a certain number of occurrences of i’s in our example. This same idea might

be generalized to connection structures with more than a single connection. This way lemmata would enter the

game in a rather general setting.
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structures like that of CD formulas. The crucial test of course comes with the generalization

of the gained insights for the limited cases eventually to arbitrary fol formulas, an enormous

research task and challenge. Since a list like S or the characterizing information like I may be

generated for any formula, as already mentioned above, there is no fundamental barrier for this

generalization.

All this shows that the development of CM is by far not completed at all. The ATP community

is rather faced with substantial work ahead waiting to be undertaken. This amounts to promising

workwith a potential for advancing the field in awaywhichwas not recognized in othermethods

due to their particular features, especially to their C
−s — in contrast to the Cs for CM.

3.2. Equality handling and others

In Mathematics equality is surely the most ubiquitous notion at all. It is worth a special handling

not only for Mathematicians, but also for ATP systems. While there has been extensive work in

the context of RM for handling equality for more than half a century, no analogous work exists

for the underdog CM. CM systems like leanCoP [18] handle equality in an axiomatic manner

like any other relation. In consequence, CM systems are doing poorly in CASC competitions

for any problem featuring equality, hence for many problems indeed.

In principle, transferring the existing techniques for handling equality from RM including

superposition to CM in a sense might be a straightforward task. Yet, it requires top expertise

and familiarity in both subfields of ATP, a rare constellation indeed, if existing at all anywhere

in the world. With the necessary support it could be acquired none the less. In the hope that

this will happen in the not-too-distant future I outline here a first high-level version of how

equality could be incorporated more efficiently in CM.

In the books [2, V.3] as well as [25, 4.5] first steps towards such an incorporation have already

been outlined. There the treatment is based on the three axioms of equality, namely reflexivity

as well as substitutivity for functions and predicates. Typical treatments in the context of

resolution rather use the three congruence axioms along with functional substitutivity [26].

While logically the two sets of axioms are equivalent, it is worthwhile to think about which of

these suites the environment more adequately.

In the two just referenced books the concept of a connection is extended by so-called eq-

connections. Eg. see the examples 3.2, 3.3, and 3.4 in [2, V.3] illustrating the concept. They

allow the direct substitution of terms by equal terms in the given formula or matrix similarly to

paramodulation in RM.17 They perfectly fit into the structural representation of proofs in CM

and fulfil the preferred property Cs. The corollary 3.6 in that reference provides the theoretical

basis for this approach. Theoretically, this basis has been worked out in further detail in several

publications including [27].18

Without a clever strategic guidance for substituting equals by equals, this initial step is of

little help however. What is needed is some ordering relation which imposes a direction to these

17Note that the mentioned examples generalize to any path through some matrix or formula, not only for the

illustrated case of the matrix consisting of a single path (without considering the axiom).
18The present author is not aware of any work continuing this way of handling equality in the context of ATP.

Whatever the reason for this ignorance in the last four decades, it clearly demonstrates the lack of interest in the

CM within the ATP community.
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possible replacements. Within RM the decisive technique to realize such a directed replacement

without restricting generality has been presented in [28], optimized and polished in subsequent

publications by the same and other authors (eg. [26]). In principle, the transfer of these tech-

niques into the context of eq-connections within the CM seems to be a straightforward task.

It would complement the comfortable way of dealing with equality by way of eq-connections

with an ordering relation for restricting the prolific nature of substituting equals by equals. But,

as already stated, carrying out such a transfer never the less requires high competence in two

different demanding areas.

Unfortunately, there is little incentive for getting the performance of one system in view of a

feature like equality to the level of a competing one by incorporating the latter’s techniques.

In fact, this unattractiveness is most likely the reason why this transfer has not been done up

to now (but see [29] for a recent encouraging step into this direction). In the context of the

perspectives outlined in the previous subsection the situation eventually might change, since in

combination the respective efforts open up the perspective of CM systems outperforming RM

systems.

The present author has outlined many further potential improvements in detail for the CM

in the last decades. Here I may thus restrict myself to just mentioning the existence of these

details in those publications. For instance, see [12, 30] and the references to earlier work given

therein.

Recall the reference in Sect. 2 to Sean Holden’s opinion concerning the programmming

languages used in implementations which certainly reflects the situation in the ATP in an apt

manner. The use of Prolog for developing the CM further is fully appropriate in my opinion,

especially if the ATP community will change its attitude in view of a more suitable metric for

measuring progress as discussed in Sect. 2. But once the CM has reached a state competitive

with that of its competitors the time will have come that a system will have to be implemented

in some low-level programming language to speed-up the low-level efficiency in its performance

matching that of leading RM systems.

Once such a stable system with high performance will be available, also the time has come

for building a comfortable interface for the interaction with users, especially – but by far not

exclusively – with mathematicians. Such an interface would present the discovered proofs to the

users in a natural mathematical style of text. Since a CM proof may easily be translated into an

LK proof and such an LK proof is in fact just a formalized version of a natural mathematical proof,

resulting proofs may indeed be presented to users in a style familiar to mathematicians.19 From

that time on, mathematicians, Math-teachers, engineers etc. might finally become interested in

a daily use of such a system within their work.

19Decades ago there has been valuable work on translating CM-proofs into a form familiar to mathematicians. This

is not the place to give a comprehensive overview of such work which has extensively been cited in earlier papers

of the author. Just one notable work is worth mentioning in the present context as a representative example which

is [31].

One of the referees emphasizes this issue of human-readability in his review in the following way: “Connection

provers . . . provide output easily transferable to a human-readable form. The last point is especially important for

applications as theorem provers can be used as verifiers, which ought to provide explanations to users. The complexity

of symbolic output has recently been addressed by the explainable AI community and is seen as an important issue to

tackle.”
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4. Conclusions

The paper has taken a high-level comparative look at the three major proof methods in ATP,

namely resolution (RM), tableaux (TM), and the Connection Method (CM). Generally, the

competition among different research directions is fruitful if it is done on fair grounds. We have

argued that the community in ATP seems to be misguided by superficial advantages favoring

RM. If one takes a closer look at qualitative characteristics of these competing methods, as

done in this text, the arguments all rather favor the CM as the most promising of the three

competitors.

To a certain degree, however, the CM is sort of still in its infancy, lacking important aspects

to be worked out in much further detail. As described in Sect. 3.1 the most important aspect is

the realization of an involved proof search along the information provided by the connection

structure extractable from the formula to be proved. Further aspects like the special handling of

equality are described in Sect. 3.2. For being ready to the substantial investments needed for

advancing the CM in these directions, the community has first to become convinced that such

an investment would advance ATP as such. The arguments presented in the text have tried to

nourish exactly this kind of conviction.
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