
Teaching knowledge graphs: A journey from logic to Web 
development and semantics-driven engineering 

Robert Andrei Buchmann1 and Ana-Maria Ghiran1  

1 Babeş-Bolyai University, Faculty of Economics and Business Administration, 58-60 Teodor Mihali Street, Cluj-Napoca, 
400591, Romania 

Abstract 
This experience paper reports on the almost 15 years long journey of teaching knowledge 
representation and engineering topics in the Business Informatics study programs of the host university 
where the authors have been active during this time. The journey has been subjected to several factors 
- some local, some global - having various degrees of influence on the design rationale and deployment 
of teaching what is nowadays branded by the "Knowledge Graphs" buzzword, as well as its underlying 
Conceptual Modeling paradigm. Local factors include the local IT labor market dominated by an 
outsourcing culture that pressure curricular contents to align to immediate needs of influential IT 
service providers - typically working on maintaining/patching legacy systems, providing quality 
assurance for products developed elsewhere or developing low-innovation products. Global factors 
refer to the slow uptake of the Semantic Web paradigm and its gradual pragmatic re-branding and focus 
shifts - from ontology engineering to Linked Open Data, to semantic graph databases, to the Schema.org 
markup incentive and so on. For some years this has gone hand in hand with limited availability of 
educational tooling, proofs of concept, proofs of commercial value or means of producing educational 
content. The paper reflects on lessons learned and outcomes of the (constructivist) strategies employed 
to maintain and consolidate a knowledge representation curricular offer. 
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1. Introduction 

This paper reports on a longitudinal experience in the authors' host university, in Business 
Informatics study programs, with teaching various forms of knowledge representation and 
engineering for almost 15 years, through several stages of curricular and content re-designs 
motivated by local factors (pressure from the local labor market) and global factors (the sinuous 
uptake of semantic technologies and available educational tooling). 

Knowledge representation was introduced through a bachelor-level "old-fashioned AI" lecture 
(built around Prolog and predicate logic), evolving towards a master-level course on Protégé-
based ontology engineering, later extended towards RDF-based Linked Data management, then 
returning to bachelor-level as a Web development course making exploratory use of semantic 
graph databases, and finally producing master-level spin-offs on Knowledge Engineering and 
Semantics-driven Engineering topics. This evolution managed, since several years now, to define 
a research stream of consistent scientific output and active involvement from students and junior 
researchers. This was also the key performance target for this steady re-design effort, backed by 
an underlying motivation to enforce a constructivist teaching strategy [1] with as many anchors 
as possible to what students already know when encountering these topics. In the initial, logic-
centered forms of the teaching content, the only anchor was to propositional logic - studied in 
high school by most students and perceived as being associated with math rather than 
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information systems development. The current version builds on references to databases (from 
SQL to NoSQL), general Web development (moving away from Java libraries towards PHP, 
Python, JavaScript), Web interoperability (from REST APIs to SPARQL endpoints), search engine 
optimization (from traditional SEO to Schema.org), and diagrammatic knowledge capture 
(conceptual modeling). Logic and reasoning-mechanisms become an upper layer of cognitive 
mechanisms serving for semantic enrichment in the above contexts already familiar to students, 
rather than a topic perceived as a niche of academic interest but little pragmatic relevance. The 
content further feeds into subsequent courses on network/graph analytics or the interplay 
between knowledge graphs and machine learning. 

Diagrammatic conceptual modeling also plays a key role contributing as a means of knowledge 
graph enrichment, after many years of being taught strictly as visual documentation - typically as 
chapters/tools of other disciplines. We've previously discussed this by framing conceptual 
modeling education as a "design problem" in [2] and tackling it there from a Design Science 
Research perspective, to emphasize two key principles: the dual nature of diagrammatic models 
(both human-readable and machine-readable) and the potential agility of their metamodels 
enabling a mediation role recently recognized by the literature [3] and a more generalized model 
value proposition [4]. 

The starting point for this journey was a traditional and inertial disconnect between AI topics 
and the other disciplines of our programs, as well as between knowledge representation (in the 
sense of symbolic AI) and knowledge acquisition by diagrammatic means. Symptoms of this 
disconnect included a general sense of disjointedness regarding the study programs and certain 
oversimplifications in understanding the nature and applicability of conceptual modeling (we 
discussed these fallacies based on teaching cases in [2] and [5]). The strategy for tackling the 
situation was to bring forth conceptual modeling as a standalone discipline providing tooling and 
thinking that can be adopted for diverse purposes and application domains - be it software 
engineering, business process management, knowledge graph building. This has generally flipped 
the perception on conceptual modeling - from tooling that belongs to other disciplines to a 
standalone discipline having diverse application areas, serving them with means of abstraction, 
complexity reduction and semantic mediation. This is not limited to information systems or 
enterprise modeling, but also extends to domain-specificity through DSMLs (domain-specific 
modeling languages) - we presented a teaching artifact for maintaining a repository of cooking 
recipes in [5]. 

Secondly, in constructivist spirit we aimed to identify points of convergence and possible 
bridging between knowledge representation, enterprise modeling and the disciplines already 
part of the study program stem - i.e. business analysis, software/Web development, databases. 
Finally, we benefitted from an accelerated commercial visibility and adoption of semantic 
technologies - moving away from viewing tools as experimental artifacts of "old-fashioned" 
symbolic AI towards modern databases (graph databases), search engine optimization (through 
Schema.org), Web development (through RDF-based programming libraries), Web 
interoperability (as a viable alternative to XML/JSON) and finally converging with diagrammatic 
modeling as means of enabling machine reasoning over enterprise models (BPMN, Archimate 
etc.) or as possible mediators for model-driven engineering.  

The remainder of the paper is structured as follows: the evolution stages of this curricular re-
design are summarized in the next section. Section 3 provides insights about the current 
structure, design rationale and learning outcomes based on a revised Bloom taxonomy. Section 4 
enumerates the teaching tools and key enablers. Section 5 comments on related work on 
educational experiences and strategies for conceptual modeling. The paper concludes by 
highlighting some success indicators. 

2. Context and evolution stages 

One major challenge with teaching knowledge representation and conceptual modeling topics in 
the host university has been the context of a dominant outsourcing culture of the regional IT 



industry, which rewards (and influences through direct involvement in curricula design or even 
volunteering for teaching activities) the topics that are strictly relevant to their portfolio of IT 
service provision: software testing, maintenance or customization of legacy systems, 
development of low-innovation products (templated Web shops, apps, REST interfaces), database 
or cloud management, document management. 

In such a pragmatic context, there have been struggles with preserving curricular modules 
that do not have a direct correspondent in the prioritized skill profiles - examples of disciplines 
suffering from this have been Business Process Management (partially revigorated recently by 
the popularity of RPA), Enterprise Architecture Management, Conceptual Modeling/Model-
driven Engineering, Artificial Intelligence (a rollercoaster of "winters" and hype "springs"). A 
vicious circle started to manifest - of students arguing that there are "no jobs" for certain skills 
versus companies arguing that there is no talent available in the region for the same skills. 
Education is responsible for defusing such situations, therefore we took on a long term endeavor 
to advocate the value proposition for knowledge representation and conceptual modeling. 

The Artificial Intelligence topics in the Business Informatics programs have been redesigned 
many times to optimize their position and relevance, oscillating between formalism-focused and 
tool-focused. Initially an AI course aimed to balance coverage of symbolic and non-symbolic AI 
notions in line with the AIMA textbook2 , but was perceived as disconnected from the rest of the 
program, from student preferences and prior knowledge or local industry needs. While the 
original vision was not entirely dropped, a number of revisions have been tested at master level 
(and pushed to bachelor level once validated and streamlined). A first wave of revisions was 
applied in 2009 by introducing a Knowledge Management Systems course focusing on ontology 
engineering with Protégé and OWL/XML-based tooling, backed by description logics foundations, 
which also met some resistance caused by user experience gaps already recognized by the 
literature [6][7] or because of the comprehension challenges raised by description logics and 
ontology formalisms [8][9]. A second wave of revisions followed in 2011-2012 shifting towards 
the Linked Data paradigm - i.e. a perspective of open data management and federation took 
precedence, although the graph nature was still obscured by the legacy Prolog-inspired focus on 
logic, and by the cumbersome RDF/XML standard. During 2015-2016, as commercial tooling and 
RDF graph visualizers became available to students, the SEO incentive of Schema.org and DBPedia 
gained traction and RDF programming libraries improved in robustness, this could be pushed 
closer towards the dominant interest of students - i.e. connected at bachelor level with Web 
application development. 

Similar challenges were met by diagrammatic conceptual modeling - scattered among many 
disciplines (object-oriented programming, systems design, database design, business process 
management), modeling was dominantly perceived as visual documentation following some 
loose guidelines - i.e. missing important aspects such as model-driven engineering or 
metamodeling. A recent revision turned this into a standalone discipline with diverse application 
areas, dedicating a full semester to multi-perspective modeling through UML, BPMN, DMN, 
Archimate and brief introductions to other notations or DSMLs. 

Finally, on master level a convergence between the Semantic Web topics and the diagrammatic 
modeling methods was also introduced - to be detailed in the next section. 

3. Content and task designs 

The current content design is split between bachelor-level and master-level courses. In the 
bachelor-level, diagrammatic conceptual modeling and knowledge graphs are covered by parallel 
courses and kept generally separate, with only brief cross-references between them. On master 
level, the two types of conceptual modeling converge into knowledge engineering and semantics-
driven engineering modules where the interplay between diagrammatic enterprise models, 
DSMLs (domain-specific modeling languages) and knowledge graphs is exploited. An overview of 
the redesigned content and tasks is provided in Figure 1, to be detailed in the following. 

 
2 https://aima.cs.berkeley.edu/ 



 

 
Figure 1 The re-designed content/tasks for conceptual modeling education 
 
The current approach for teaching knowledge graphs at bachelor level is a bottom-up one - 
instead of starting from high-level logical formalisms and knowledge representation foundations 
(that traditionally never made it into pragmatic examples), we hook into popular disciplines for 
which students already acquired pragmatic skills. We rely on existing Web development projects 
where students gained the skills to develop a simple Web shop using a traditional technological 
stack - JavaScript-PHP-MySQL, in a context also touching on e-business principles and search 
engine optimization. On this pre-existing skillset, students are tasked to gradually incorporate 
granular knowledge graph ingredients from a Web developer perspective, in an additive manner: 
 

1. First, the MySQL database of the Web shop is replaced with an RDF triplestore holding 
equivalent data (Web shop-oriented, i.e. users, products, orders etc.), which gives 
opportunities for several early "revelations" induced by analogies and differentiators: how 
tabular structures are mapped to graph structures; how primary keys compare to URIs; how 
table JOINS compare to graph path navigation; how a relational schema compares to a graph 
schema. The discussion focuses on database concepts already familiar to students, 
intentionally avoiding any AI-related background or open world assumptions; 
2. SQL queries in the Web shop are replaced by equivalent graph queries without breaking 
the legacy functionality. The simplest PHP library is used to run the queries3, which mimics 
the way students are used to run SQL queries in PHP. Later the low-level HTTP details of using 
the SPARQL HTTP protocol are also revealed - this time by analogy with general HTTP 
interoperability; 
3. Then, the HTML front-end is dynamically enriched by JSON-LD graph fragments using 
Schema.org mark-up4, which gives the opportunity to discuss novel approaches to semantic 
SEO and search engine driven interoperability. It is also an opportunity to showcase the ease 
by which JSON-LD graph fragments can be injected into Web pages if the back-end store is 
already graph-based (with additional tricks such as JSON-LD framing5 to obtain a targeted 
JSON structure); 
4. The Linked Data aspect is then revealed by incorporating DBPedia links, and expanding a 
few of the queries to bring federated data to the existing front-end; 

 
3 https://www.easyrdf.org/ 
4 https://schema.org/ 
5 https://www.w3.org/TR/json-ld11-framing/ 



5. Finally, basic machine reasoning is introduced by a few simple SPARQL inferences to 
generate information not present in the initial data store - e.g. generating networks of 
users/actors involved with the same products/items. 

This flow ensures not only that students work on code and patterns they already developed 
before, but that at every step there's an opportunity for analogies, comparisons and anchoring to 
patterns they are familiar with, before spiraling away from them. Only a superficial AI framing is 
provided in the bachelor-level theoretical lectures, the general focus being on providing a natural 
extension for Web developers towards alternative databases, novel querying and SEO techniques, 
new types of objects manipulated in Web scripts (e. g. graph objects in PHP). 

In parallel, the stream of diagrammatic conceptual modeling is covered by a separate course 
that primarily provides training on modeling standards (predominantly UML, BPMN, DMN, 
Archimate). It also hints towards research-driven languages (i*, e3value) as well as DSMLs. The 
objective here is manifold: 

 
1. to reveal the diversity of modeling languages in relation to diversifying purposes, to 
discuss their occasional overlapping or semantic divergence, and finally their inherently 
limited competence (limited by a constraining metamodel); 
2. to reveal the notion of "model queries" (as a flavor of "competence questions") - i.e. means 
of retrieving contents from a repository of models; this can be demonstrated either by XPath 
over the XML serializations provided by most standards, or by dedicated model query 
languages such as AQL in the Bee-Up modeling tool6 ; 
3. to detach conceptual modeling from the software engineering domain where it is 
previously used by other courses (through class diagrams and data models); 
4. as a consequence of all the above, to position conceptual modeling as a standalone 
discipline supporting knowledge structuring and retrieval for any application areas. 

 
The two streams (diagrammatic modeling and non-diagrammatic knowledge graphs) converge 
on master level along two modules building both abstraction and engineering skills: 
 

a) In Knowledge Engineering we discuss similarities and possibilities of interplay between 
ontologies and metamodels. OWL ontologies and inference rules come now into focus 
(expanding from the earlier graph database schema perspective), with foundational 
background on description logics and pragmatic examples of axioms/rules over the previously 
developed graph-driven Web project; 
b) In Semantics-driven Engineering we introduce means of engineering artifacts that 
retrieve knowledge by semantic queries or reasoning applied over a semantic repository of 
hybrid content consisting of (a) legacy datasets semantically lifted (with transformation rules 
in the OntoRefine tool 7 ), (b) OWL/SHACL axioms and rules, (c) diagrammatic contents 
converted to RDF - initially from established model types available in the Bee-Up modeling 
tool (BPMN, DMN, UML etc.) and later from model types pertaining to DSMLs developed by 
students to support their preferred domain and competence questions. This hybrid knowledge 
graph is hosted by an OWL-enabled repository on GraphDB8  and exposed to semantics-driven 
artifacts developed by each student according to their engineering preferences (mobile apps, 
Web pages, IoT devices). Many repetitions of this engineering approach have been crystallized 
in a specific flavor of model-driven engineering that we've discussed in more detail in [10] 
under the label of "model-aware engineering" and can be clearly distinguished from 
traditional model-driven approaches where a fixed metamodel makes possible stable 
transformation rules. 
 

 
6 https://www.adoxx.org/live/adoxx-query-language-aql 
7 https://www.ontotext.com/products/ontotext-refine/ 
8 https://www.ontotext.com/products/graphdb/ 



Table 1 summarizes the targeted outcomes that are basis for exam evaluations aligned with 
the revised Bloom taxonomy of learning levels proposed in [11]. Each cell lists outcomes for both 
the knowledge graph and the diagrammatic modeling stream. 

 
Table 1 Outcomes according to the Bloom (revised) taxonomy 

Taxonomy 
level 

Bachelor-level outcomes Master-level outcomes 

Remember The ability to recall and give informal 
definitions on basic RDF-related 
concepts: URI, blank nodes, triple, 
predicate etc. 
The ability to recall whether a modeling 
standard offers or not certain concepts 
(i.e. matching-based, not recalling the 
full lists of concepts available in each 
modeling standard). 

The ability to recall and give informal 
definitions on basic OWL-related 
concepts: inverse property, 
symmetric property etc. 
The ability to recall and give informal 
definitions on the building blocks of a 
modeling method or Agile Modeling 
Method Engineering phases cf. [12]. 

Understand The ability to describe in natural 
language a situation (and associated 
data) depicted in an RDF graph written in 
Turtle. 
The ability to describe in natural 
language a situation or pattern depicted 
in a diagrammatic model (using the 
notions previously mentioned) 

The ability to describe in natural 
language the knowledge structure 
depicted by an OWL ontology and a 
set of SPARQL/SHACL rules. 
The ability to describe in natural 
language a metamodel depicted as a 
class diagram. The ability to draw a 
mock diagram conforming that 
metamodel. 

Apply The ability to "translate" a piece of 
natural text into an RDF graph written in 
Turtle, with an RDFS schema and a 
minimal number of terms adopted from 
Schema.org. The ability to run queries on 
that. 
The ability to represent a given situation 
or pattern in a diagrammatic model, 
while preserving as much as possible of 
the details provided in the textual 
description. 

The ability to define the RDFS+OWL 
knowledge structure capturing all 
relationships and classes involved in 
a natural language description of a 
situation. 
The ability to draw the domain-
specific metamodel capturing all 
relationships and types involved in a 
natural language description of a 
situation.  

Analyze The ability to assess whether a certain 
SPARQL query can be satisfied by an RDF 
graph exemplar - given in Turtle or JSON-
LD formats. 
The ability to assess whether a 
competence question can be satisfied by 
the contents of a diagrammatic model. 

The ability to assess whether an RDF 
triple will be generated or not by a 
certain mix of OWL axioms and 
SPARQL/SHACL rules. 
The ability to assess whether a 
competence question can find its 
answer in models created according 
to a given domain-specific 
metamodel (given a legend a mock 
symbols). 

Evaluate The ability to find syntactic and structural 
mistakes in RDF graph exemplars 
(written in Turtle), relative to a situation 
it is supposed to represent. 

The ability to formulate all explicit 
triples that will be generated from a 
given RDF dataset by a given set of 
OWL axioms and SPARQL/SHACL 
rules. 



The ability to find mistakes in 
diagrammatic models, relative to a 
situation or pattern they are supposed to 
represent (same modeling languages 
mentioned above). 

The ability to assess whether a 
domain-specific diagram deviates 
from a domain-specific metamodel it 
is supposed to be governed by. 

Create The ability to build a Web site that 
populates and stores all data in a 
knowledge graph, including links to 
DBPedia and a graph fragment published 
as JSON-LD in the front-end. 
The ability to create a multi-perspective 
cross-consistent set of models (of 
different model types) depicting 
different facets of a complex situation or 
architecture. 

The ability to implement a novel 
modeling tool deploying a DSML. The 
ability to use it to describe at least 
two different situations, to ensure it 
is not a "single use" (i.e., too specific) 
language. 
The ability to build a knowledge 
graph incorporating the models 
depicting those situations, with 
additional semantic enrichment and 
data linked to them. The ability to 
build a front-end that demonstrates 
for this knowledge graph the 
application of reasoning, model 
navigation and data aggregation 
constrained by model contents. 

4. Key technological and organizational enablers 

The tooling required to deploy the new course designs consists of two ecosystems: (i) for the 
knowledge graph management part, the tooling around Ontotext's GraphDB was chosen; (ii) for 
the modeling, metamodeling and model-to-RDF interoperability, OMiLAB's Digital Innovation 
environment [12] was adopted. 

Ontotext's GraphDB was chosen due to the availability of a free edition that students can 
immediately get hands-on experience with and, equally important, due to the commercial 
credibility as a production-ready system offering rich connectors, plug-ins and APIs that can be 
accessed from different programming languages. Earlier tools have been perceived by students 
as "professor-ware" (irrelevant outside academic context) or locked into a Java ecosystem (for 
the early Semantic Web tools). Usability, visualization and easy configuration features of 
GraphDB made it a key ingredient earlier than competing products became available, and 
licensed versions were also successfully adopted in institutional projects with scaling 
requirements that can demonstrate to students production-readiness [13]. 

The OMiLAB Digital Innovation environment is a digital ecosystem and a hardware-software 
installation providing a complex toolset: (a) the previously mentioned Bee-Up9  - out of the box 
modeling tool for BPMN, ER, EPC, UML, Petri Nets, DMN and other languages. The tool also 
provides an RDF export for any of the supported languages, allowing several layers of semantic 
enrichment of diagrammatic elements; (b) the ADOxx metamodeling platform 10  - for 
implementing modeling tools and experimenting not only with DSML, but also with the inner 
workings of Bee-Up to enable design-oriented research (such as [14] where BPMN was 
specialized to describe user experience flows), or empirically-oriented research that requires the 
logging of modeling actions as in [15]. An RDF export for any DSML deployed on ADOxx is 
openly available 11 , based on representation and reasoning patterns discussed in [16]; (c) a 
number of hardware (robotic) components and adapters to enable interoperability between 
models and Internet of Things environments, which further provide input to an IoT course that 

 
9 https://bee-up.omilab.org/activities/bee-up/ 
10 https://www.adoxx.org/live/home 
11 Tool available at https://code.omilab.org/resources/adoxx-modules/rdf-transformation 



is not in the scope of this paper - we only mention its relation to a number of conference tutorials 
presented in recent years12 . The ecosystem and tooling hereby summarized was collected over 
the years based on exploratory teaching in several contexts: (a) interactions facilitated by the 
NEMO summer school series and the enterprise modeling community involved there13; (b) recent 
adoption in our university of an OMiLAB node 14  and its digital innovation toolkits; (c) 
coordination of the master program on Business Modeling and Distributed Computing15, where 
most of the hereby reported curricular revisions were initially tested, before transferring some 
of the modules to bachelor level. 

5. Related work 

We incorporate under the notion of "conceptual modeling education" the efforts pertaining to 
both diagrammatic (using UML, BPMN etc.) and non-diagrammatic (i.e. ontologies, knowledge 
graphs) conceptual modeling. The two categories are rarely investigated in convergence and even 
rarer taught in tandem, because of limited tooling - except for the previously mentioned support 
in Bee-Up and ADOxx, recent research reported tools that may be employed for comparable 
teaching tasks: AOAME [17], Archi's plug-in for Neo4J [18], EAKG [19], earlier works hinting at 
specific demonstrators for business process modeling [20]. A recent systematic mapping on the 
convergence of conceptual modeling and the Semantic Web provides a comprehensive inventory 
[21]. We could not identify teaching reports on using such tools, nor on knowledge graph 
development education - scholarly work focuses on adoption of knowledge graphs for 
educational knowledge management. Related works have covered comprehension challenges 
regarding ontology formalisms such as frames or description logics [8][9]. 

On the other hand, research on the education of diagrammatic conceptual modeling is much 
better represented: [22] analyzed student modeling tasks to quantify modeling errors, [15] 
investigated modeling styles, [23] proposed a Bloom-based framework for teaching conceptual 
modeling and metamodeling, [24] advocated several course re-designs to strengthen the position 
of conceptual modeling as a standalone discipline, [25] discussed the need for animated notations 
to improve BPMN diagrams comprehension. 

6. Connections to learning theories 

Although we did not derive novel learning theories from this experience, we can point to existing 
theories that are embodied in the reported approach (and were previously ignored by the legacy 
approach).  

First of all, constructivist learning [1] posits that students should build on what they already 
know and should derive knowledge by their own construction effort rather than by direct 
assimilation of content. The initial "old-fashioned AI" course built only on priors related to 
propositional logic (introduced to most students in high schools and not revisited afterwards) 
and was perceived as being mostly disconnected from the rest of the curriculum or software 
engineering practices employed by the local industry. The new approach successfully hooks into 
(and extrapolates from) already familiar technologies and practices: databases, Web 
development and architecting, SEO, diagrammatic modeling. Students extend code they already 
developed with granular ingredients that are able to frame knowledge graphs more naturally, as 
learning objects connected to those already acquired. 

Secondly, the spiraling strategy advocated by J. Bruner [26] inspired a recurring revisitation 
of the same topics throughout the curriculum. Such spiraling was already manifesting by 
somewhat redundant revisitation of certain more mainstream topics (relational databases, SQL 
queries, Web development presented in different flavors and tools, by different courses or 

 
12 See the ER tutorial at https://er2023.inesc-id.pt/program-overview/tutorials/#tutorial3 
13 NEMO summer school series, https://nemo.omilab.org/ 
14 OMiLAB-FSEGA node, https://econ.ubbcluj.ro/omilab/index.php 
15 BMDC master program, https://econ.ubbcluj.ro/programe/bmdc/index.php 



modules), traditionally converging into bachelor or master theses. The current approach hooked 
into these spirals by presenting knowledge graphs and conceptual modeling as natural spin-offs 
of those dominant topics rather than disconnected disciplines or parallel content streams. 

7. Concluding evaluation 

The main goal of this longitudinal redesign was to enable, in the spirit of the humboldtian 
education model adopted by the university, a steady stream of scientific research from students 
- thus making them more prepared for emerging technologies, for innovation-oriented 
entrepreneurship (in contrast to a legacy outsourcing culture) or for junior research work in 
projects and PhD programs. None of this was happening in the areas of symbolic AI and model-
driven engineering prior to 2016, when the second major curricular redesign was applied. Since 
then, conference publications based on master dissertations became regular, in venues such as 
ENASE, REFSQ, AMCIS, ISD, ECIS etc.16  The first local start-up that produces a domain-specific 
(for cybersecurity) knowledge graph with a diagrammatic layer emerged in the region17  and a 
number of companies known as early adopters of knowledge graphs opened off-shore offices in 
the region, creating further cooperation opportunities. Institutional projects became possible, 
employing talent already available among students without the need for a risky and expensive 
learning curve. One example of institutional project deals with the semantic lifting of legacy 
databases available in the university, for master data management [13]. 

In terms of weaknesses, there is still a disconnect from non-symbolic AI topics such as deep 
learning and natural language processing, which we aim to bridge in future revisions by 
developing demonstrators for neuro-symbolic AI and by exploiting the recently launched 
interfaces of GraphDB to OpenAI18. 
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