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Abstract
Research on conceptual modeling education and learning analytics often lacks grounding in instructional
design theories. Furthermore, the analysis of blended courses often neglects data about offline activities.
This paper investigates the data of one conceptual modeling course the design of which is grounded on
Bloom’s taxonomy and the 4C/ID model, and for which intent to participate in on-campus lab sessions
was tracked. The results demonstrate that attending the on-campus lab sessions have high predictive
value for study success. In addition, using Bloom’s cognitive levels confirms the value of organising
assessment along these cognitive levels and offers perspectives for more efficient evaluation of conceptual
modeling skills.
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1. Introduction

Teaching conceptual modeling to university students poses a complex challenge as it entails
fostering essential competencies such as problem solving, system analysis, and abstract thinking
[1]. To effectively cultivate these skills, a sophisticated course design is essential. Instructors
must not only provide corrective feedback but also cognitive feedback on modeling solutions,
enabling students to enhance their cognitive processes and reflect on the quality of their
modeling [2]. Additionally, a shift towards a student-centered approach is required to promote
active and motivated learning [3]. Lastly, achieving a deep understanding of modeling and the
development of high-level cognitive skills requires technological support, which can manifest
itself in various forms. On the one hand, employing modeling tools enriched with cognitive
feedback can serve as a means to test the solutions developed, resulting in improved student
performance [4]. On the other hand, incorporating online components into the course using an
online course authoring platform empowers students to process the material at their own pace,
thereby shifting the focus from passive to active learning [5].
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Course design should be carefully crafted in order to meet the aforementioned requirements.
To do so, instructors can rely on frameworks such as Bloom’s taxonomy [6] and the Four-
Component Instructional Design (4C/ID) model [7]. Unfortunately, research on conceptual
modeling education lacks grounding in educational theories [8]. Learning analytics (LA) on
student data can further inform teachers about usage of course elements and their impact
on study success, thus providing information about the effectiveness of their course design.
Unfortunately, in blended learning courses, data on offline activities is missing. The problem is
worsened by the fact that LA often lacks grounding in educational design too.

This paper presents the analysis of student activity in a conceptual modeling course. The
course’s learning objectives and assessments (both formative and summative) are based on
CaMeLOT, an educational framework that aligns learning outcomes with the cognitive levels
of Bloom’s taxonomy [9]. The design of the course has been grounded in the 4C/ID model,
and the intent to attend offline lab sessions has been recorded during 5 weeks. As such, the
data collected for this course allows investigating the importance of features about in-person
activities in predicting study success. Furthermore, the analysis can be related to instructional
design elements, thus informing the teacher about the effectiveness of the course’s design.

The remainder of the paper is structured as follows. Section 2 gives a general overview on
the related conceptual modeling education literature. Section 3 describes the detailed research
questions and methodology while Section 4 presents the results and discusses them. Finally,
Section 5 highlights the main findings and outlines future research opportunities.

2. Related work

The intersection between conceptual modeling (CM) and learning analytics (LA) is an emerging
area of cross-domain research with only few articles discussing the application of LA to CM
education. LA, which involves the measurement, collection, analysis, and reporting of learner
and contextual data, aims to enhance learning and optimize the environments in which it occurs
[10]. LA is particularly valuable in the context of CM as it allows gaining deeper insights into
the learning processes of novice modelers and optimizing these processes.

A prevalent research topic for CM education is the modeling tool support, i.e., modeling
functionalities which assist in learning or teaching CM [8]. A predominant LA approach in the
CM domain is to collect the data generated while executing modeling tasks in these tools [8].
As an example, Sedrakyan et al. [11], Deeva et al. [12], Claes et al. [13] analyse the event logs
generated by the interactions with the modeling tool together with process mining techniques
to discover the relationship of the modeling behavior with the final grade on the assignments.
These studies do, however, not consider instructional design or learning objective scaffolds.

Integrating online components in courses offers the advantage of gathering data for LA. Even
basic statistics from online platforms can aid teachers in providing study advice and improving
the course. By using such data, possibly combined with evaluation surveys and assessment
scores, student profiles can be created based on their behavior. Such profiles have repeatedly
been shown to correlate with study performance, see e.g. [14, 15]. However, despite the wealth
of LA research, too often it does not adequately consider the instructional conditions of the
analysed course [16].



3. Methodology

To investigate the importance of offline activities in predicting study success, we answer the
following research question:

RQ1 What is the relationship between various types of online and offline study activity and
successful completion of the course?

Furthermore, we related the results of the data analysis to the cognitive levels of Bloom’s
taxonomy by answering the following questions:

RQ2 How do achievements of learning objectives at different cognitive levels relate?

RQ3 How do achievements of learning objectives at different cognitive levels relate to the
study activity level?

In order to address these research questions, we utilize several data sources of one master-
level course on teaching conceptual modeling and engineer study indicators from this data to
represent self-regulation of the students. Second, we use this data to cluster the students based
on their study activity and analyse final exam grades distribution with respect to these clusters
and particular activity types. Third, we map different parts of the summative evaluation to
Bloom’s taxonomy levels and analyse the performance on the exam with respect to these levels
as well as to the study activity levels.

3.1. Course design

The AMMIS (Architecture and Modelling of Management Information Systems) course is a
one semester course taught at the Master programs of Information Management, and Business
and Information Systems Engineering at KU Leuven. The course has 13 teaching weeks and
is designed in a blended learning format with learning material on an online platform and
live lectures and exercise sessions offered on-campus. The course design is based on the Four-
Component Instructional Design (4C/ID) model [7] (Figure 1a). The online component offers
supportive information, learning tasks and part-task practices. Online supportive information
consists of video lectures, slides, exercises with automated grading and a library of cases
with their solutions.1 This information is always available to learners throughout the course
and is organised per task class: requirements analysis, structural modeling and behavioral
modeling. Following the 4C/ID principles, learning tasks are authentic tasks, building up in
complexity throughout the course with diminishing amount of support [7]. Part-task practices
are implemented through online quizzes and aim at training "mechanical" skills: modeling
language syntax application and the use of the modeling tool. Finally, throughout the entire
semester students are able to post questions on an online discussion board.

The offline component of the course offers supportive information, learning tasks and just-in-
time (JIT) information. Supportive information is provided through live lectures and the course
book. Students can participate in eight in-person exercise sessions where they solve larger
modeling cases related to that week’s web-lecture, using the modeling and prototyping tool. A
1https://merode.econ.kuleuven.be/



(a) 4C/ID model. Source: https://www.4cid.org (b) Bloom’s taxonomy

Figure 1: Instructional design frameworks

key difference from performing the learning tasks individually online, is that in-person exercise
sessions provide students with a presentation of the model solution, clarifying the solution path
and frequent mistakes and allows them to ask questions at any time during the lab. Exercise
sessions together with the automated feedback from the modeling tools thus fulfill the "Just
In Time" procedural information component of the 4C/ID model. After two most important
chapters of the course (on class diagrams and state charts), students are given the option to
make two home assignments in a form of a whole modeling task for which they receive both
collective and individual feedback in the next lab session.

The online part-task practice exercises and formative quizzes can be further classified accord-
ing to Bloom’s taxonomy (Figure 1b, adapted from [6]). Some exercises and quizzes deal with
remembering and understanding the notation, others deal with understanding and analyzing
requirements, and evaluating whether a model satisfies the given requirements. Finally, the
modeling cases solved during the exercise sessions deal with creating a model for a given set
of requirements. In this way, the course addresses all different cognitive levels, rather than
focusing predominantly on the create level as most conceptual modeling courses do [17].

Correspondingly, the exam of this course is also structured according to Bloom’s taxonomy
(Figure 1b). For this run of the course, Part 1 of the exam was planned during the last week of
the semester, and evaluated the students’ capability for remembering and understanding the
notation (Part 1.A), and for recognizing and analyzing requirements and evaluating models
based on these requirements (Part 1.B). Both Part 1.A and Part 1.B were tested using multiple
choice questions (MPC) and one open question in each part. The maximal possible score for Part
1 of the exam is 8 points with 2.7 points corresponding to Part 1.A and 5.3 corresponding to Part
1.B. During the exam period (approximately three weeks after the Part 1), Part 2 of the exam was
organized. Only students who successfully passed Part 1 of the exam (≥ 4, without rounding)
were allowed to take part in Part 2 of the exam. This part consisted of two exercises: creating a
class diagram and creating a set of state charts for a given class diagram. The maximal possible
score for the Part 2 of the exam is 12 points. A student passes when obtaining a rounded score
of at least 10 on the sum of both parts.

https://www.4cid.org


3.2. Behavioral study data

By logging various aspects of students’ interactions, the online platform enables tracking and
analysis of their online engagement, which are recognized as valuable indicators of motivated
learning choices [18]. While MOOC technology allows for detailed logging, we focus on log
data that is readily available to teachers. In particular, the grades for quizzes and an attempt
indicator can be easily extracted to assess the activity of the student in the online component of
the course. We utilize the average grade on the quizzes (Avg. quiz score) and the total number
of quizzes performed (#quizzes) as study indicators (features - used interchangeably) for the
downstream LA task.

We view completing home assignments as another source of behavioral expression of meta-
cognitively guided study motivation. Therefore, we incorporate grades from two assignments
(HA1 and HA2) as features in our LA task. Additionally, students were provided with an online
practice test made available in the Easter break to assess their understanding of course material
and prepare for Part 1 of the exam. The grade achieved in this test serves as another feature.

Finally, we could observe the offline behavior of the students in the form of participation
in offline exercise sessions. In particular, after the first two exercise sessions, we noticed a
drop in attendance. In order to anticipate the required space and number of teaching assistants,
we asked students to register if they intended to attend the exercise session. We use this data
(#exercise sessions) as another proxy of a motivated learning choice to master more high level
modeling skills as only live exercise sessions offered the JIT information component.

Using the aforementioned indicators measuring the formative assessments scores and their
attempts, practice test scores, home assignments’ performance and attendance is in line with
their wide adoption in the LA community [19].

3.3. Clustering

Clustering plays a crucial role in student performance analysis as it has the remarkable capa-
bility to unveil study patterns in an unsupervised manner [20]. Among the various clustering
algorithms, the non-hierarchical K-Means algorithm stands out as the most widely adopted one
in the LA community [21]. In line with the results of Lust et al. [14], Sher et al. [22] and the
authors’ teaching experience, we set the desired number of clusters to three, corresponding to
three groups of students with different levels of study activity: highly active, moderately active
(selective activity) and inactive students. Due to the unsupervised nature of clustering, which
does not rely on study outcomes, it can be applied at different stages of the course. Therefore,
we perform clustering at different points during the course. In line with Van Goidsenhoven et al.
[23] who demonstrated that student success can be accurately predicted as early as mid-course,
we initiate our first clustering analysis using the data of week 7. It is important to note that
the data for HA2 and the online practice test are not yet available at this point, but the data for
other indicators are calculated based on the activities completed up to week 7.

Given that the examination is divided in two parts, we identify the days prior to Exam Part
1 and Exam Part 2 as two additional time points for conducting clustering analysis. During
these instances, we have access to both HA1 and HA2 scores, along with the score on the online
practice test and attendance records for all exercise sessions. The only distinction lies in the



(a) Week 7 (b) Week 12 (c) Course end

(d) Week 7 (e) Week 12 (f) Course end

Figure 2: Clustering solution: mean values per indicator (a)-(c) and boxplots for the final grade
distribution vs. cluster (d)-(f)

activity on the online platform, which is calculated based on the activity and grades obtained
on online quizzes leading up to the days of Exam Part 1 and Exam Part 2, respectively.

4. Results and Discussion

4.1. RQ1

Figure 2a shows the mean values for each indicator for each activity cluster discovered using the
data of week 7. The green and yellow clusters are similar in terms of online activity. However,
they are very different in terms of HA1 grade and exercise sessions attendance. The red cluster
represents the students who are inactive in both online and offline components. Figure 2d
shows how the detected clusters relate to the final exam grade. 75% of the students belonging to
the green cluster get a pass grade (≥ 10). Surprisingly, the yellow and red clusters have almost
identical distributions of the final grade with approximately 50% of students passing and 50% of
students failing the final exam. These results highlight the importance of active participation
in exercise sessions and home assignments early in the course: students who attend exercise
sessions and make home assignments are much more likely to pass. This is in line with the
findings in [23] that accurately predicted study success already at mid-course.

Figures 2b and 2e illustrate the clustering solution on the data of week 12. While the study
patterns represented by the mean values of the indicators remain relatively the same as in week
7, we see a greater difference in terms of the distribution of the final exam grade: more than 50%
of the students from the red cluster (inactive students) fail. This means that inactivity during the



semester weeks correlates with failing the course. Almost 75% of the students with moderate
activity (i.e., high activity in the online platform but low/no grades for the home assignments)
pass the course, whereas the highly active students from the green cluster successfully complete
the course (except for a few outlying cases). The difference between the yellow and green
clusters lies in the minimum grades obtained: the students in the green cluster have a minimum
of 9 (excluding the outliers) while the students in the yellow cluster have a minimum of 2.

The clustering solution built on the most complete data is shown in Figures 2c and 2f. The
separation of the clusters along the final score dimension becomes even more apparent compared
with the clustering solutions built on the data of week 7 and 12 with the 75% of inactive students
(red cluster) failing the course.

The aforementioned findings highlight the importance of the in-person component in blended
learning when it comes to teaching conceptual modeling. The inclusion of live exercise sessions
within the course provided students with the exclusive opportunity to receive JIT feedback
from the instructors, while simultaneously benefiting from all the other 4C/ID components.
This comprehensive learning environment represents the most optimal setting for acquiring
knowledge. However, intrinsic motivation to attend lab sessions in-person still played a signifi-
cant role. The students who used all the aspects of the provided setting (green cluster) benefited
the most while the students not making use of the different course components (red cluster)
mostly failed the course.

4.2. RQ2&RQ3

In order to address RQ2, we map the learning objectives tested in different parts of the exam
onto Bloom’s taxonomy (Figure 1b). The first analysis compares Part 1.A and Part 1.B of the
exam while the second analysis makes a comparison between the Part 1 as a whole and Part 2.

As was mentioned in Section 3.1, Part 1.A of the exam covers the basics concepts of the
course that map onto the "Remember" and "Understand" levels of Bloom’s taxonomy. Part
1.B of the exam tests more complex skills of applying basic concepts, analyzing requirements
and evaluating models. Scatter plots in Figures 3a and 3b display the scores that the students
obtained for Part 1.A (x-axis) and Part 1.B (y-axis) of the exam while the color represents the
activity cluster the students are classified into.

First, we look at the relationship between the exam scores obtained in Parts 1.A and 1.B of the
exam. The horizontal purple line in Figures 3a and 3b represents the general passing threshold
for part 1.B (𝑦 = 5.3

2 = 2.65) while the blue line represents a passing threshold for Part 1 as a
whole. The vertical purple line corresponds to a score of 2/2.7 (≈ 75%) on Part 1.A and can be
considered as a threshold that "secures" passing Part 1.B of the exam and Part 1 as a whole. We
can observe that the majority of the students who obtained a score ≥ 2 for Part 1.A of the exam
succeeds in Part 1.B, and almost all of the students pass Part 1 (except of three outlying cases).
Obtaining less than 1.5/2.7 (≈ 55%) on Part 1.A results in failing Part 1.B and Part 1 as a whole
(gray vertical line). The students scoring between 1.5 and 2 have an almost equal chance to pass
or fail part 1 of the exam. These findings imply that the ability to reason on a lower cognitive
level (Part 1.A) affects the ability to reason on a higher cognitive level (Part 1.B) which is in
line with the recommendation of the CaMeLOT framework to assess the knowledge of novice
modellers in a step-by-step manner according to cognitive levels of Bloom’s taxonomy [9].



(a) Week 7 (b) Week 12

Figure 3: Part 1.A vs. Part 1.B vs. Activity cluster

(a) Week 7 (b) Week 12

(c) Course end

Figure 4: Part 1 vs. Part 2 vs. Activity cluster

Second, we assess the relationship between performance on Parts 1 and 2 of the exam. The
horizontal purple line in Figures 4a-4c represents the general passing threshold for Part 2
(𝑦 = 12

2 = 6) while the blue line represents a passing threshold for the whole exam. The purple
vertical line in Figures 4a-4c represent a threshold of 6/8 (75%) on Part 1. Here we observe the
same pattern as for the Part 1.A vs. Part 1.B comparison: the majority of students surpassing
this threshold succeed in Part 2 of the exam while all of the students pass the exam as a whole.
This supports the aforementioned findings and the usefulness of mapping the course’s learning
objectives to Bloom’s taxonomy cognitive levels.

To address RQ3, we look at the relationship between the level of study activity and the scores
obtained for different parts of the exam. Already based on the activity in week 7, it becomes
apparent that most of the highly active students obtain high scores on each part of the exam.



This pattern becomes even stronger as the course progresses, and at the end of the course
(Figure 4c) we can see a clear prevalence of highly and medium active students in the passing
region while inactive students are mostly located in the failing region. While progressing from
week 7 to the end of the course one can notice that the number of red and green students are
shrinking whereas the medium active group grows. Nevertheless, moving from inactive to
medium-active does not suffice to secure a passing grade. These findings strengthen the insights
described in Section 4.1 about the importance of in-person teaching and intrinsic motivation.

5. Conclusion

In this paper, we demonstrate the value of offline activity as an essential instrument to provide
JIT procedural information that significantly contributes to study success. The registration of
offline activities in blended learning therefore contributes to additional insights through LA.
Activity levels of students also clearly correlate with achievements at different cognitive levels.
The results furthermore support the validity of CaMeLOT as a scaffolding of learning goals
according to Bloom’s taxonomy: when students do not achieve a minimum level of competence
for lower level learning objectives, one knows for sure they will fail the assessment of higher
level competences. This opens perspectives for more efficient evaluations: as lower cognitive
levels are easier to check with multiple choice and closed questions, automated grading of
subexams can be used to assess these competences before assessing the higher cognitive levels
with open questions. The results furthermore demonstrate the importance of grounding course
design and LA in instructional design theories. Given the limitations of an analysis that refers to
no more than one course run, the analysis will be replicated in future runs, which will hopefully
further strengthen the conclusions.
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