CEUR-WS.org/Vol-3620/agilemde23_paper02.pdf

C

CEUR

Workshop
Proceedings

Towards Integrating Machine Learning Models into Mobile

Apps using AppCraft

Lyan Alwakeel’!, Kevin Lano’ and Hessa Alfraihi?

"Department of Informatics, King’s College London, London, United Kingdom

2Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University,Riyadh,

Saudi Arabia

Abstract

Mobile apps increasingly incorporate machine learning (ML) to enhance their services. However, integrating ML models
locally with mobile apps can be challenging. Each ML model has specific designs that accept certain types of input and
produce specific outputs. Model-driven engineering (MDE) and low-code solutions can specify the integration process in
a high-level language, alleviating this issue. In this paper, we incorporate our framework, AppCraft, with the ML process
to generate code for Android and iOS mobile apps with all the necessary components to load the model, process the input
data, and display the output results in a user-friendly way. This enhancement contributes to designing and automating the
integration of ML engineering processes with mobile apps.

Keywords

Model-Driven Engineering, Low-code, Mobile App, Machine Learning Engineering, Android, iOS

1. Introduction

Mobile apps are widely used features of mobile devices
that often use machine learning (ML) to improve their
services. On-device inference is a popular example of
ML that involves integrating a pre-trained model into a
mobile app and performing all inference computations
locally on the device. With on-device inference, user data
can be processed without being sent to external servers,
which enhances privacy and reduces the need for high
bandwidth [1]. Furthermore, the pre-trained models used
in on-device inference have already been trained on large
datasets, making them efficient and effective for intended
tasks.

However, integrating ML models into mobile apps can
be a challenging task, especially for those with no expe-
rience in mobile app development. Each ML model has
a specific design that accepts specific types of input and
produces specific output. For instance, when training a
model and converting it to TensorFlow Lite format for
use in a mobile app, the app must be coded to handle
input and output tensors at a low-level and associated
metadata is necessary to match output values with their
intended results. This involves converting input data
into a buffer of the underlying data, copying it to the in-

AMDE 2023: Agile Model-driven Engineering Workshop, Part of the
Software Technologies: Applications and Foundations (STAF) federated
conferences, Eds. K. Lano, H. Alfraihi, S. Rahimi and J. Troya, 20 July
2023, Leicester, UK.

Q lyan.alwakeel@kcl.ac.uk (L. Alwakeel); kevin.lano@kcl.ac.uk
(K. Lano); haalfraihi@pnu.edu.sa (H. Alfraihi)

® 0000-0003-3779-9939 (L. Alwakeel); 0000-0002-9706-1410

(K. Lano); 0000-0001-8169-3766 (H. Alfraihi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License
M Attribution 4.0 International (CC BY 4.0).

put tensor, invoking the interpreter, and then converting
the output tensor data into a usable datatype [2]. The
complexity further increases when dealing with more
complex data like images, and all these challenges make
it difficult to integrate models in mobile apps.

Model-driven engineering (MDE) and Agile/low-code
solutions share core principles of abstraction, automation,
agility [3], and rapid development, which can address
challenges in integrating ML models into mobile apps.
We have introduced AppCraft, an Agile MDE framework
that includes a Domain-Specific Language (DSL) for mo-
bile apps and two code generators for Android and iOS,
enhancing the agility and efficiency of mobile app de-
velopment. The DSL allows specification of ML process
at a high-level of abstraction, to automatically integrate
ML models and generate fully functional mobile apps
while maintaining quality and reducing costs. Devel-
opment of complex apps is therefore accelerated, and
changing requirements can be rapidly handled by mod-
ifying the specification and automatically regenerating
the app code.

The remainder of this paper is structured as follows:
In Section 2, we discuss the DSL design, followed by case
studies in Section 3. Section 4 discusses related work.
Finally, we conclude and discuss future work in Section
5.

2. AppCraft Design

The creation of a mobile app utilizing the suggested
framework can be broken down into three primary steps,
as displayed in Figure 1. To begin with, a modeller writes
a declarative textual specification of the app via three dis-

mailto:lyan.alwakeel@kcl.ac.uk
mailto:kevin.lano@kcl.ac.uk
mailto:haalfraihi@pnu.edu.sa
https://orcid.org/0000-0003-3779-9939
https://orcid.org/0000-0002-9706-1410
https://orcid.org/0000-0001-8169-3766
https://creativecommons.org/licenses/by/4.0

< eclipse

Concrete Syntax (.xtext) Code Generators (.xtend)
g

Meta DSL
Level| Grammar
IConforms

Model

Ins1anceL DSL Transformationz
Level ification b

i

android jOS

Files |;
(swift) [+

Generated Code

Studio

@ Xcode

Figure 1: The process of app development with AppCraft
framework.

Modeler
Textual Input (.mobile)

tinct models: data, user interface (UI), and process. The
architecture used by these models is the Model-View-
Controller (MVC). The data model is defined by a class
diagram and adheres to the KM3 [4] meta-model with
some modifications. The Ul model defines Ul components
such as buttons and labels, and the process model is de-
scribed by an activity diagram (expressed as pseudo-code)
to detail the actions of the created app. The modeller can
specify all three models, as used in [5], or use predefined
functions to automatically generate Ul such as CRUD
(create, read, update, delete), as well as search. Both speci-
fications can include customized behavior using different
activity statements, such as creation, conditional, loop,
call, and return. The specification of the three models
includes binding statements that link data models with
UI models. These bindings link each screen to its cor-
responding use case, associate each user action with a
particular function, and relate UI components to specific
attributes.

Secondly, both target platforms’ implementation is au-
tomatically generated. The specified models are utilized
by each code generator to generate platform-specific na-
tive code, specifically for Android and iOS. The Android
code generator creates Kotlin and XML files, while the
i0S generator produces Swift and SwiftUI files. The code
generators employed in AppCraft utilize template-based
generation, leveraging predefined templates that define
the structure and syntax of the generated code. These
templates incorporate placeholders that are filled with
specific values derived from the DSL models.

Thirdly, the resulting source code of the apps is directly
built and compiled on the targeted Integrated Develop-
ment Environment (IDE) for Android Studio and Xcode
for iOS without any modifications, with the ability to
add app resources such as images and machine learning
models as well as prepare the project with required con-
figuration in case of cloud and ML services. This includes
creating cloud database on Firebase, add the configura-
tion file to the project, and add third party components
(CocoaPods) to iOS projects. Because the app produced
utilizes native platform programming language and UI
components, it performs similarly to an app developed

manually.

The generated apps follow the generalised
MVC/VIPER (Model-View-Controller/View- Interactor-
Presenter-Entity-Router) architecture with respect to
Clean Architecture principles, which is an architecture
that can be applied to both platforms Android and iOS
and cover the whole apps.

To specify the ML process, the modeler can specify the
name and type of the model, as well as input and expected
output of the model in high-level language as listed in
Figure 2 and AppCraft will automatically generate fully
functionally mobile app.

MachinelLearning:
{MachineLearning} 'machinelLearning:’
‘modelName: ' modelName=ID
'type:' type = ('audio'|'image'|'numData’|'sensorData')
('input:' (input+=Expression (',' input+=Expression)x)?)?
('vectorSize:' sizel= INT 'x' size2= INT)?
‘output:' (output+=ID (','output+=ID)x) ';';

Figure 2: Specification of a machine learning process in Ap-
pCraft DSL.

The detailed explanations of the concepts depicted in
Figure 2 are as follows:

+ ModelName: This field represents the name as-
signed to the model intended for integration.

« Type: This is employed to identify the data type
to be processed by the integrated model.

« Input: When the modeler selects the “numData”
type, this field is utilized to specify the input pa-
rameter for the model. The modeler can define
the input and apply data normalization if neces-
sary, following a similar process employed during
training.

+ VectorSize: This is commonly employed when
the modeler selects the “sensorData” type. It al-
lows for the specification of a vector input, which
is necessary when dealing with data collected
from sensors and requires similar division as ap-
plied during the model training.

« Output: The field is used to determine the ex-
pected output generated by the model.

3. Case Studies

We present two case studies that illustrate the different
processing techniques available in AppCraft. The se-
lection of apps and processing techniques is based on
our Systematic Literature Review [6] that identifies the
characteristics and challenges of mobile health apps.

3.1. Breast Cancer Case Study

The first case study involves a BreastCancer prediction
app that employs ML to predict whether the user may

have breast cancer. The ML model was built using deep
neural network and trained on the BreastCancer Coimbra
dataset [7]. To specify the app, AppCraft’s DSL was
utilized, which includes a BreastCancer class with the
necessary attributes and a persistence stereotype for local
saving. The classify function uses the ML process with
the “numData” processing type, and input normalization
similar to that used during model training, as shown in
Figure 3.

package breastCancer {
class BreastCancer {
stereotype persistent;

attribute id identity : String; /* principal key */
attribute age: int;

attribute bmi: float;

attribute glucose: float;

attribute insulin: float;

attribute homa: float;

attribute
attribute
attribute
attribute
attribute

leptin: float;
adiponectin: float;
resistin: float;

mcp: float ;

outcome derived: String; }

usecase createBreastCancer (id: String, age: int,
bmi: float, glucose: float, insulin: float,
homa: float, leptin: float, adiponectin: float,
resistin: float, mcp: float, outcome: String

: BreastCancer {

stereotype create;

stereotype entity = BreastCancer; }

usecase listBreastCancer: Sequence(BreastCancer) {
stereotype list;
stereotype entity = BreastCancer; }

usecase classifying(breastCancer: BreastCancer): String {
stereotype classify;
stereotype entity = BreastCancer;
machinelLearning:
modelName: cancer
type: numData
input: (ref breastCancer.age — 24) / (89 - 24),

(ref breastCancer.bmi - 18.37) / (38.578 - 18.37),

(ref breastCancer.glucose - 60) / (201 - 60),

(ref breastCancer.insulin - 2.432) / (58.46 - 2.432),
(ref breastCancer.homa - 0.467) / (25.05 - 0.467),

(ref breastCancer.leptin - 4.311) / (90.28 - 4.311),
(ref breastCancer.adiponectin - 1.65) / (38.04 - 1.65),
(ref breastCancer.resistin- 3.21) / (82.1 - 3.21),

(ref breastCancer.mcp - 45.84) / (1698.44 - 45,84)
output: negative, positive;

Figure 3: Specification of Breast Cancer app.

3.2. Skin Scan Case Study

The second case study involves a SkinScan app that uti-
lizes ML to detect skin conditions. The app was developed
using the CRUD functionalities and a cloud stereotype to
enable cloud storage, as shown in Figure 4. The “image”
processing type was chosen for the ML model, which
was trained on the ISIC Archive dataset [8] using the
MobileNetV2 architecture.

package skincancer {

class SkinCancer {
stereotype persistent;

attribute id identity :

attribute dates : date;

attribute images : image;

attribute outcome derived: String;
}

String;

usecase crudSkinCancer (id: String, dates: date,
images: image, outcome: String

) : SkinCancer {
stereotype CRUD;
stereotype entity = SkinCancer;

usecase searchSkinCancer (id: String, dates: date,
images: image, outcome: String

) : Sequence(SkinCancer) {
stereotype searchBy = dates;
stereotype entity = SkinCancer;

usecase imgRecognition (skinCancer: SkinCancer): String {
stereotype classify;
stereotype entity = SkinCancer;
machineLearning:
modelName: SkinCancer
type: image
output: benign, malignant;

Figure 4: Specification of Skin Scan app.

4. Related Work

Various studies have proposed frameworks to generate
useful artifacts from models to facilitate mobile app de-
velopment. These studies differ in scope and modelling
language. Some attempts have been made to apply MDE
to generate protype that include Ul and transitions be-
tween pages of mobile apps such as authors in [9] and
IFMLEdit [10]. These tools would be more advantageous
if they were accompanied by system behavior to gen-
erate a comprehensive mobile app. Two closely related
frameworks are mD2 [11] and PIMAR [12], which seek
to cover both the frontend and backend using DSL. These
frameworks and generated apps are based on a MVC ar-
chitecture and consist of data, UI, and process models and
utilized to generate native mobile apps for Android and
iOS via Xtext and Xtend. However, they require manual
coding for complex functions and are most useful for
data-centric apps.

In comparison, our framework is more comprehen-
sive and flexible, allowing for the specification of CRUD
functionalities and different behaviours. AppCraft is
distinguished by offering 100% generation of fully func-
tional apps that can incorporate ML processes. We use a
MVC/VIPER architecture generalized architecture that
covers the entire app, rather than just the presentation
layer as with MVC. Regarding DSL for ML, there exist
languages for modeling specific ML activities, such as
Arbiter [13] for ethical ML and DeepDSL [14] for creating

deep learning networks. Additionally, in [15], authors
introduce a DSL for modeling ML engineering processes.
However, none of these DSLs have been specifically tai-
lored for integrating ML models with mobile apps.

5. Conclusion and Future Work

Combining ML with MDE in an Agile/low-code approach
enables rapid development, high-level abstraction, and
automation, resulting in ML-enhanced apps that can de-
liver high-quality results in a shorter timeframe. We
believe that AppCraft has the potential to greatly sim-
plify the integration of ML models into mobile apps, and
we look forward to exploring its full capabilities and po-
tential in future work.

Moving forward, we plan to evaluate the framework’s
effectiveness in terms of ease of use, accuracy, and perfor-
mance. Our goals include measuring the time and effort
required to generate an app using AppCraft compared to
manual app development, assessing the accuracy of the
generated app, as well as enhancing AppCraft by incor-
porating security and privacy aspects and other types of
ML processing, such as audio and video.

References

[1] X.Dai, L Spasi¢, S. Chapman, B. Meyer, The state
of the art in implementing machine learning for
mobile apps: A survey, in: 2020 SoutheastCon,
2020, pp. 1-8.

[2] L. Moroney, Al and machine learning for on-device
development, O’Reilly Media, 2021.

[3] A. Bucaioni, A. Cicchetti, F. Ciccozzi, Modelling
in low-code development: a multi-vocal systematic
review, Software and Systems Modeling 21 (2022)
1959-1981.

[4] F.Jouault, J. Bézivin, Km3: A dsl for metamodel
specification, in: Formal Methods for Open Object-
Based Distributed Systems, Springer, Berlin, Hei-
delberg, 2006, pp. 171-185.

[5] L. Alwakeel, K. Lano, Model-driven development
of mobile applications, in: ECOOP, 2020.

[6] L. Alwakeel, K. Lano, Functional and technical
aspects of self-management mhealth apps: System-
atic app search and literature review, JMIR Hum
Factors 9 (2022) e29767.

[7] M. Patricio, J. Pereira, J. Crisdstomo, P. Matafome,
M. Gomes, R. Seica, F. Caramelo, Using resistin,
glucose, age and BMI to predict the presence of
breast cancer, BMC Cancer (2018).

[8] ISIC-archive, International skin imaging collabora-
tion dataset, 2023. URL: https://www.isic-archive.
com/#!/topWithHeader/wideContentTop/main, ac-
cessed on April 19, 2023.

[9] T.Channonthawat, Y. Limpiyakorn, Model driven
development of android application prototypes
from windows navigation diagrams, in: ICSN, 2016,
pp.- 1-4.

C. Bernaschina, S. Comai, P. Fraternali, Online
model editing, simulation and code generation for
web and mobile applications, MISE 17, IEEE Press,
2017, p. 33-39.

H. Heitkotter, T. A. Majchrzak, H. Kuchen, Cross-
platform model-driven development of mobile ap-
plications with md2, SAC ’13, NY, USA, 2013, p.
526-533.

S. Vaupel, G. Taentzer, J. P. Harries, R. Stroh, R. Ger-
lach, M. Guckert, Model-driven development of
mobile applications allowing role-driven variants,
Springer, 2014, pp. 1-17.

[13] J. Zucker, M. d’Leeuwen, Arbiter: A domain-
specific language for ethical machine learning, in:
The AAAI/ACM Conference on Al, Ethics, and So-
ciety, NY, USA, 2020, p. 421-425.

T. Zhao, X. Huang, Design and implementation
of deepdsl: A dsl for deep learning, Computer
Languages, Systems Structures 54 (2018) 39-70.

S. Morales, R. Clariso, J. Cabot, Towards a dsl for ai
engineering process modeling, in: Product-Focused
Software Process Improvement, Springer, Cham,
2022, pp. 53-60.

(11]

https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main
https://www.isic-archive.com/#!/topWithHeader/wideContentTop/main

	1 Introduction
	2 AppCraft Design
	3 Case Studies
	3.1 Breast Cancer Case Study
	3.2 Skin Scan Case Study

	4 Related Work
	5 Conclusion and Future Work

